CHARLES PUGH AND MICHAEL SHUB* Stable ergodicity and partial hyperbolicity Dedicated to the memory of Ricardo Mañé. ## 1. Introduction By the results of Anosov in 1967 volume preserving uniformly hyperbolic systems are ergodic and are open. Thus they exhibit robust statistical behavior. Averages are the same for almost all points, not only for the system in question but also for any small perturbation which preserves the same volume. If the perturbation only preserves a close by volume, then the averages of continuous functions are still close by. On the other hand, in 1954, Kolmogorov announced that there are no ergodic Hamiltonian systems in a neighborhood of a completely integrable one. Completely integrable systems have no hyperbolic behavior at all. In this paper we will review the results of [Grayson, Pugh and Shub, 1994], [Pugh and Shub, 1996], [Pugh, Shub and Wilkinson, 1996], and [Brezin and Shub, 1995] which study the mixed situation in which the system is only partially hyperbolic. Our themes are: - A little hyperbolicity goes a long way toward guaranteeing ergodic behavior - Stably ergodic systems are considerably more general than one might have feared from Kolmogorov's theorem. - Some hyperbolicity may be necessary for stable ergodicity. We consider C^2 diffeomorphisms f of closed manifolds M which preserve a fixed smooth volume on M. We say that f is stably ergodic if there is a neighborhood \mathbb{Z} of f in the C^2 volume preserving diffeomorphisms of M such that every $g \in U$ ergodic. 2. The be € mor even prod Mai and e acces IS CIT strol will dvna All t subsuffic ultin inval and with T sug where 0 < a the a 1974 W there Sin Frong and E we wil Giv is is ^{*} Partially supported by an NSF grant. Each of our main themes is developed in a section below. Finally in section 5, we excest some generalizations to dissipative systems. ## Partial Hyperbolicity and Ergodicity Main Theorem of this section gives sufficient conditions for a diffeomorphism to ergodic. We find stably ergodic diffeomorphisms by finding open sets of diffeophisms satisfying these conditions. The theorem may be interpreted to say that for systems which are not uniformly hyperbolic, the same phenomenon which soluces chaotic behavior i.e. some hyperbolicity may also guarantee ergodicity. Theorem: [Pugh and Shub, 1996] Let $f: M \to M$ be partially hyperbolic dynamically coherent. Suppose that the stable and unstable bundles have the σ sibility property and that the invariant bundles are sufficiently Hölder. Then f The accessibility property is a concept from control theory which we apply to the mag unstable and stable foliations of a partially hyperbolic diffeomorphism. We soon explain these concepts. Partially hyperbolic diffeomorphisms which are common and the same more properties which we will eventually come to. three distributions E^s , E^c and E^u , the strong stable, center and strong unstable bundles of the tangent bundle, of \mathbb{C}^2 diffeomorphisms are Hölder. That they are Sciently Hölder is expressed in terms of relationships of the Hölder exponents and mately in terms of the contraction and expansion constants of the various natural reariant bundles for the derivative. We leave these details to be consulted in [Pugh Shub, 1996] and [Pugh, Shub and Wilkinson, 1996], but note that foliations C¹ tangent bundles are sufficiently Hölder. Partially hyperbolic systems and accessibility property were to our knowledge first considered in [Brin and Pesin, We say that a C^r diffeomorphism $f: M \to M$ is partially hyperbolic iff $r \geq 1$ and is a continuous Tf-invariant direct sum decomposition $$TM = E^s \oplus E^c \oplus E^u$$ E^s and E^u are non-trivial, some Finsler $\| \|$ on TM and some real constants $< b < c < 1 < d < \epsilon < g$ such that $$\begin{split} a\|v\| &< \|Tf(v)\| < b\|v\| \text{ for } v \in E^s - \{0\} \\ c\|v\| &< \|Tf(v)\| < d\|v\| \text{ for } v \in E^c - \{0\} \\ \epsilon\|v\| &< \|Tf(v)\| < g\|v\| \text{ for } v \in E^u - \{0\}. \end{split}$$ Since $Tf: E^c \to E^c$ may have some contraction and expansion E^s and E^u are contracting and strong expanding Tf invariant subbundles. Tangent to E^s E^u are the strong contracting and strong expanding f invariant foliations which will denote by W^s and W^u . Given continuous sub-bundles $F, H \subset TM$ and points $m_0, m_1 \in M$ we say that is accessible from m_0 iff there is a continuous piecewise C^1 path $\phi[0,1]$ joining ng perturbation of $A \times id : M \times N \rightarrow M \times N$ is stably ergodic for any t manifold N. See [Bonatti and Diaz, 1994] for the rather striking topological vity version of this second case of Conjecture 1. lo know a large class of examples of partially hyperbolic diffeomorphisms re stably ergodic. The time one map of the geodesic flow on a compact surface tant negative curvature is the most classically studied partially hyperbolic orphism and it has the accessibility property. In [Grayson, Pugh and Shub, e proved that it is stably ergodic. Amie Wilkinson [Wilkinson, 1995] removed othesis that the negative curvature be constant. In n-dimensions we have: em 3. [Pugh and Shub, 1996] The time one map of the geodesic flow on the igent bundle of a compact n-manifold of constant curvature k, k < 0 is stably it is ergodic and so are all C² small volume preserving perturbations of it. have also a class of examples which come from the theory of homogeneous of Lie groups. We will assume that our spaces are of the form G/B where Gnected Lie group and B is a closed subgroup which, in addition, is admissible here. If G is nilpotent, solvable or semi-simple or if B is discrete then the bility condition is satisfied. $a \in G$ let L_a denote left translation by a i.e. $L_a(h) = ah$ for all $h \in G$. Then aces a map on G/B which we call L_a as well. Given an automorphism A of $a \in G$ we call $L_aA: G \to G$ an affine diffeomorphism of G, we also denote up by aA. If A(B) = B then we continue to denote the induced map on G/Bl or aA and call it an affine diffeomorphism of G/B. We will assume that the neasure on G induces a finite measure on G/B which is invariant under left rtain technical sense (see [Brezin and Shub, 1995]) which we will not make tion and that $A: G/B \rightarrow G/B$ is measure preserving. en an affine diffeomorphism $aA:G\to G,\ aA$ induces an automorphism of Algebra \mathfrak{g} of G by ad(a)DA(e) where e is the identity of G. In particular, A(e) is a linear map. Let \mathfrak{g}^s and \mathfrak{g}^u be the generalized eigenspaces of \mathfrak{g} conding to the contracting and expanding eigenvalues of ad(a)DA(e). Let be the Lie subalgebra of $\mathfrak g$ generated by $\mathfrak g^s$ and $\mathfrak g^u$. Then it is not hard to see and Shub, 1996] that \mathcal{L} is an ideal in \mathfrak{g} which is ad(a)DA(e) invariant. As an is tangent to the connected normal subgroup which we denote by H and call perbolically generated subgroup of G. em 1: Let G/B be a compact manifold and aA be an affine diffeomorphism Let r be a positive real. If the eigenvalues of ad(a)DA(ε) are sufficiently ed near the three numbers 1, r or $\frac{1}{r}$ and HB = G, then aA is stably ergodic theorem has examples for semi-simple groups. We specialize to SL(n,R). Γ be a uniform discrete subgroup of SL(n, R). $A \in SL(n, R)$ let $L_A : SL(n, R)/\Gamma \rightarrow SL(n, R)/\Gamma$ be given by left translation :em 2: [Pugh and Shub, 1996] The following four conditions are equivalent. A has an eigenvalue with modulus different from 1. Conjecture 3: Let dimension $M \geq 2$. For the generic finite dimensional submitfold V contained in $Diff^r(M)$ and almost every $f \in V$ the equivalence classes points in the chain recurrent set of f are open in the chain recurrent set. Conjecture 3 would give a finite spectral decomposition for f where each piece of decomposition has something akin to the accessibility property. ## REFERENCES - Schatti, C. and Diaz, L. (1994), Persistent Nonhyperbolic Transitive Diffeomorphisms, preprint. Scrin, J. and Shub, M. (1995), Stably Ergodicity in Homogeneous Spaces, preprint. - Bein, M.I. and Pesin, J.B. (1974), Partially Hyperbolic Dynamical Systems (English Translation), Math. USSR Izvestia 8, 177-218. - Sayson, M., Pugh, C. and Shub, M. (1994), Stably Ergodic Diffeomorphisms, Annals of Math 140, 295-329. - Sopf, E. (1971), Ergodic Theory and the Geodesic Flow on Surfaces of Constant Negative Curvature, Bull. Amer. Mat. Soc. 77, 863-877. - Figh, C. and Shub, M. (1996), Stably Ergodic Dynamical Systems and Partial Hyperbolicity, preprint. - mgh, C., Shub, M. and Wilkinson, A. (1996), Hölder Foliations, preprint. - Wilkinson, A. (1995), Thesis University of California, Berkeley. Charles Pugh Department of Mathematics University of California at Berkeley Berkeley, CA 94720 Michael Shub Mathematical Sciences Department IBM Watson Research Center Yorktown Heights, NY 10598