to an f-invariant fibration $\tilde{\mathcal{M}}^u$ over a neighbourhood of V in \mathcal{W}. If $x \in N^u(p)$ define $N^u(x) = x + N^u(p) \subset N(p)$; then near V we construct diffeomorphisms $g(x) : N^u(x) \to \tilde{\mathcal{M}}^u(h_s x)$ such that $g(x)^{-1} f g(x)$ is C^1-close to N_f on $N^u(x)$ (for example by using a projection of $N^u(x)$ onto $\exp_p^{-1} N^u(h_s x)$) and then $(g(x)|x \in N^s(p))$ defines g from a neighbourhood of V in \mathcal{N} to a neighbourhood of V in \mathcal{M} such that $g^{-1} f g$ is conjugate (by the extended Hartman's theorem) to N_f. Hence f is conjugate to N_f.

Corollary. If the restriction of f to V is structurally stable, then f is structurally stable in a neighbourhood of V.

(22) **Topologically transitive diffeomorphisms of** T^h

M. Shub

Let $f : M \to M$ be a diffeomorphism (M compact, connected, C^∞) with p a periodic point of f of period n. The following is easy to prove:

Theorem 1. Let $W^s(p)$ ($W^u(p)$) be the "stable (unstable) manifold" tangent to the subspace of $TM(p)$ corresponding to eigenvalues of $DF^s(p)$ with modulus < 1 (> 1) (if f need not be hyperbolic). If $W^s(p)$ and $W^u(p)$ are dense in M then f is topologically transitive.

Question: Let A be an ergodic automorphism of T^R. Is a C^1(C^2) perturbation of A topologically transitive?

Let E be a compact C^∞ manifold ($\partial E = \emptyset$), A a topological space. A locally trivial fibration $\pi : E \to A$ is a C^r-regular fibration if $\pi^{-1}(\lambda)$ is a C^r-submanifold of E ($\lambda \in A$) and the map $x \mapsto T_x \pi^{-1}(\pi x)$ is continuous. A perturbation of π is a homeomorphism $h : E \to E$, C^r on fibres, such that wh^{-1} is a C^r-regular fibration, h is C^0-close to the identity, and Dh along fibres is C^1-close to the
identity. We say \(\tau \) is a \(C^r \)-equivariant fibration for a diffeomorphism \(F: E \to E \) and homeomorphism \(\varphi : A \to A \) if \(\tau F = \tau \varphi \).

Theorem 2. Let \(\tau : M \to M \) be an Anosov diffeomorphism with periodic points dense in \(M \), \(\tau(m_0) = m_0 \). Let \(\pi : E \to M \) be a \(C^r \)-equivariant fibration for \(F: E \to E \) and \(\tau \) such that \(\pi^{-1}(m_0) \) is Anosov with periodic points dense. Then \(F \) is topologically transitive.

(The proof uses standard stable manifold theory and the fact that \(\pi^{-1}(w^s(m_0)) = \pi^{-1}(w^s(m_0)) \).

Theorem 3. (Equivariant fibration theorem). Let \(\pi : E \to M \) be a \(C^r \)-equivariant fibration for \(F \), \(\tau \), where \(\tau \) is Anosov. If \(\tau \) is "more hyperbolic than \(F \)" along the fibres then for any sufficiently small \(C^1 \)-perturbation \(G \) of \(F \) there is a perturbation \(\tau' \) of \(\tau \) such that \(\tau' \) is a \(C^1 \)-equivariant fibration for \(G \), \(\tau \).

Using this we obtain

Theorem 4. Let \(\tau \), \(F \), \(\tau \) be as in Theorems 2, 3. Then any sufficiently small \(C^1 \)-perturbation of \(F \) is topologically transitive.

As a special case we have the example on \(T^1 \) as described in (16) (page 28).

These two lectures represent part of joint work with Hirsch and Pugh, which will appear.

(23) \(\Omega \)-explosions

A diffeomorphism \(f \) of a manifold \(M \) (\(M \) compact) satisfies Axiom A if the non-wandering set \(\Omega = \Omega(f) \) has a hyperbolic structure, and \(\text{Per}(f) = \Omega \). There is then a 'spectral decomposition' of \(\Omega \) into components \(\Omega_i \) on each of which \(f \) is topologically transitive (see [3]). An \(n \)-cycle on \(\Omega \) is a sequence \(\Omega_0, \Omega_1, \ldots, \Omega_{n+1} \) with \(\omega^u(\Omega_i) \cap \omega^s(\Omega_{i+1}) \neq \emptyset \), \(\Omega_{n+1} = \Omega_0 \) and otherwise \(\Omega_i \neq \Omega_j \) for \(i \neq j \).

Theorem 5. If \(f \) satisfies axiom A and there is an \(n \)-cycle on