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STABLE ERGODICITY AND STABLE ACCESSIBILITY
by
Charles Pugh and Michael Shub*

Abstract. In this paper we discuss how a little hyperbolicity goes a long
way towards guaranteeing stable ergodicity. Examples to which our theory
applies include translations on certain homogeneous spaces and the time one map
of the geodesic flow for a manifold of constant negative curvature. We also
discuss the role played by a concept from control theory, accessibility by paths
tangent to a pair of subbundles of the tangent bundle.

1. Introduction. Let f: M — M bea C? diffeomorphism and assume that f
preserves Lebesgue volume p,

u(fA) = pA

for all measurable sets A < M. The diffeomorphism is ergodic if the only measurable sets it
leaves invanant are trivial:

fA = A implies that either pA = 0 or H(A®) = o.

f is stably ergodic if it is ergodic and so is every volume preserving diffeomorphism that
C?-approximates it. Similar definitions make sense for flows. Anosov (1967) was the first to
show that stably ergodic diffeomorphisms and flows exist. Specifically, his results imply that
every area preserving diffeomorphism of the 2-torus that C?-approximates the “cat map”

21
f = mod 2Z°
11

is ergodic. Hyperbolicity of f is a key ingredient of the pr?gz‘ . (By the way, it remains un!}gxawn
to this day whether C? can be relaxed to C'. See Bowen (35%%) and Robinson & Young ($xx).)

Boltzman's ergodic hypothesis — that ergodicity is a generic property of volume
preserving dynamical systems — underlies statistical mechanics and much of physical thinking.
It is encapsulated in the following picture of two gasses mixing.

* Partially supported by an NSF grant.
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Figure 1. Gas ergodicity.

Yet, in 1954, Kolmogorov showed that Boltzman was wrong. The twist map

e

Figure 2. The twist map.

is an area preserving diffeomorphism of the plane that is not ergodic, nor is any area preserving
diffeomorphism that C*-approximates it, due to the persistence of the invariant KAM circles.

Nevertheless, it is our contention that Boltzman was more right than wrong: in the joint presence
of hyperbolicity and KAM dynamics, hyperbolicity can overwhelm the KAM dynamics and

produce robust statistics in the form of ergodicity.

Consider the following four conditions that the diffeomorphism f may satisfy.

(1)
(2)
3)
O

f is partially hyperbolic.

f is dynamically coherent.

The stable and unstable bundles of f have the accessibility property.
f has good holonomy.

See § 2 for details about (1) - (4). In our paper, Pugh & Shub (1996), we prove

Theorem A. Ergodicity of f is implied by (1), (2), (3), (4).
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Theorem C. The time one map of the geodesic flow

is a compact Riemann manifold with constant negative curvature.

Theorem D. éertain translations of homogeneous spaces are stably ergodic.

We view Theorem A as saying that although f may have completely anti-ergodic and
the center dynamics can be irrelevant to ergodicity.

the scene. The proofs of Theorems C and D
while the proof of Theorem B amounts to

KAM behavior on the center manifolds,
Hyperbolicity in the pormal directions can rule
amount to verifying thc hypotheses of Theorem B,
verifying (1) - (4) fo:r perturbations of f.

|

When V has|negative curvature, Anosov showed that the geodesic flow ¢ on the unit
tangent bundle M = T,V is ergodic as a flow. Any measurable set A ¢ M that is invariant
under the flow is a zero set or the complement of a zero set. In fact, Anosov showed that this
continues to be true for all flows that preserve volume and C?-approximate ¢; ie., he
established stable ergodicity of ¢ as a flow. Theorem C is stronger in two ways:

(a)  Ergodicity of the time one map of a flow implies ergodicity of the flow but not
conversely. Constant time suspensions give examples of this.

(b) Perturbations of the time one map of a flow need not even embed in a
perturbation flow.

Together with Matt Grayson (1994) we proved Theorem C when V has dimension two
and has constant negative curvature. In her thesis, Amie Wilkinson (1995) proved Theorem C
when V has dimension two and has variable negative curvature. With certain technical
improvements, our methods lead to a generalization of Theorem C to higher dimensional
manifolds with variable negative pinched curvature. We gratefully acknowledge useful
conversations with Jonathan Brezin about Theorem D, and with Eduardo Sontag about the
control theory literature.
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2. Details. We assume that M is compact, boundaryless, and m-dimensional. The

volume p, expressed in local coordinates, corresponds to an m-form &(x) dx, ... dx,, where &
is smooth and positive.

The diffeomorphism f : M — M is partially hyperbolic if Tf leaves invariant a
continuous splitting TM = E" @ E° @ E°, where E* = 0 = E°, and, with respect to some
fixed Riemann structure on TM, Tf expands E", Tf contracts ES, and for all peM

sup l]T;fII < inf m('l';f) and sup ]lT;ﬂl < inf m(’l':f) '

TU, T, T*f are the restrictions of Tf to EY, ES, E. The bundles, tangent maps, elc. are
referred to as unstable, center, and stable respectively. The notation m(T) refers to the conorm
(or minimum norm) of a linear transformation T, »(T) = inf {{Tv| : |v] = 1}.

According to Hirsch, Pugh, & Shub (1977), if f' C'-approximates f then f' is also
partially hyperbolic. #& ¥t is also shown there that unique f-invariant foliations, W" and W*,
tangent to E" and E®, exist and their leaves are dynamically characterized according to strong
backward and forward asymptoticity respectively.

In general there is no reason to expect that a center bundle integrates to an invariant
foliation. This leads us to say that f is dynamically coherent if E¥, E°, E°® integrate to
f-invariant foliations W, WS, W, and

WY and W° subfoliate W, while W® and W subfoliate ‘WS,

(One foliation subfoliates a second if each leaf of the second is a union of leaves of the first.)
The phrase “dynamically coherent” indicates that the unstable, center unstable, center, center
stable, and stable orbit-classes fit together nicely.

Together with Moe Hirsch,-4a—HPS: we investigated normally hyperbolic invariant
foliations and laminations. It is just a matter of unraveling the definitions to show that if a
partially hyperbolic diffeomorphism leaves invariant a foliation W tangent to E® then it is
1-normally-hyperbolic at ‘'W®, and conversely, if a diffeomorphism is 1-normally hyperbolic at
an invariant foliation then it is partially hyperbolic.

Accessibility is a concept from control theory and is discussed in §3.
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:1 remains to explain what “good holonomy” and “bunched spectrum” mean. At points
P-q of the same unstable jear o draw transversal discs and define a map from one
transversal to the other by sliding along the leaves of

‘\f100m2+1-1

10m

0y =

where m = dimM. This dimensional constant is greater than 9/10 and increases to | as

m — oo,

By the spectrum of Tf we mean the spectrum of the operator ¢ — Tf o oof! defined
on the space of bounded sections of TM. Spectral bunching conditions are used to prove that f
has good holonomy. They say that the spectra of TUf, Tf, and Tf lie in thin, well separated
annuli. More precisely, we assume that a < b<c<i<d<e<gand

The spectrum of TSf lies in the annulus with radii a,b.
The spectrum of T°f lies in the annulus with radii c, d.
The spectrum of T“f lies in the annulus with radii e, g.

f has sufficiently bunched spectrum if 0 < 0np <6 <1 and
d < min{ce, c/b, ea® eg'e} and b < min{ca® cg"e}.

3. Stable Accessibility. Accessibility is a concept from control theory. We follow the
development presented by Grasse (1984), Lobry (1973), and Sussman (1976). See also Gromov
(1995). Let E, F be subbundles of the tangent bundle TM of M. They need not be
independent, nor need they span TM. An (E, F) - path is a piecewise C' path
v : [a,b] — M whose tangent lies alternately in E and F. That is, [a, b] has a partition
a=1 <t <. <t,="b, andon the subintervals I; = [t;_,, t;] wehave (v|;) € E,

(r|1,) € F, et



Figure 3. An (E, F) - path.

The pair (E, F) has the accessibility property if all p, g € M can be joined by (E, F) - paths
with a fixed number L of legs, each leg having arclength < 1. The pair (E, F) has the stable
accessibility property if for each nearby pair of subbundles (E', F) and all p,q € M, thereis
an (E, F) - path from p to q having < L legs, each of arclength < 1.

A subbundle E ¢ TM is uniquely integrable (in the sense of control theory) if it can be
spanned by continuous vector fields having unique integral curves. Clearly, if E is C! itis
uniquely integrable. Unique integrability of E does not imply integrability in the Frobenius
sense — E need not integrate to a foliation. A classic result in control theory is the

Stable Accessibility Theorem. Let E,F be C' subbundles of TM and assume (E, F)
has the accessibility property. Then (E, F) has the stable accessibility property with respect to
uniquely integrable approximations.

In order to comment on our use of this theorem and propose some extensions of it, we
sketch the proof.

First, one chooses C' tangent vector fields X;, ... , Xj that span E and C' tangent
vector fields Xy,;, .. » Xpx that span F. (They need not be linearly independent.) Then one
forms the C' multiflow

D(1, X) = Op¢ © Pkt tpy; © = © Pkt © Ok 1y (x)

¢
where T = (t;, ... , tx), X € M, and ¢; isthe X;-flow,

do; ¢ (X)

dt Xi(X) =

t=0



=Y.

By assumption, for every P.q € M, thereisa t* € R¥ such that PD(t*, p) = q. Infactit
turns out (read Grasse's paper to see why) that such a t* exists for which the C! map

o:R¥X . M
T — O(1, p)

hasrank m at © = t* (The manifold M has dimension m.) This implies that there exists a
smooth, compact m-dimensional disc D in RZk, centered at 1*, such that ¢ carries D
diffeomorphically onto a compact neighborhood U of q in M.

Figure 4. ¢ submerses over a neighborhood of q.
Next, one assumes that E', F' are uniquely integrable and approximate E, F in the

uniform, C° sense. Then one approximates X, ... , X,k by uniquely integrable fields
X, «. » X5 that span E, F. They generate a multiflow

D X) = 01, © Okt tgyy © = © Pkt © Pok, 1y X)
where ;' isthe X;-flow. Note that &' is continuous, but it may fail to be C' because the
fields X' need not be |C'. On compact subsets of R%* x M, @' uniformly approximates ®.
Hence, the restriction of ®'(t, p) tothedisc D, callit ¢, uniformly approximates ¢.

Any point u interior to U has topological index one with respect to the restriction of ¢
to the boundary of D,

Index (u, ¢|gp) = 1.
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Topological index is homotopy invariant. Hence, there exists a smaller neighborhood V of q
such that forall u € V and all ¢' that uniformly approximate ¢, Index (u, ¢'|p) = 1. This
implies that V < ¢'(D). Compactness of M completes the proof.

In our proof of Theorem B we are justified in using the Stable Accessibility Theorem
because the hyperbolic bundles of the perturbation f of f actually are uniquely integrable,
although they are usually neither C' nor Lipschitz. The reasons for this are dynamical.

To extend Theorem B, by relaxing the hypothesis that E", E° are C', it would be
convenient to have a positive answer to

Question 1. In the Stable Accessibility Theorem, can C'-ness of E, F be relaxed to
unique integrability?

This amounts to asking whether the index one conditions are true for a pair of uniquely
integrable bundles with the accessibility property. Allied to Question 1 is another question, one
that we have no pressing need to answer, but a question that we find intriguing in its own right.

Question 2. Assume that E, F are C* subbundles of TM, (E, F) has the accessibility
property, and E',F are continuous subbundles of TM that uniformly approximate E, F, but
that are not necessarily uniquely integrable. Does (E', F') still have the accessibility property?

As a test case, consider R® and three continuous vector fields X, X,, X, that
uniformly approximate 0/0x, 0/dy, 9/dz, but are not necessarily uniquely integrable. Let

p = (0,0,0), ¢ = (1,1,1), and ask: Do there exist an X,-solution ¥,, an X,-solution Y,,
and an X,-solution v, such that for some (t;, tj, t;) mear (1,1, 1), ¥,(0) = p, Y,(0) = ¥,(ty),

Y3

T1 T2

Figure 5. Two three legged paths.



orfield X on R™,

Fip, s) = {y) - Y isan X-solution, y(0) = Pand 0 <t < g)

has a Cross-section

: ¥ isan X-solution and v(0) =

K, ) = {x(5) = p}

that is a continuum - i.€., a non-empty, compact, connected set. Correspondingly,

for several
vector fields we get a multifunnel. For in Ay

stance, the funnel of two vector fields X X,, is

F(p, s,, s5) = {q : There exist an X, solution y;, an X,-solution y,, and
' times t; € [0, 5], t, € [0, s,], such that
"{}(0) = ps YZ(O) = Tl(tl)s &ﬂd Tz(tz) ) q}-

Its cross-section K(p, s, s,) results by setting t, = s, and t, = 5,. An easy generalization
of Kneser's Theorem implies that this cross-section is a continuum. Also, the following
continuity conditions are easy to check. As functions from R™ x R? into ¥, the space of
continua in R™ equipped with the Hausdorff metric, the multifunnel and its cross—section,

(P, 81, 83) — F(p, s;, 5)) and (p, 55, 5,) — K(p, s, 8y),

are upper semi-continuous. This means that a slight change of (p, s,, s,) can cause the
continuum to become much smaller, but not much larger. Moreover, for each fixed (p, s;) we
have continuity in s,. These properties generalize easily to three or more vector fields.

Question 2 amounts to asking whether the backwards X,-funnel through q = (1,1, 1)
meets the forward (X, X,) - funnel through p = (0, 0, 0). Using the upper semi-continuity

—unigue so.'utio,ns. It
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Figure 6. Must these funnels meet?

and continuum properties of the funnels, it is possible to give a geometric argument to show that
the intersection does indeed exist, and this settles the test case.

We believe that the general case should also have an affirmative answer, and that it may
involve some kind of “Cech intersection condition”. Consider two smooth discs D, and D, in
R™ that have dimensions d, and d,. Assume that d; + d, = m and D, intersects D,
transversally at a point r. If D, and D, approximate D, and D, in an appropriate sense
then they should intersect at a point r' that approximates r. When D, and D, are the
images of D, and D, under continuous maps g, and g, that approximate the inclusion maps
then it is not hard to see that the intersection does persist.

We are interested, however, in more general sets D,' and D, We want to let D, and
D, be funnels, cross-sections of funnels, etc. As shown in Pugh (19743) funnel sections can be
topologically pathological; for example they can fail to be locally connected. We hope that they
are, or that they contain, “Cech discs” with nonzero “Cech intersection number”.
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