
Combining results of Bowen, Smale, Shub and Nitecki one can find an open dense set in $\text{Diff}(M)$ with the \mathcal{C}^0 topology in which each diffeomorphism f satisfies the following lower bound on its topological entropy

$$h(f) \geq \log s(\lambda)$$

where $s(\lambda)$ is the spectral radius or largest eigenvalue of $f : H(M) \to H(M)$.

It was conjectured that (*) holds for all Ω-stable diffeomorphisms and in fact for all diffeomorphisms and even all smooth maps. Even though there is less evidence for these last two there is still no counter-example known.

Bowen has proved that if f satisfies Axiom A then $h(f) = \limsup (1/n) \log \# \text{Fix}(f^n)$ so using the Lefschetz formula we get $h(f) = \limsup (1/n) \log |\Sigma(-1)|^i \text{trace } f^n_i$.

On the other hand $\log s(\lambda) = \limsup (1/n) \log |\Sigma \text{ trace } f^n_i|$. Thus (*) gives a significantly sharper asymptotic estimate on the growth rate of the number of periodic points of an Axiom A no cycle diffeomorphism than the Lefschetz number does.

A simplest diffeomorphism in an isotopy class is a structurally stable diffeomorphism with entropy minimal among stable diffeomorphisms in the class. There is not always a simplest diffeomorphism satisfying Axiom A, see the work on Morse-Smale diffeomorphisms in [1]. In this case we can ask for a sequence f_i of diffeomorphisms in the isotopy class $s.t. \ h(f_i) \to \log s(\lambda)$. If there is no such sequence there must be a better lower bound than (*). Several of us at this symposium have just found a homeomorphism of an 8-manifold with $\Omega(h) = 4$ points and $\log s(\lambda) \neq 0$. This cannot be smoothed because of a C^1 Lefschetz index argument.

Proposition. Almost every C^∞ degree 2 map of S^2 has $h(f) \geq \log s(\lambda)$.

Consider those maps with only folds or cusps. By a local degree argument $\exists \delta$ s.t. almost every point on S^2 has two inverse images δ apart.

Hence the intersected sets $h(f) \geq \log 2$.

2 but zero entropy.

We shall outline a proof of the following new result obtained with R. Williams.

Theorem. If \(f \) satisfies Axiom A and the no cycle condition then \(h(f) \geq \log s(f) \).

Proof. For simplicity we work here with \(f \colon M \rightarrow M \) Anosov with \(\Omega(f) = M \) and \(E^s \) and \(E^u \) orientable. By taking powers we can assume \(f \) has a fixed point, \(p \) say. Suppose \(r \) is a real eigenvalue of \(f^u \) and let \(\sigma = \Sigma_i \sigma_i \) be a cycle representing a corresponding eigenvector in \(H_1(M; \mathbb{R}) \). Take a closed form \(\eta \) dual to \(\sigma \) so that \(\int \eta = 1 \). We can assume that each \(\sigma_i \) is a smooth simplex transverse to \(E^s \). \(\forall \epsilon, \delta \geq n \) s.t. \(V(\epsilon^r W_\delta^u(p)) = M \) where \(V \) means an \(\epsilon \)-neighbourhood. Chop up \(\sigma_i \) into pieces \(\sigma_{ij} \) in an \(\epsilon \)-neighbourhood of a small part of \(W^u(p) \). For example \(\sigma_{i1} \subset V(\epsilon W_\delta^u(p)) \). \(f^k \sigma_{ij} \) approaches \(W^u(p) \) in the \(C^1 \) sense and \(f^k \sigma_{i1} \subset V(\epsilon^k W_\delta^u(p)) \). Project \(f^k \sigma_{i1} \) down to \(f^k \sigma_{i1} \) by a map \(\pi \). Then \(\int f^k \sigma_{i1} \eta \) is close to \(\int f^k \sigma_{i1} \eta \) and this is bounded by a constant multiple of \(\text{Vol}(\sigma_{i1}) \leq \text{const.} \text{Vol}(f^k W_\delta^u(p)) \). By counting how many boxes \(f^k W_\delta^u(p) \) crosses in a Markov partition for \(f \) we find that

\[
\text{Vol}(f^k W_\delta^u(p)) = \lambda = \exp h(f) \text{ as } k \rightarrow \infty.
\]

Thus \(r^k = \left| \int f^k \sigma_{i1} \eta \right| < \text{const.} \lambda^k \) which gives the result when \(\eta \) has the same dimension as \(f^k \sigma_{i1} \). For lower dimensions take a cycle, fatten it with homologous cycles and do the same. For higher dimensions work with \(f^{-1} \). In the case of Axiom A and no cycles use the relative homology theory for a filtration.

More care is needed with \(W^u(p) \).

Reference.

Address. M. Shub, Department of Mathematics, Queens College, Flushing, New York, N.Y. 11367, U.S.A.