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A B S T R A C T

Understanding the potential for cancers to metastasize is still relatively unknown. While many predictive
methods may use deep learning or stochastic processes, we highlight a long standing mathematical concept
that may be useful for modeling metastatic breast cancer systems. Ordinary differential equations (ODEs) can
model cell state transitions by considering the pertinent environmental variables as well as the paths systems
take over time. Bifurcation theory is a branch of dynamical systems which studies changes in the behavior of
an ODE system while one or more parameters are varied. Many studies have applied concepts in one-parameter
bifurcation theory to model biological network dynamics, and cell division. However, studies of two-parameter
bifurcations are much more rare. Two-parameter bifurcations have not been studied in metastatic systems.
Here we show how a specific two-parameter bifurcation phenomenon called a cusp bifurcation separates two
qualitatively different metastatic cell state transitions modalities and propose a new perspective on defining
such transitions based on mathematical theory. We hope the observations and verification methods detailed
here may help in the understanding of metastatic potential from a basic biological perspective and in clinical
settings.
1. Introduction

Different cell states can emerge during disease progression, such
as cancer metastasis. Regarding metastatic cancer, much attention
has been devoted to two cellular states: epithelial (E) and mesenchy-
mal (M), each recognizable by the levels of specific proteins, which
correspond to the steady states of multistable gene regulatory net-
works (Kalluri and Weinberg, 2009; Hanahan and Weinberg, 2000;
Addison et al., 2021; Thiery and Sleeman, 2006; Mladinich et al.,
2016). Normal epithelial (E) cells are not motile and can grow (divide)
in response to growth signals, as opposed to mesenchymal (M) cells
that do not form epithelial layers and are motile, but less likely
to divide (Kohrman and Matus, 2017). The assumption of a binary
choice between cell division and movement is the ‘‘go-or-grow hy-
pothesis’’ (Hoek et al., 2008). Since metastasis requires departure from
a primary site and growth at a different site, both the epithelial-
mesenchymal transition (EMT), and mesenchymal-epithelial transition
(MET) seem to be required (Brabletz, 2012). Thus, EMT alone is
not always sufficient for metastasis (Fischer et al., 2015) if a binary
classification into E and M cell types is assumed, since MET is also
required for growth in the new location. Moreover, EMT might not
be necessary either, according to recent work (Fischer et al., 2015;
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Zheng et al., 2015) showing that most metastatic cells do not undergo
full EMT, and EMT inhibition does not reduce metastasis. Furthermore,
metastasis relies on detached cells invading their tissue neighborhood
and accessing the bloodstream, which occurs on top of EMT, under
the control of different genes called pro- and antimetastatic regulators,
such as BACH1 and RKIP (Lee et al., 2014). We show how to pinpoint
the threshold when these regulators cause a qualitative shift in the
transition between the two states, and describe a new view that may
be crucial to understanding whether and how metastasis will occur.

Many recent studies indicate that EMT and MET are more complex
than binary processes, i.e., they are transitions between more than
two distinct, well-defined cellular states (Zhang et al., 2014; Jolly
et al., 2017; Lu et al., 2013). One or more intermediate, ‘‘hybrid’’
or ‘‘partial’’ EMT cell states with mixed E/M properties have been
described (Aiello et al., 2018; Selvaggio et al., 2020; Pastushenko et al.,
2018). Recent computational work that varied the number of hidden
intermediate states, aiming to improve fits to experimental data (Goetz
et al., 2020) found that intermediate states can accelerate EMT. It seems
possible that only these intermediate EMT states, instead of full EMT,
are necessary and sufficient for metastasis (Simeonov et al., 2021). In
general, the number of such intermediate states is unknown, raising the
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question: Can the number of intermediate states go to infinity, allowing
continuous transitions? And what defines the boundary between such
continuous transitions versus the widely-studied discrete EMT and
MET transitions, with a finite number of distinguishable steady states?
Finally, how can these theoretical questions help us to understand the
biology of metastasis?

The use of equilibrium states of differential equations as a model
for biological or chemical systems including metastasis-regulatory net-
works, has a long history which we do not try to survey here, except
for a few instances. (Waddington, 1940; Delbrück, 1949; Thom, 1969,
1975; Kauffman, 1993; Cherry and Adler, 2000; Gardner et al., 2000;
Elowitz and Leibler, 2000) The study of bistable systems has played
an important role, especially noteworthy are the works on the toggle
switch (Cherry and Adler, 2000; Gardner et al., 2000) and on di-
rect and indirect fully positive feedback (Becskei et al., 2001; Ferrell,
2002). (A deeper example of these models and how they relate to cusp
bifurcations can be found in the Supplementary Materials)

Mathematical studies of genetic regulatory networks have usually
relied on solving the corresponding differential equations numerically
or with the use of topological or fixed point techniques and theorems
from one-parameter bifurcation theory to prove the existence of solu-
tions with particular properties. One example of the use of topological
methods describing critical points and associated Boolean networks is
by Glass (Glass, 1975). An example of the extensive use of numerics
is Lee et al. (2014). By contrast, the use of two-parameter bifurcation
theory rarely if ever enters into the biological theory, even in papers
with the word bifurcation in the title as in Spencer et al. (2013) or
in the text as in Rajapakse and Smale (2017). The cusp bifurcation
is a concept from two-parameter bifurcation theory, found by solving
a system of equations in the state and parameter variables. Here we
present methods for finding cusp points and give a self-contained ele-
mentary derivation of a set of equations and their solution for finding
cusp points. We provide below a simple computational framework to
find accurate solutions to such systems. We show how this provides
a broader view on the emergence of bistability in biological systems,
by dividing the two-dimensional parameter space into regions with
distinct transition types: continuous and discontinuous transitions. This
should improve the conceptual understanding of cell state transitions in
metastatic gene networks and other biological systems.

2. The cusp point separates two kinds of cell state transitions

Cell states or ‘‘cell types’’ (Rajapakse and Smale, 2017) have been
modeled as stable steady states, or equilibria, of ordinary differential
equations

̇ = 𝑉 (𝑥, 𝛼)

uch that 𝑥 ∈ R𝑛 is a concentration vector representing the cell’s molec-
lar composition and 𝛼 ∈ R𝑗 is a vector of 𝑗 parameters, representing

internal and external characteristics, including reaction rates. Steady
states correspond to the values of 𝑥𝛼 which satisfy 𝑉 (𝑥𝛼 , 𝛼) = 0. If
he eigenvalues of the derivative of 𝑉 (𝑥𝛼 , 𝛼), denoted 𝐷𝑥𝑉 (𝑥𝛼 , 𝛼), all

have negative real part then nearby solutions all tend to 𝑥𝛼 as time
increases. It is possible that 𝑉 (𝑥, 𝛼) may have a unique stable state,
multiple stable states or even more complicated dynamical behavior.
Each stable equilibrium 𝑥𝛼,𝑖 corresponds to a cell type. If the parameter

depends on some external factor 𝑓𝑒𝑥𝑡 because of sensory, genetic,
epigenetic, spatial or other effects, then the number and value of stable
states 𝑥𝛼(𝑓𝑒𝑥𝑡) may depend on 𝛼(𝑓𝑒𝑥𝑡), which describes the dynamical
behavior of cells transitioning from one type to another dependent on
𝑓𝑒𝑥𝑡, which could be the time variable. We are interested in studying
the transitions between pro-metastatic and anti-metastatic mono-stable
states of cells, analogous to EMT and MET, using mathematical models
derived from bifurcation theory. In the model 𝑥̇ = 𝑉 (𝑥, 𝛼), the variables
𝑥(𝑡) that represent proteins involved in metastatic cell transitions are
2

time-dependent. The parameters 𝛼(𝑓𝑒𝑥𝑡) depend on an external factor,
which could be a chemical concentration, cell size, or time. As long
as 𝛼(𝑓𝑒𝑥𝑡) is a continuous function of 𝑓𝑒𝑥𝑡, the theory we present is
valid. If the factor 𝑓𝑒𝑥𝑡 = 𝑡 is time, as we assume in the following
for simplicity, the adjustment time scale of the steady state would be
faster than the time scale of 𝛼(𝑡), as usually assumed in bifurcation
theory. We will mainly focus on cell types in metastatic breast cancer,
but such analyses may also be generalized to other metastatic cancers,
biological networks orchestrating events such as cell division, Spencer
et al. (2013) or synthetic gene circuits (Rajapakse and Smale, 2017).

Smale and Rajapakse refer to cell states as ‘‘cell types’’ in Rajapakse
and Smale (2017) where they identify conditions in biological networks
for which a pitchfork bifurcation in 2 and 3 variable systems with one
parameter exist. Yet, the pitchfork is a one-parameter bifurcation that
may not be stable. There is a stable two parameter bifurcation called the
cusp bifurcation, which includes a pitchfork as a one dimensional sub-
bifurcation. The applicability of the cusp bifurcation or two-parameter
bifurcations to metastatic transitions has not been widely investigated.
Here we use known methods (Pujals et al., 2020) to verify that a pitch-
fork exists in the metastasis model by Lee et al. (2014) (See sections 2.2
and 2.3). Moreover it can be shown that all the examples of pitchfork
bifurcations proven by Smale and Rajapakse in Rajapakse and Smale
(2017) concerning ‘‘Repressillator’’ and ‘‘Toggle’’ synthetic gene circuits
are actually one dimensional sub-bifurcations of cusp bifurcations (See
Supplementary Materials). We plot the cusp curve in the metastatic
breast cancer model, which is the projection of the fold onto the
parameter space and observe that it divides the parameter space into
two regions separated by the curve and cusp point, which correspond
to biological transitions of two types. These transition types differ in
the two types of paths taken by the curve 𝛼(𝑡). The first goes around
the cusp point, and has no bistable points, whereas the second crosses
the bistable region.. The first we call a continuous transition, as it may
capture the biological phenomenon of not just one, but any number
of ‘‘hybrid’’ or ‘‘partial’’ cell types, differently than in previous studies.
Specifically, instead of multiple equilibria, we find that there is always
only one stable equilibrium in the dynamical system, corresponding to a
continuum of partial cell types, which may be sufficient for metastasis.
The second transition is a discontinuous transition between binary
cell types, or anti-metastatic and pro-metastatic cells, which happens
when a stable equilibrium bifurcates and two stable equilibria and
one unstable equilibrium (saddle) appear. In the continuous regime,
noise or external fluctuations might easily confer partially metastatic
phenotypes to cells, as opposed to the discrete regime, where cells are
more robust to such perturbations.

Overall, we show a novel application of bifurcation theory in biol-
ogy, propose a shift from continuous (non-binary) to discrete (binary)
transitions at the cusp point, and discuss further applications of these
concepts in metastasis and other biological phenomena. We have also
provided a tutorial in bifurcation theory and any relevant code in the
Supplementary Materials, which others may find useful for their own
research.

3. Cusp bifurcation for metastatic cell state transitions

3.1. Analytical methods for finding the cusp point: The metastatic cell
transition ODE model

First, we derive mathematical conditions that can identify a cusp
bifurcation using the model from the paper ‘‘Network of mutually
repressive metastasis regulators can promote cell heterogeneity and
metastatic transition’’ (Lee et al., 2014). Here, Lee et al. considered
three differential equations with two parameters 𝑉 (𝑅,𝐿,𝐵, 𝜌, 𝑘) where
𝑅,𝐿,𝐵 are real positive variables and 𝜌, 𝑘 are real positive parameters
(Fig. 1(a)). 𝑅,𝐿,𝐵 represent the proteins and RNAs RKIP, let-7 and
BACH1 which interact in the cell (Fig. 1(b)) and are highly relevant for
determining breast cancer metastasis. The parameters 𝜌 and 𝑘 describe
the instability of RKIP and insensitivity of BACH1 to self-regulation,

respectively. The equations are
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Fig. 1. (a) Map of dynamics from Lee et al. (2014). Grayscale shading indicates monostability. Darker shading corresponds to higher BACH1 levels. Yellow color indicates bistability.
The red star indicates the expected cusp point where (𝜌,K) = (1.0024,0.6595). (b) Gene network diagram of BACH1 and RKIP regulatory interactions. BACH1 is BACH1 gene,
BACH1p is BACH1 protein; RKIPp is RKIP protein. The dots represent intermediary regulators between RKIP and BACH1.
𝑑𝑅
𝑑𝑡

= 1
1 + 𝐵

− 𝜌𝑅

𝑑𝐿
𝑑𝑡

= 𝑎𝑅𝑟

𝑚𝑟 + 𝑅𝑟 − 𝐿 − 𝑐𝐿𝐵 ≡ 𝑉 (𝑅,𝐿,𝐵, 𝜌, 𝑘)

𝑑𝐵
𝑑𝑡

= 𝑠 +
(𝑆 − 𝑠)𝑘𝑏

𝑘𝑏 + 𝐵𝑏 − 𝐵 − 𝑐𝐿𝐵

The constants are set to 𝑠 = .02, 𝑆 = 20, 𝑐 = 200, 𝑚 = 2, 𝑏 = 3, 𝑟 = 5, 𝑝 =
10, 𝑎 = 1000. Let 𝑥⃗ = (𝑅,𝐿,𝐵) so for convenience we may write 𝑉 (𝑥⃗, 𝜌, 𝑘)
and take derivatives with respect to 𝑥⃗.

Observable cell states are equilibria of the system 𝑉 (𝑥⃗, 𝜌, 𝑘). For 𝜌, 𝑘
fixed, equilibria are points 𝑥⃗ such that 𝑉 (𝑥⃗, 𝜌, 𝑘) = 0. The equilibrium is
stable if the real parts of the eigenvalues of 𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘) are negative.
All solutions of the ODE which start near a stable equilibrium tend to
the equilibrium as time increases. An equilibrium may lose its stability
and a bifurcation may occur as we vary (𝜌, 𝑘) if one of the eigenvalues
tends to have zero real part or more specifically, if the eigenvalue
becomes zero. In other words, to find bifurcations, we are looking for
the solutions of the determinant 𝐷𝑒𝑡[𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝐾)] = 0.

Via an intricate analysis of the ODE, Lee et al. divide a region in
the (𝜌, 𝑘) parameter plane into three sub-regions (Fig. 1(a)). One region
with a single stable equilibrium corresponding to an anti-metastatic
state of the cell, one with a single stable equilibrium corresponding to
a pro-metastatic state of the cell and one with three equilibria, two of
which are stable. This suggests that as 𝜌, 𝑘 vary the state of the cell may
start in one monostable region and pass through a bistable region to the
other monostable region. Thus the boundary separating the bistable and
mono-stable regions is a curve of interest. It is defined by the solution
of

𝑉 (𝑥⃗, 𝜌, 𝑘) = 0

𝐷𝑒𝑡[𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘)] = 0

There are now 4 equations in 5 unknowns to solve. We assume that
the rank of the derivative of this system is 4 when the equations are
satisfied. By the implicit function theorem we may graph a curve for
an underdetermined system (Pugh, 2015) to (locally) locate the set
of solutions. The curve projected onto the (𝜌, 𝑘)-plane is smooth and
locally separates the regions of the plane. Under certain conditions this
curve may meet at a cusp point (See Supplementary Materials) . The
shape of the bistable region is such that we suspected that there is
a cusp point, which we do in fact find to be close to the red star in
Fig. 1(a).
3

A cusp point is the (𝜌, 𝑘) parameter coordinates of a non-degenerate
solution of the following five by five system of equations.

𝑉 (𝑥⃗, 𝜌, 𝑘) = 0

𝐷𝑒𝑡[𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘)] = 0

∇𝑥𝐷𝑒𝑡[𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘)] ∙ (𝑣) = 0

(1)

Here ∇𝑥 denotes the gradient in terms of 𝑥⃗ which we take of the
determinant of the derivative. We then calculate the dot product with
(𝑣) which is the first column of the adjugate matrix of 𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘).
We assume (𝑣) is not zero. The rank of 𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘) is two where the
equations are satisfied because 𝐷𝑥𝑉 (𝑥⃗, 𝜌, 𝑘) is a 3 by 3 matrix with an
eigenvalue equal to zero. Since the map has maximal rank, it is stable
even if the parameters vary slightly. The solution to Eq. (1) define the
values of proteins 𝑅,𝐿,𝐵 and the parameter values 𝜌, 𝑘 required at the
cusp point.

In order to observe metastasis, cells must traverse from the bottom
to the top and back in Fig. 1(a). To the left of the cusp, which is the gray
area of Fig. 1(a), we have cells that can transition continuously from
one state to another (Fig. 2(a)). Noise or environmental perturbations
can easily cause such changes. To the right of the cusp, however,
cells must cross the bistable region in yellow in the upward direction
and then again in the downward direction, where the cell plots are
discontinuous (Fig. 2(b)), implying higher robustness to noise or en-
vironmental perturbations. We explain this further in the Discussion
section below. Mathematically, these paths can be observed by finding
solutions of the system where either 𝑘 or 𝜌 are fixed. In the first case,
𝑘 is fixed and must be less than its cusp point value, and in the second
𝑘 must become greater than the cusp point value. In Fig. 2 we draw
sketches of what we expect these solutions to look like and how they
relate to metastasis.

3.2. Numerical approach for finding the cusp point and model verification

We built a Newton’s Method algorithm in MATLAB for an under-
determined system of equations to validate the 𝜌, 𝑘 solution values we
identified from Lee et al. We used MATCONT (Dhooge et al., 2008), a
continuation toolbox for ODEs, to isolate a more accurate set of values
for the cusp point on the (𝜌, 𝑘)-plane and plot the projection of the cusp
curve. We also built codes in MATLAB to visualize the various behaviors
of the system which can be found in the Supplementary Materials.
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Fig. 2. Two different modes of cell state transitions between monostable regions. Image (a) demonstrates a continuous transition cell state path and (b) demonstrates a bistable
discontinuous transition cell state path.
Fig. 3. The cusp point plot in (a) is the output from MATCONT when running the Limit Cycle differential equation solver for a Cusp Point. In plot (b) we used our Newton’s
method algorithm to verify numerically the same plane division using the equations from Lee et al. The star marks the MATCONT generated values of (𝜌, 𝑘) = (1.0281, 0.1343).
To validate this is in fact a cusp point, we solved the system of
equations in MATCONT to find that the cusp is located at (𝑥⃗, 𝜌, 𝑘) =
(0.9321, 2.2184, 0.0435, 1.0281, 0.1343). Note that the values from MAT-
CONT return 𝜌, 𝑘 = (1.0281, 0.1343) whereas the previous values in
Fig. 1(a) were (1.0024, 0.6595). When plotting 𝜌, 𝑘 we found a similar
separation of the regions defined by Lee et al. Fig. 3.

Next, we numerically verified that the five by five system has an
invertible derivative at the solution. At a cusp point the tangent to the
cusp exhibits a pitchfork bifurcation. Pujals et al. (2020)

Fig. 4 is a plot of the pitchfork bifurcation around the cusp point
(𝜌, 𝑘) = (1.0281, 0.1343) where the tangent vector is (−0.1542,1). For
values of 𝑇 moving in the positive direction of the tangent, 𝐵 consis-
tently has 3 solutions, two stable equilibria which are the upper and
lower branches of the pitchfork and one unstable equilibria in between.
In the negative direction of 𝑇 we find only 1 solution.

We explore how varying values of 𝜌 affects 𝐵 in Fig. 5. First we
note that near the cusp point for different values of 𝑘 > .13 we see
a similar curve. If we follow a solution from the lower monostable
region it disappears as 𝜌 increases, at 1.024. This is the first limit point
(LP) or equilibrium in the graph. Then 𝐵 increases towards the value
corresponding to the other stable equilibrium which is the upper limit
point. The curve between the two limit points represents the bistable
region which we showed in Fig. 2(b). The bistable region in Fig. 1(a)
corresponds to the unstable equilibrium and the space between the two
4

Fig. 4. Pitchfork Bifurcation plot. The solution of 𝐵 is derived around the new values
of (𝜌, 𝑘) = (1.028071, 0.134353) using the Matlab function vpasolve().

limit points. At the second limit point 𝐵 crosses from the bistable to
the monostable region. As 𝜌 increases, 𝐵 stays in the upper branch of
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Fig. 5. (a) is a solution curve from MATCONT’s Equilibrium curve solver where 𝑘 = 10 was fixed and 𝜌 varied. (b) is a solution curve from MATCONT’s Equilibrium curve solver
where 𝑘 = 20 was fixed and 𝜌 varied. In both plots the red stars are limit points, demonstrating discontinuous solutions to the system.
the curve. As 𝜌 is approaching zero 𝐵 tends towards the upper limit
point. The limit points are where 𝜌 crosses the cusp line for fixed
𝑘, thus demonstrating hysteresis. We may interpret this as having a
concentration of antimetastatic cells for values of 𝜌 = {0, 1.024} and
a concentration of prometastatic cells from 𝜌 = {.761,∞} which ‘‘mix’’
in the bistable region.

In Fig. 6, if 𝑘 = .13 or less than the value required at the cusp,
the solution curve is S shaped and 𝐵 is increasing continuously as
𝜌 increases. As we continuously increase 𝜌 we pass from the anti-
metastatic to pro-metastatic cell states as in Fig. 2(b). In this scenario,
if points on the solution curve correspond to various cell types, we
could posit that we transition to many intermediate cell states as we
go from one mono-stable state to another. This differs from the case
when 𝑘 > .13 where we see two distinct sets of cell types.

Finally, in Fig. 7 we plot the surface 𝐵. If we intersect the solution
plane at a fixed value of 𝑘 the solution curves are similar to Fig. 5
depending on the choice of 𝑘. If we intersect the plane at the cusp
point where the surface folds we have a solution curve which looks
like a pitchfork, as demonstrated in Fig. 4. Furthermore, if we project
the fold lines of the surface onto the 𝜌, 𝑘 plane we end up with a curve
and cusp point as seen in Fig. 6.

4. Discussion

Many attempts to predict metastasis have been made using a variety
of clinical methods and computational techniques (Jin et al., 2020;
Jiang et al., 2021; Zaritsky et al., 2021). One great challenge is under-
standing how the environment of early stages of cancer may determine
metastasis later on. None of the earlier studies of one-parameter EMT
regulatory network dynamics incorporate the information we have
found regarding cusp bifurcations in metastatic systems, which we
model differently from the earlier EMT studies, by using two-parameter
bifurcation theory to analyze a different gene network directly involved
in metastasis. Since the theory of two-parameter bifurcations and cusp
bifurcation analysis is generally applicable, we believe these findings
may complement one-parameter bifurcation studies on EMT and en-
hance existing attempts to develop predictive methods. In our study we
have identified a cusp bifurcation in the model provided by Lee et al.
which suggests to us that an interesting behavior, similarly important as
hysteresis is for one-parameter saddle–node bifurcations, may occur in
metastasis more generally, where the path of the system will determine
final metastatic states. It may even be possible to find this behavior
in other cancers or cancer-related phenomena governed by bistable
or multistable regulatory networks. Below we describe one possible
interpretation of how the cusp may determine certain distinct system
pathways towards metastasis.
5

Fig. 6. A continuous solution curve plot from MATCONT’s Equilibrium curve differ-
ential equations solver. This image is meant to demonstrate how varying 𝜌 for a fixed
value of 𝑘 < .13 will yield a continuous uninterrupted curve without any cusp or limit
points.

In Fig. 8 we have superimposed potential paths of 𝛼(𝑡) in the space
of parameters 𝜌 and 𝑘 from Fig. 1(a).

The time-evolution of the parameters 𝛼(𝑡) = (𝜌, 𝑘) shows possible
transitions between stable cell types. Here, the green line indicates
how values of 𝛼(𝑡) begin in the monostable anti-metastatic region
(A), traverses an ambiguous monostable region and arrives into the
monostable pro-metastatic region (P). These transitions we will call
APT, or PAT depending on the direction. The unique stable state
of the differential equations 𝑥(𝑡) evolves together with 𝛼(𝑡) but the
possible cellular type ultimately transitions between pro-metastatic and
anti-metastatic states. Therefore this image represents a continuous
transition depending on which way the path is traversed. It is important
to note that both transitions traverse the ambiguous region to the
left of the bistable region. Cells in this ambiguous region are neither
pro- nor anti-metastatic. They are in an intermediary, biologically
ambiguous cell state where the pro-and antimetastatic states become
indistinguishable. Such ambiguous parameter regions must also appear
in all other analyses describing bistable or multistable systems, but they
have not been mathematically characterized from the perspective of
metastasis. Cells in this region, or even in the bistable region near the
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Fig. 7. (a) Cusp fold plot of 𝜌 and k using the Matlab function fimplicit3(). At fixed values of 𝑘 we see 𝜌 varies continuously, transitioning from regions above and below the
fold. At the cusp point the surface intersection along fixed 𝑘 is a pitchfork. The projection of the surface around the cusp onto the 𝜌, 𝑘 would yield the cusp point plots above.
(b) Cusp fold image zoomed in near the cusp point in red.
Fig. 8. (a) Time-evolution exclusively through monostable regions. Every point on the path is monostable. (b) Image of monostable cells. Pro-metastatic cells in black, Anti-metastatic
cells in white and intermediate monostable cells in continuous transition region in gray.
cusp can easily assume such ambiguous states and become metastasis-
prone due to environmental effects or noise. Understanding where this
possibility arises requires finding the cusp point, which underlines the
biological importance of our findings. Analogies may exist with the
physics of phase transitions, e.g., liquid and gas phases becoming indis-
tinguishable, enabling smooth, continuous transitions between phases
beyond the critical point of water.

In Fig. 9 the path of 𝛼(𝑡) crosses the boundary between the monos-
table and bistable regions. Similar transitions have been extensively
described in the EMT/MET literature. At first we consider the path as
it goes up transitioning from anti-metastatic to pro-metastatic (APT).
As the path crosses the boundary at 𝑡0, the edge of the bistable mixed
region, the stable state 𝑥(𝑡) continues on while a new equilibrium point
is created which we denote 𝑥′(𝑡0). Over time the point 𝑥′(𝑡) splits into
a new stable point 𝑥′1(𝑡) and a saddle 𝑥′2(𝑡). In the bistable region there
are three equilibria 𝑥(𝑡), 𝑥′1(𝑡) and 𝑥′2(𝑡). If we cross the higher boundary
of the bistable region a stable point and a saddle collide and annihilate
each other that is, 𝑥(𝑡) and 𝑥′2(𝑡) collide.

This would be a discontinuous transition in the direction A to P,
since at every point along the path where the A and P states co-exist,
they correspond to separate sets of variables 𝑥𝐴 and 𝑥𝑃 , which are
clearly distinguishable. We illustrate this in 1-dimension (see Fig. 10).
There is no ambiguity at any point about an individual cell being in one
6

state or another. But now as we run this path backwards to produce a
PAT we see that the state of the cell corresponds to 𝑥′1(𝑡) as 𝑥(𝑡) tends
to 𝑥′1(𝑡) in the bistable region. Thus traversing the path in one direction
and then the other exhibits hysteresis. Hysteresis is another hallmark of
discontinuity. Unlike continuous transitions, discontinuous EMT/MET
has been extensively investigated for many regulatory networks (See
also Fig. 2).

Now if we imagine that metastasis will require an APT transition
followed by a PAT transition we see that the PAT transition may require
that the parameter cross the whole bistable region in reverse. The
region near or left of the star in Fig. 1(a) would seem to provide the
most fertile region for such a transition in both directions. This applies
to both continuous and discrete transitions, to the left and right of the
red star, which indicates the cusp point. Two questions are immediate:

1. What determines the path 𝛼(𝑡) of continuous or discontinuous
transition that the cell will trace out in the parameter space?

2. Will the paths of the cells stay away from or pass close to the
cusp point? What is the biological significance of this alternative? Will
paths that pass close to the cusp be more likely to undergo an APT
transition, followed by an PAT transition, and thus be more likely to
establish distant tumors?

We posed these questions in connection with metastatic cell state
transitions above. We also proposed the possibility of seeing the same
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Fig. 9. (a) Transition between monostable regions traversing bistable mixed region. (b) Image of Discontinuous transition. Monostable Pro-metastatic cells in black, Monostable
Anti-metastatic cells in white and cells in mixed Bistable region in both white and black.
Fig. 10. 1-dimensional time phases of stable states.

behavior in 2 or 3-gene circuits and in cell division dynamics that
mimic a ‘‘Toggle’’ network (See Supplementary Materials section 1.1.2,
where an elementary model for the transition to cell cycle or differenti-
ation is given). A general and in depth perspective on the mathematics
behind finding a cusp bifurcation is introduced in the Supplementary
Materials which we hope could be applied to other biological networks.
It is possible that many more biological systems exhibit cusp and pitch-
fork bifurcations where a simple one-parameter binary transition may
not sufficiently describe the biological phenomenon and we think that it
is possible to show mathematically that these systems can undergo two-
parameter bifurcations. If this is the case then we believe it is important
to revisit existing studies of gene networks and apply these findings
from two-parameter bifurcation theory to system models and predictive
techniques.

We note that there is another approach to the use of bifurcation
theory in biology. This is the Catastrophe theory of René Thom (Thom,
1975). The developed theory concerns the zeros of gradient vector
fields and their bifurcations. There is a cusp bifurcation which is very
much the same in its geometric features. However, one has to be a
little careful here since the bifurcation theory of differential equations
and gradient differential equations have some subtle differences. For
7

example the general cusp bifurcation has the possibility of exhibiting
a periodic solution which the gradient system does not. The survey
paper by Rand et al. (2021) has recent updates to this theory. Given
a differential equation satisfying certain properties, there is a gradient
system which shares the asymptotic behavior of the original system.
Now Rand adds the unstable manifold geometry behavior to the anal-
ysis. A drawback of this theory may be that the gradient system is not
immediately at hand, whereas we work with the equations directly.

Further work as it relates to metastatic breast cancer would be to
incorporate these models to existing predictive processes that assess
metastatic potential. Furthermore, it would be valuable to validate
that similar cusp behaviors are found across other metastatic cancers
more generally. Further interesting mathematical studies would be to
solve the equations in Lee et al. and other existing metastasis models,
symbolically to make sure we have all possible solutions. It would also
be valuable to rigorously prove that the rank of the derivative is always
4 in such systems to validate our hypothesis. A forthcoming analysis
of these initial results could be made to generalize the observation of
cusp bifurcations in other bistable or multistable biological networks
and extend two-parameter bifurcation theory in a variety of biological
phenomenon.
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Appendix A. Supplementary materials

Supplementary material related to this article can be found online
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bifurcation theory, cusp points identified in other biological systems,
and relevant code.)
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