The Geometry and Topology of Dynamical Systems
and Algorithms for Numerical Problems *
Michael Shub

In these talks I would like to broach a fairly broad range of subjects,
from relationships between topology and the qualitative theory of dynamical
systems to numerical enalysis and computational complexity.

Recently I have become interested in applications of dynamical systems
to the theory of numerical analysis and computational complexity. Normally
speaking things work the other way around, we use numerical methods to
approximate the solutions of differential equations with given initial
conditons and for a host of other problems, Frequently the methods are
iterative methods that are themselves dynamical systems. A main theme of
these talks is that the study of the geometry and dynamics of these dynamical
systems is useful to crucial for the understanding of the numerical methods
themselves.

I'1ll begin by recalling some fundamental facts and examples.

Let M be a compact differentiable manifold with a Riemannian metric and
which perhaps has boundary. So that, for example, M can be the ball of

radius r in n-dimensional Euclidian space, En, B, = { xEE" l || X 11 f.r}

or its boundary S:_l, etc. Let £: M+ R be a smooth function, then

V(X) = -grad f(x) defines a vector field on M. In the case that M has

boundary we suppose that V(X) points into M along the boundary. The gradient

flow of £, ¢, 1 M >} vhere % ¢, (/g =V(X) is globally defined
t

for all teR in case M has no boundary, and for all t>0 when the boundary
of M is non-empty.

Note the minus sign so that the flow flows downhill, i.e. %E£(¢t(x))-
-1|grad fx |12i 0. Morse theory proves that for an open and dense (in the

Cr topology) set of functions f (called Morse functons), the Hessian

——

%This paper was prepared as part of lectures given at D.D.L. The work was
supported by an N.S.F. grant to the author.
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of £ is non-singuiar at the critical point of f. The vector field V =
- grad f then has only finitely many singularities 6 say Pys «evssp, where
m

V(Pi) = 0, and moreover, near any of the critical points p; there is a local

chart so that f has the form
- 2 2 2 2 2 2
f(x) = f(pi) TX] CX, < .. =X, + X 41 +xu+2 *ovn X s where x = (xl,...,xn).
Thus for any x € M, ¢t(x) converges to some p, as t + +®, Near p_, - grad f
1

takes the form

(+2x_, +2x2,...,+2xu, -2xu+1’ —2xu+2,...,—2xn)
and
- +2t +2t +2t =2t -2t -2t

¢t(x1,...,xn) (e X15@ TRyyian,e LU SO I S xn).

This gives the standard picture;
< ;-L) (Bypeees® )

pr——)

(xu+l,...,xn)

The points in the (xl,...,xu) space tend to ppast approaches -=, Locally
these are discs of dimension u called the index of the point p and s = n - u,
u =
These discs are denoted by wioc(pi) and wioc(pi) respectively, the local unstable
and local stable manifolds of Py The set of x € M such that ¢t(x) - p; as
s
t > 3 is deonted by w"’ (Pi), the (global) unstable and stable manifolds of

Py- In the interior of H,Wu(pi) and Ws(pi)land 1-1 immersed discs of dimension
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u and s Prespectively. The manifold M is the disjoint union of these stable
8

manifolds, M = 1=1,.?.m" (pi). When there is no boundary M is algg the union

of the unstable manifolds M = i=1. Y mwu(pi). Now add another condition,

which was introduced by Smale, that these manifolds Ws(pi), Wu(pi) are all

transversal wherever they meet. The set of such f remains open and dense,

The vector fields v = - grad f are called Morse-Smale.

Example 1

d
Let f(z) = iZO aiz1 with a, € € and z € € the complex numbers be a

complex polynomial of degree d such that f and f' have simple roots. We
consider € as E2 and let r be large enough so that Br contains all the
roots of f. Then ff(z)f2 defines a Morse function on Br and -grad ff{z)l2

is generally a Morse-Smale vector field.

Example 2
Let A be a real symmetric matrix with distinect eigenvalues A; < A, < ,,, < An
1
and corresponding unit elgenvector vy ... V,- Then f(x) = 5 X A(i}?definea
X, X

-1
a Morse-function on the sphere S: » here < | > is the ysual inner product
in Euclidean space. The critieal points of f are precisely :vi and

: n-1
the index of tvi is i-1. 1In fact on § grad f(x)= A(x)- <xlA(x)>X

I
one
andean explicitly solve ¢t(x) = _tA!x! which is a Morse-Smale flow on
-tA
[le™ G0 |
Sz_l. The union of the unstable manifolds of v, iv;,....ivi is the vector
n-1

subspace spanned by vl,...,vi intersect § » while the union of the stable

1

manifolds is the complement of the Space spanned by v v

41 VigoseeeaVs
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intersect 52-1.

The function f(x) is invariant under the indentification x ~ -x on

3;'1 and the flow ¢t(x) commutes with this identification. Thus f and ¢t

induce a Morse function and a Morse—Smale flow on S§_IIx~—x = RP(n-1) real

projective (n-1) space. There is one critical point for each eigenspace
corresponding to vlj..-,un of index (i-1)., Thus there is one critical

point for each dimension from 0 to (n-1). The intersection of the Wu(ivi+1)

g -
and W (tui) must occur in the plane of vy and v intersect ST 1. On this

i+1
circle, the dynamics are always like

v,
isg
Vi Vi
Vi
after identifying x -x on RP(n-1) we get v

+

v,
as the dynamies in the Vis Vi plane in RP(n--l).1

It is by now a standard result of Morse theory that passing a critical
value adds a handle to the manifold. More precisely, let f: M+ R be a

- -1
Morse function. Let Ma = f l(-ﬂw, a), so ana =f “(a).

Theorem I
Suppose that f: M® + R is a Morse funetion. If a < b and Mg - Mz contains
exactly one critical point p of index i, then M: is diffeomorphic to

i—lan-i

I-l': g 5 Rl here ¢ is a diffeomorphism of § into the boundary of M.

The proof of this theorem is a local argument near the critical point p.
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In this form the theorem ig due to Smale, see Smale 1961la. For general
—=== --bla

references on Morse theory see Bott 1982 and Milnor 1963, The gradient flow

~-grad f, pushes HE down to M: except for the stable manifolg of p,

Let € > 0 be small, Adding a neighborhood of a disc in the unstable manifold

of p (which intersects BM?(p)-a transversally) to M?(p)-e produces a manifold
diffeomorphic to M?(p}+€. Now since there are no singularities of f in

s & i - £
Mb Mf(p)+€ or Mf{p)-g Ha pushing along the solutions curves of grad
produces diffeomorphisms between Mb and ”f(p)+e and Mf{p)—s and Ma.

Smale 196la, 1962b, 1962 exploits this structure in his work on the

Poincare conjecture, h- cobordian theorem and structure of manifolds. A good
exposition is given in Milnor 1965 which emphasizes the gradient approach.

We turn to some of these results, which we summarize in one theorem.



JN ﬁ.. :.':k

Let - grad f be a Morse-Smale vector field. Choose local charts for all

the eritical points of f so that f(x) = f(p) - xi - e xi + x2 G xg

for x near p. This has the effect of orienting the neighborhood of p, W“(p),
Ws(p) as En, E" and Es with the usual orientation. If p,q are critical points
of index i+l and 1 respectively then Wu{p} has dimension i+l while ws(q)

has dimension n-i, The transversality hypothesis thus implies that Wu(p) N ws(q)
consists of a finite number of orbits of the gradient flow ¢t, ¢t(ml)’ ey
¢t(mj). For each m, we may orient a basis of complementary space to Ws(q) in

two ways, one from the W'(q) orientation, and onme that comes from adding

(- grad f}(mi) as the first element of a basis and using the W'(p) orientation.
If these two orientations agree we assign +1 as the index of the intersection;

if not, -1. Let i(p,q) =L index ¢ _(m,). If p ,...,p. and
8, (m =W (pIIWE (@) £ il

Q;5-+019, are the set of critical points of index i+l and i respectively we

let Mi+l be the (rxk) matrix whose (s,t) entry is i(qt’p5)°

Theorem II (Smale)

Let f: M® + R be a Morse function with - grad £ Morse-Smale, then:
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A)  (Morse inequalities)
There 1s a finitely generated chain complex of free abelian groups
0= C -+ C -1 + .. C + 0 determined by f with rank C equal to
the numher of critical points of index i and B = Hi in a basis, which
gives the homology of M",

B) (Structure of Manifolds)
Conversely, if T (M") = 0, n > 6 and 0 » Cu*Coy ™ e > C >0

is a finitely generated chain complex of free abelian groups which has as homology

the homology of M, then this complex arises from a Morse function on M" as in part A.

REMARKS: I think that this is a beautiful theorem. It serves as a prototype
for theorems relating dynamics and topology. (A non-simply connected version
of this theorem is proven in Maller 1980.) Part A is by far the simpler part
of this theorem. Without the explicit computation of the boundary it is even
more classical, and does not depend on the transversality condition. I've
called Part A the Morse inequalities because they follow from the theorem

with a little algebra,

Corollary 1

Let f: M + R be a Morse function. Let ci be the number of critical points

of £ with index 1 and let B, be the 1" Betti numher with coefficients in a

field F. Then one has the following inequalities:

T k
ko (1) "y 5B DB



Proof: We can perturb f a little if necessary without changing the critical
points or their indices to make the transversality hypothesis valid and thus

apply Part A of the theorem. Since F is a field Ciﬂ F is a vector space and

we can write CiﬂF % Biﬁﬂi(M,F)Gﬂi_l where BiC:CiﬁF is the image 3., . (C

1418F)

i+1
The inequalities of the corollary are now evident.

The proof of the theorem is harder and beyond the scope of what I hope
to do here, but Part A is especially instructive and I'1ll sketch the argument

a bit. By the transversality hypothesis wu(p)r1 Ws(q) =@ 4if index q > index p.

Thus Mn can be built first from the 0- handles followed by attachments of

1- handles followed by attachments of 2 - handles, etc.

(An i-handle is p* x 0™ uhich is attached by a diffeomorphism @ defined on

i =
apt x 0. p* x 0 is called the core disc and 0 x p"

the transverse disc.)
This can be seen from the proof of Theorem 1. More formally, there is a

sequence of submanifolds, called a handle decomposition of H?.
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ﬂq"»‘gc l‘chf:=Mn such that PQ+I=M';..1 UPiH' VT UP:H' where

+
Pl 1g a (i+1) handle. Now ..... oH  Qf, M)+ O,
1

k 1+1) P s

-1

is the complex of Theorem 2 Part A.

Examples
In the second example which we considered RP(n=1), C, has rank 1 for 0<i<n-1
i i

and Mi = (42) or (0) as 1 is even or odd respectively, 1 + 0.

Hy (RP(n-1) = 2
Thus Hi (RP(n-1) = 0 for i even not 0
Hi (RP(n-1) = 22 for i odd not (n-1)
Hn-ldRP(n_l) = Z if (n-1) is odd.

The first example is simpler from the Morse inequality point of view, There
are d minima corresponding to the roots of f and (d-1) saddles which occur

at the roots of f'. The Morse inequalities simply assert that d -(d-1) =1
which is the Euler characteristic of the ball. But identifying the stable and
unstable manifolds of the saddle points is a more difficult problem. Generally,
that is for an open and dense set of full measure, there will be no saddle
connections. That is if p and q are saddle points then Hu(p) n Hs(q) =0

and the flow will be Morse-Smale. In this case it is simple to see that the
two components of the stable manifold of a saddle must both tend to infinity

and the two components of the unstable manifold must tend to distinct roots.

Various configurations are possible. For example:
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are conceivable for 5th degree equations. The latter occurs for

4=1
z

z( 1 1
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= 2 = - = 1 £
erad |£(2)| 26(z)T7(z) . 1f we let 0(2) = zE73FC) which is a

2
positive real number We gee that - grad |£(2)|" = p(2) _—_f_(_?)_ . Let Ng(2) =
£7(2)

N(z) = -f(2) be the Newton vector field and z = N(z) the Newton differential
£'(z)

equation, Thus = grad \f(z)\z = p(z) N(2), and up to reparameterization
2
- grad |£(z)| and N(z) have the same orbits, that is they have the same
solution curves, If we let w= £(z) we see that f'(z) ;-f;;;g = -f(z) = -w
(£' N
and thus f maps solution curves of £ = N(z) to solution curves of W = —W.
These latter are the half rays pointing tO the origin. We state these simple

geometric facts as a proposition.

Proposition 1

Let £(z) =i§0aizi be a complex polynomial.

a) The image by £ of a solution curve of -grad lf(z){lor Nf(z) through the
point zo lies on the half ray through f(za) pointing towards the origin. 1f
zg i{s not on the stable or unstable manifold of a critical point the image is
the entire half ray. 1f Zg € WS(B) or zj £ w“(e) for a saddle point §, then

the image terminates at £(6).

2
by 1f f(zo) = w and f‘(zo) # 0 then the solution curve of —grad |£(2)]” or
Nf(z) through 2y is the image of the half ray through W by the analytic continu-

ation of the branch of £ L taking v to zp» f;l ,
0

¢y If f(E) = 0 and £'(E) 70 then the stable manifold Wo(E) is the image by the
analytic continuation fgl which is defined on the whole complex plane minus
a certain number of half lines from infinity to f(ei) where Bi, I O,

are the critical points of £ on the boundary of W (B,



The proof of thig elementary Proposition ig by the comments above ang the
pictures.

It is tempting ¢o Ery to find 4 Solution to the Polynomia] equation
£(z) = 0 by Picking a poine Zp and either,

a) Take the solution curve of - grad [f(zJ]z through Zy With a fipite
number of exceptions thig Curve tends tp 5 Toot of f(z),

b) Take the Solution curve of N(z) through 25+ With a finite number of
€xceptions thig Curve tends to g root of f(z),

c) Take f;l of the ray (l-h)f(zo) for thil. With the eXception of g

0
finite number of raysg Substituting p = 1 gives a zerg of £.

As Smagle points out ipn Smale 1981 one can prove the fundamenta] theorem
of algebra by these methods, Method ¢) ig the easiest, Moreover, many numerical
methods for solving Polynomia] €quations are intimately connected to these
theoretical methods, For example, Ruler's method for solving Z=N(z) is

z' = z 4 hN(z) , which for h = 1 ig Newton's method z' = , _ f(z! « Smale 1981

methods,

I will digress for a moment to discuss iterative Processes for the
Solution of a Problem in general.

Let S be a topological space yCc Sand F: U= 8§ pe a map, F is ap
iterative Process. Given xo € U the forward orbit of Xb is {Xh} where Xn =
F(Xh_l) -t {xo) as long as xh_l € U, The solutions to a Problem are

Specified by a subset P 5. Given an iterative Process F, the solutiong of

4 problem P and an initial point xer, then Xh converges to a solution if




(-

either X f
néU Or some n but X €P or if X 1s defined for al]l n ¢ N and all the
accunulation points of Xn are in P, An iterative Process F for the solution

of a problem P is called locally convergent if P U and there is a neighborhood

Vof P, PCVC U such that for any initial point xé E V’Xn converges to a
solution; it is globally convergent if U = S and xn converges to a solution for
any initial point Xo. If S is a metric Space and xn converges to a solution then
the convergence 1s first order or linear if there is a constant C,0<cx<1

such that d(xn+1, P) <cC d(xn, P) for n>0 and for k>1 thar the convergence is
kth order (quadratic, cubic for k = 2,3) if there is a constant C > 0 such

that d(X_, ,P) < Cd(Xn,P)k.

Example:

Let 4 be a real nxn symmetric matrix. Let § = ST*I and F be time one map of

the flow - grad (1 <X,A(x)>) that is F(X) = e_A(x)
4 <K,x> é'A(x)f]

Let P = {xeS?"IIF(x) = Ax}that is P is the eigenvectors of A. If the eigenvalues
of A are distinct then P is a finite set, but if A has k equal eigenvalues
then P includes the (k-1) sphere in the eigenspace of these eigenvalues.
F is a globally convergent iterative process for the solution of the symmetric
eigenvector problem. The convergence is linear for any initial point., All
this is easy to see simply diagonalize A and compute in this system.

Of course, this method isn't practical. It involves computing e .

There is another problem as well which requires some thought. Even in the

(2x2) case with distinct eivenvalues the convergence
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is linear but will take longer and longer to approach P as the initial point
xU is closer and closer put not equal to a source. I will return to this
point shortly, but first examine the other example we have followed in
terms of these notions,

Let £(z) be a complex polynomial and ¢t the time t map of the splutions

ra
of the equations z = - grad ]f(z)]z. We consider ¢ defined on ¢ on the

Riemann sphere € = ¢ ) « = s? or on B_ where r is large enough so that B_
contains all the roots of f. Let P be the set of points {£|f(£) = 0}, that
is P is the roots of £, Then ¢t 1s an iterative process to find the roots
of f, ¢t is not globally convergent but does converge for almost every
initial point XG, this follows from the discussion above. In the case that
the r ots of f are all simple, this convergence is linear. Of course, this

doesn't seem a practical method either since ¢t is not known.

Newton's method z' = z - f(2) dis locally convergent near the roots of f
£%(=z)

and when the roots of f are all simple Newton's method is quadratically
convergent near the roots of f, in fact with a uniform constant C. This

last statement follows from the fact that the roots of f are fixed points of

z' =z - £(2) and the derivative of z ~ f(z) 1is 0 at a simple root of £,
£'(z) t£'(2z)

Newton's method is a rational map of the Riemann sphere. If we ignore
the trivial case d=1 and suppose that f(z) is not (z-a)d for any a then

z - f(z) has degree >2 as a map of 52. The dynamics of these maps have
I'(z)
been extensively studied. Julia and Fatou in the beginning of the century

and recently Sullivan, Douady, Hubbard and others have made important contri-
butions, Clearly there can be no continuous iteration process of the sphere

fixed at the roots of f (recall that there are at least two distinct ones)

and globally convergent.
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What should ope be content with as an approximation to g solution to a
problem. There are various reasonabple notions. 1'1]1 list g fey,

Let 5 be a metric Space, R * D' 8 un dtepsitce process and P § the
solutions to g problem. Then

1) XU €5 in an g - solution of P if d(xo, P) < ¢

2) XO €S is a first order approximate solution of p if X, converses to
a solution of P and if d(X0,P) < 1/2 and d(%:P) < 1/2" for n > 0.

3) Xy € S is a nth order approximate solution for k > 1if X, converges to

R 1
a solution of P and if d(XO,P) < 1/2 and d(Xh,P} < k“ for n > 0,

P= ¢_1(0}. In this case we can speak of zeros.

L) Xy €8 is an € - zero of & if I¢(xDJ] < e,

2) Xg £ 5 is a first order approximate zero of ¢ if xn converges to a solution
. 0f P and if |¢(x0)f € 1/2 and [8(x )| < 1/2® for n > 0.
3) Xy € S is a kth order approximate zero of ¢ for k > 1 if ®  converges

1
to a solution of P and if |¢(x0)| < 1/2 and [6¢x )] < D for n > p,
@

In many ways the third alternative is the most attractive if F is not
too difficult to iterate, for this with a few iterations of F the error dies
rapidly and one is sure of convergence to a solution,

We may use iteration Processes to design algorithms to find € - solutions
Or Zeros or approximate solutions or zeros of Problems. Some of the issues
involved are:

1) How does ome find a good initial point xo?

2) Having picked an % should one stick with it stubbornly or after
awhile give up and pick another?

3) Should one Pick one point or several and run the iteration in para-
llel, stopping when one of them gives an adequate answer?

4) Fast methods are frequently not sure methods, near certain "bad"



subsets they may take very long to work.
5) What are average estimates for the work involved in solving many

randomly chosen problems?

Now I return to the work of Shub-Smale 1982,1983 on algorithms for

solving polynomial equations. We are to take f;l ((l—h)f(zo)). As long as
0

f'(‘o’ 40, f;; is defined by a power series in h which can usually be analytically
continued along the ray from f(zo) to 0. Since evaluation of an infinite power is in-

feasible we truncate the series at degree k in h. We write ty to indicate the truncati

Beon,e (20 =ty ((A-DEG))

B phgt G+ T is a rational function of z. It is easy to see that
t At |
El i is Newton's method. With h=1 and k=1,2 .., , 5 these iterations were used by
b Rk ]
Euler to solve equations.
If h=1 and zZq is a simple root of f then Ek,l,f {zo) vanishes to order
k in z and thus there is a neighborhood U of 20 such that any Xy e U is a
st
(k+1)™" order approximate zero of f for Ek,l,f'

Much of our analysis of these iterations is based on the following

theorem:

Theorem 3 (Shub-Smale, 1982)

Let z € Q&€ € and let g: § » ¢ be analytic. Suppose g;l is defined
on a disc D of radius R(g,z). There are constants R and Kk depending on k

(c, * 1 and Ky = k) such that if |w-g(2)| < ¢ R(g,2) and ggz-l(w) -w

then |g((t,g,™)) ()-w| < K |w-g(2)[**

k
R(g,z)

The proof of this theorem is rather technical and involves estimates on

the coefficients of univalent functions and their inverses along the lines of
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the Bieberbach conjecture, Ag a rapid corollary we can give a criterion for

a point to be an 8pproximate zerg,

Proposition 2

Let be a simple root of the complex Polynomial f and let Pg g = min

If(e)] Over critical points € in the boundary of the stabie manifold of ¥

wl .
Then ;F; 1s defined on the 44, of radtus p, g+ Let |w| < min (1/2,0, £/20)
& L )
then J[‘ 2(“,) is a (k+1)St order approximate zero of f for EkI
g ’ :f
Let /c:( = ml'l'i/ﬂf g over the simple roots E of fand g if f has a doubie
]

root. Thus, if ”' (Zo )l( min (Jz a—%) then z, is a (k+1)°*t order approximate

zero of f for Ek, l,f

Proof

-1
Let |w| < min (;’LL?/OL%Q) and 20 -fE (w) + I claim inductively that‘
for n > 1, {JC (Zn)l is monotonically decreasing and H.(Zn)\ < min

Gr ook For PU oty the eheoren co 5@)?:) =06 f )
Thus |} (2,,)] < K, gfm =K.R(f,2y) Effc’,’z.,

Now consider two cases Rq) z,,)?l and R(:-F) Zn)‘-l
~ > _}_ﬁ_
fh 2Rz 2 T a s 1
po! k+l _j_ A
If R(f,2) < 1 then []C (2]« KK Lohhs_ | KKG%) 2w zFM

but also ) J{%;J
2,) Yo By 1 1.1 4
H N @WJ} £ 0" i R (g JaF

Now proceed by induetien. The case K(f,sz 2 1 is handled similarly.

Theorem 3 may also be used to estimate how well E does in following
yiky
the ray from £(z)) to 0 towards 0. Given f and z, define @fazo
be the largest angle less than of equal to 7/2 so that f;o is defined on

the open wedge of a circleq centered at 0 with radiue 2If(z0)l and of angle
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on both sides of the ray through f(zOJ

1,2,
=1 "
fz is defined on this open wedge.
0
®fa7‘o is non-zero for any zo such that f(zo) does not lie on a ray containing

a critical value.

Theorem 4 (Shub-Smale 1982)

There is a constant €y, depending only on k such that if f(z) is a complex polyno-

mial, if @f”a >0 and [f(zp)| > L > 0 then there is an h given explicitly such that

!f(zn)] « L for

f(g b K+¥/K
loj ——Efl__

@JCJ zb

= (:K

and

%= (Ek,h,f}n{zo}‘

Ck decreases with increasing k to around 6. This theorem indicates

that a good starting point is a point z; with G#;ZO large. Let Pd(l) be
L1

asas A

the ser of polynomials f of degree d such that £(z) = zd + 84-1

where |a;| < 1.

The rest of this discussion comes from Shub-Smale 1983.
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Corollarz 2

E = By, e2f € Py(1) and ifzof = 3 with ef’zo > /12
|£(E (zo))f < € for some 0 < i < g,

Now the question is, how likely is C%’zo to be > /12, For f ePd(l), let

Vpom {z"ZI = 3 and ﬂf z > T/12}. Then using the uni orm probability measure
3

on 8§ = {z||z| = 3} we have:

Proposition 3 The measure of Vf 2 1/6 for any f in Pd(lj.

The proof depends on the geometry that we have developed inp Proposition 1.

Consider first the Problem: Givyen (f,e), f ¢ Py(1l), € > 0, produce a z ¢ c

with |£(2)| < €. For this We particularize the Newton-Euler iteration scheme
by choosing k and h to depend only on f and €, in a certain way. Let

k = [max(log|log €], log d)7
where [ x 1 is the least integer greater than or equal to x. There are universal

constants H and K, approximately 1/513 a4 512 respectively, Then take
h ==

Thus with these specializations the Newton=-Euler iteration scheme
E:C » ¢ depends only on (e,f) and we write EE =E. With & > 0 defipe:
Algorithm(N—E)E: Let £ € Py(1) and n = K(d + |10g el).

i )
(1) Choose z; € €, [zo| = 3 at random and set for { = 1,2,3,... (an iteratjen)

z; = Ee(zi—l) terminating if ever ff(zi3f < e,

(2) If1i=n, goto (1) (a gvcle).
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Theorem A

F . i 3

or each f, €, (N E)s terminates with probability one and produces a z satis-
fying |£(z)| < €, The average number of cycles is less than or equal to 6. Hence
the average number of iterations is less than 6K(d + [log sl).

Here average and probability refer to the choice of the sequence of z,

in (1) of (N—E)E.

Remark
With certainty it only takes about twice as long. In practice ome can obviously
do better by trying and testing h =1, 1/2, ..., H. We haven't analyzed this.
The average of the total number of arithmetic operations required is
O(d2 + d|log €]).

In Algorithm (N—E)E there was a random element, the choice of zq-
Now probability enters into our analysis in a second way. We average over
fE Pd(l), with respect to a uniform distribution that is we normalize Lebesgue

measure on Pd(]-)C: IId = RZdo We use these probabilities since speedy algorithms

are not usually infallible.

Define for each f € Py(1)

1
P |p£|

€g
ea’

where Df is the discriminant of f (see Lang). With K as above let
n = K(d + |log sf]].

Let E be the Euler-Newton iteration process with h = H, and

k = [max(log|log efi, log d)], so that E depends only on f.

Algorithm N-E Let f € Pg(1), satisfy Eg > 0.

=30



(1) set m= s

(2m) Choose 2y € €, [zg[ =3 at random and get z = En(zﬂ)' If Jf(zn)' <e,

terminate and print: "zn is an approximate zero,"

(3) Otherwise letm=m+ 1 and go tg (2m),

where K, is a universal constant,

We make the Probabiility considerations a bit more precise,

Let Sé be the circle in C defineq by |z] = R and endoy it with the uniform
Probability measure (Lebesgue measure normalized to 1), Set R = 3 and denote by
Q the product of Sé with itself a countable number of times, Thus a point 2y of
8 is a sequence of 3 = (El, Z,, 4.0 ) with Izif = 3. Endow Q with the product
measure as well as Pd(l) x 2, Let T: Pq(l) x 0 » 2+ be defined by T(f,zo} is
the first m such that En(Em) < &g,

Thus the total number of iterations of Algorithm N-g for a given f
is of the form 5(f,z) = nT(f,z), n = K(d + |log Efl). Theorem B asserts that

when € > 0, S(f,z) is defined for almost all z € Q. Moreover S(f) = IEEQS(f,E)
is defined and finite for almost all f and
ffel,dms(f) < Kpd log d.

By Fubini's theorem, we could equally well assert that
o £,2) <K d log d
f(f,z)spd(l) xR BEA) < s

Remark 1

We are assuming exact arithmetic in the theory here. 1In general, because of
the robust properties of Algorithms (N—E& and (N-E), this is reasonable.

Myong Kim is incorporating finite precision and round off errors into this theory

in her thesis.
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Remark 2

Our work emphasizes the theoretical side, and the understanding of classic
algorithms, rather than the design of new practical algorithms., Yet the results
do have some implications for the latter. For example they suggest calculating
derivatives up to order [log d] and/or [log|log E[] could give speedier routines,

especially for one complex polynomial. We haven't tested our algorithms on the machine,

Remark 3

The number of arithmetic operations in contrast to the number of iterations is
2 2

0(d“(log 4)” log log d}. The average result here depends on a result from

Smale 1981.

Proposition 4
Vol{fep, (1) o, < o} < do’

Her Vol means normalized volume so that Vol(Pd(l)) = 1 and Vol is a probability
measure on Py(l1).

It should be pointed out that we have taken a flexible approach. We
have not insisted on sticking with our initial g Average estimates in the

stubborn case from Smale 1981 or Shub-Smale 1982 still yield infinite averages in

the stubborn case. There are many problems remaining here, see Shub-Smale 1982,

1983.
It is perhaps instructive to work out a foolish but simple infinite
average case.
For 0 £ e £ 1 let AE be the symmetric matrix.

E 0

and F. (V) =e v
|le™4e V]|



1,
for v g Sl‘ Then F.(v) 15 4 globally convergent iteratiop Process to fing
the eigenvectors of Ae‘ Let us try to use this iterative Process to fing
approximate eigenvectors of AE.
1
Algorithm 1) Pick \6 € 51 at random
v ==
2) Let Vg “FE(UJ'}'-I )

3) If Yn 1is an approximare eigenvector IofftE Stop and print

L
» Vi ig an approximate eigenvector offqa 5 If not g0 to 2.

We have ﬁa chance of Picking VO within TZ of (O,:hl)

Use a chart obtaineg from central Projection onto the tangent line through

(0)1) and restrict attention to the

z g

1
at random between (DJ 1} and&-— 3 -'L/ on Sl COTresponds to Picking a

ositive quadrant, Thus Picking a point

point gt random between 0 aad 1 on the tangent lipe up to bounded distortion,
Finally FE in this charr is simply multiplication by Eae - Now choose &
in (O,l) at random, If § or §=0 then & already represents gp eigen-
vector, and let N(E;g) =0, If 8;5 >0 then let NCE-, B) be
the minimum 1’[ such that (e"‘s)"a >1 : To find the average number of

iterations for 8 to leave (O,I) involves integrating N(E,é) over the

Square,
Lemma For x>1)
AW I . S
nzl‘néi—n:s" In)“ %=1
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f
)
x 1-— V) U =_k-
&
- <:t-l ) (:;Lﬂz__)
Az 1= T
- K
X~
Now for fixed £>0 , average over S.
3
n .z PR
1
(a )‘ (_1_)’ P
-:'i CZE CQE
: )

Ay = 5 J;\.
3 nz:-! n(@T)’ﬂ

Now integrating with respect to £

L 1 ezt-. A
& = 3

3

—F)_"_>=



which diverges,
This example illustrates the danger of slowly repelling points, One

might imagine that working gti]] stubbornly but ip Parallel with two pointg

might help matters.

Algorithpy
1
1) Pick 1 and VO,-‘L ESI at random
5
- ~ |= l
2) Let Vn,i = F;-(“n-.l‘.? I) j.ns— I= I

3) If \J'n for | = lor 2 ig an aPproximate eigenvector of

i
J‘\ I
AE stop and print, Vﬂ ; is an approximate eigenvector of AE P if not go
7

to2,

The comparable Problem on the interval is to pick E, 8.1, ‘S‘a 70 at randem

n
define N(EJS’J’ 5-.‘,_) to be the minimum N such that Ce'“) 61> O or

(eli)"s > 0. Now we want to integrate N(E, &, E{J over the cube,
2
For fixed ¢ >0,

1

&
Sl
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s Av. = °f n((élﬂf(n-ﬂ'(éam)

£ n=1
1 £
e"E amJ f de = f e: T J&
= ew-1 / s € 7

I
ye
:.‘E.t- fn (C —#1)\0 which is still divergent.

No finite number of choices will help. It is better to stop

after a certain fixed number of iterates and pick a new starting point. Blind
luck is probably best.

Algorithm

i
1) Pick VO Ggl at random

2) 1f VD is an approximate eigenvector of A£ stop and print,

\W'O is an approximate eigenvector of Aejﬂ if not go to 2.

Since any vector within é‘: of (110} is an approximate eigenvector
for At on the average T choices will produce an approximate eigenvector.
1f we choose randomly among a finite collection of points with at least one
in each interval of length i— then this probabiliatie algorithm is sure to halt.

This example will illustrate many of the issues involved in the. poly-
nomial solution problem as well. Finding an £- eigenvector is a quite dif-
ferent matter than an approximate eigenvector. But 1'11 leave this to the

reader.
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