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RESUME

Les utilisateurs des systémes dynamiques sont le plus souvent intéressés par la con-
naissance des attracteurs structurellement stables d’un systéme donné, Leur attention va
cependant rarement au-delad d’attracteurs qui sont des points fixes ou des solutions pério-
diques. Le papier présente un exemple simple d’attracteur structurellement stable qui
n’entre pas dans ces catégories et donne un théoréme général de caractéristation des
attracteurs structurellement stables.

There are numerous notions of stability in dynamical systems. Among
these are asymptotic stability and structural stability. We say that a set of
orbits is asymptotically stable or an attractor if'nearby orbits tend to the
set as time increases, that is, even if the initial conditions are perturbed to
be slightly off the set the limiting positions are still in the set. A system is
structurally stable if perturbing the system a little does not change the orbit
structure up to a continuous change of variable. Systems which are structu-
rally stable in a region around an attractor are particularly fruitful for study.
The behavior of such systems is neither sensitive to perturbation of the
system nor to perturbations of the initial point.

The study of differential equations has classically known two cascs of
compact attractors which are structurally stable in a region around the at-
tractors. The most prevalent that arise are the hyperbolic stable equilibria
of ordinary differential equations, that is, the zeros of equations of the
form :

d
—% = AGx(8) + 0 (1)

where A is linear with the real part of all eigenvalues of A negative and 0 is
a perturbation term. When stable equilibria cannot be found the hyperbolic
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stable periodic solutions are generally the next examples to come to mind ;
for example, Van der Pohl’s equations :

i=p-x?+x
y=—=x.

One finds these attractors in the literature frequently. Since the attrac-
tors consist of a single orbit there is non question of the structural stability
of the equation on the orbit. In fact, it is not much more difficult to believe
that these systems are structurally stable in a region around the orbit. One
may draw some pictures as follows :

| __
Y 9 O

Since 1960 we have learned about more structurally stable attractors,
manifolds and not.

I will begin by describing a structurally stable attractor which was
described by Smale in 1966. Smale began with the structurally stable expan-
ding map 0 = 20 of the circle which was studied in my thesis and so this
example is particularly dear to me. The presentation here not only incor-
porates Smale’s but goes on to study the example from the point of view
of the work of Bowen, Ruelle, Sinai, Williams and others.

Start with a solid ring, R, in three dimensional space E3.
6.0,0)

r=2,7=0

we take (8,7, s) coordinates on R where 8 is the angle on the central circle
and r, s are coordinates in the plane orthogonal to the circle. This amounts
to (6,7) coordinates on a annular region in the plane with ¥ =r — 2 N
—1<7<1, and a third coordinate s perpendicular to the plane. Now
definef: R =+ R by

fO,7,5)=1(20,€ cos 0 + €,7, €, sin 0 + €,5) where ¢, &y 0
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are small. The image f(R) is inside R and the perpendicular disc to the circle

at the point 6 is mapped into the perpendicular disc to the circle at the point
240.

It is easy to see that if (7, s) are restricted to

|
r* +s2< and e, <e, <—2—

that this map is an embedding. That is, it is a 1-1 differentiable mapping and
it takes R into R.

If ‘we denote a disc cross section through the point 6 on the circle by

D(6) we see that f(D(—%)) and f(D (z—* n))c D (0)

5 0
(E‘I COS-E-.E'ISIHE)

, (e COS(%T’H’) , € sin (%*ﬂ))
or (-2-,51)

or (%+1r.el)

and they are contracted by a factor of €,. The centers are at

(1 cos g e, sin )

and
(el cos(—z-i- ﬂ) ; B sin(—z-l- ‘.-'r)) = (—- €, cos%, — €, sin-g—)

0 . 8)
=—\¢; cos> €, sin>

so the two centers are 2 €, apart and the image discs have radius €, .
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The image of the second iterate of f, in the Disc D(8) then looks
like :

In the third dimension there are lines coming out and twisting around
two times. Near D (8) the picture lookds like :

-
-
/
///

and the four strands braid around to make one tube.

Returning to the disc D(8), we may write polar coordinates in these
discs as well. D(0) = {(0,7,s) |7* +s* + 1}. The first image of f in

D(0) is the two discs centered at (% ,e,) ,(*20; +7, el).

For the second iterate of f, 2, the image of f? in D(6) can be found
] ]
first by taking the image of f in D (;) and D(;; 4 rr), i.e. the €, discs

centered at (% . el) and (% + m, el) inD (%) and the €, discs centered at

(2— + 32[ fu) and (% +:3 -g—, el) inD (g— + 1r). Applying f we get 4 discs

in D(8) of radius €2 centered at :

(o) ra(le).(Loa) ra(lena)

(% + 5:) 1‘-&2(-2- +-;£‘ El),(% + o, el) i-ez(% +3 g, el).

If we ignore the €’s and just keep track of the 6’s we may do this as
follows. For the first iterate wo write pairs (0;.,05)< s' x 8' such that
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26, = 6, . For the second iterate we write triples 6,,6,,0,)€ S xS x 8!

such that 205 = 6, and 26, = 0, . Or given 8 we have the two pairs (9. %)

and (6, g -+ fr) and the four triples (6, g— -i-) (8, % % -+ w)
(6, g -, g + 32[) (8, —g— + 7, % +3 -;) These centers tell us a succes-

sion of discs each one contained in the one before with size reduced by a
factor of €, . If we continue we get infinite sequences

Wil o B Bpnsio onf B B B B S5 4

such that 26, ., = 8, fork > 1. These infinite sequences specify an infinite
sequence of ever smaller discs and consequently each infinite sequence
specifies exactly one point in N f"(R). We may identify the set N f*(R)
with all the infinite sequences above, which is called the solenoid. In each
disc D(0) we can see that this solenoid leaves a Cantor set as intersection.

The set of infinite sequences

(01,8,...0,,0p 01, JES % ... x8 % 8" ... ouchthat @, =20, ,
is also called the inverse limit of the map 8 -~ 28 and f under this identi-

fication becomes
(O N L ——— E0 s By By O Bgs )

which is a homeomorphism of this compact space. This is Williams’ point
of view. The thing that makes the attractor structurally stable is the expand-
ing nature of the map on the circle part, & — 280 stretches distances locally,
and the contracting nature of the map on the normal disc slices.

This contracting map on the normal disc slices leads to another obser-
vation. Let g : R = E'be a real valued continuous function. If x, y are
both on the same D(0) then

d(f"(x). f"(») ~ 0 so 1gf"(x)—gf"(M >0

1 u\ . pj\ ;
and = Y 8fix) — Y gl 0.

i=0 i=0
One limit exists if and only if the other does. That is, if x € D(8) and

n—1 1 r!—J
lim -1-- 2 g f1(x) exists then so does lim — \_‘ g fi(») for every y € D(6).
L= i=0

n-—-1 .
The lim 5 Y gf'(x) are the time averages of the observable g for the
n troma

i=0
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discrete time process £. In the case of hyperbolic stable equilibria or hyper-
bolic stable periodic orbits the time averages converge to the value of the
function at O or the integral around the periodic solution with respect to
the normalized time parameterization on the periodic orbit.

In our case, if the function g were constant on the discs D(6) the
time averages would be exactly the time averages with respect to the
transformation 6 - 26 on the circle. For this transformation the usual

measure is invariant and ergodic so the time averages are just the integral
of g with respect to the usual measure. lim nl Tefi0,7,5)= feg®,r s)do
and the limit exists for almost every (¢ , ¥ ,s) in R.

Now if we let A = ;‘51 SR then we may define a measure u on
A as follows. Consider a continuous functiong : A > E'. Let

g(@)=  min g0 ,7,5).
@,r,5)=D(8)

Let fgdu = [§d6. Then u is an invariant measure which is ergodic and

1 n—1 ) ] )
lim — % gf'(6,7,5) = [gdu for almost all (8, 7,s) in R. This cons-

n i=o
truction is related to the inverse limit construction above. This measure
has entropy log 2 which happens to be the logarithm of the degree of the
map @ -+ 28, by no accident.

The map f has some fairly pleasant properties. A point (6 , 7 ,s)€ R
will be said to have period n if (0,7 ,5) = (0,7 ,5). [ has exactly
2" points of period n, which one can see by observing that D(0) must be
mapped into itself by /" for (9, r ,s) to be periodic of period # and this
disc is contracted, so it suffices to obsetve that 6 -+ 20 has 2" points
of period #. Not only does every nearby f' to f have 2" periodic points
of period 2", but every map f' : R = R homotopic to f must have at
least 2" periodic points of period n.

The general theory proceeds as follows. Suppose M is a compact ma-

nifold perhaps with boundary, or say a compact region in Euclidean space
with smooth boundary and /' : M — Interior M is a diffeomorphism.
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If A C M is an invariant set for [, thatis f(A) = A, then we say that A
ha§ a hyperbolic structure if the tangent boundle of M. TM A may be
written as a sum of two sub-bundles ES ® EV where ES and EY are invariant
by Tf the derivative of £ and where Tf contracts ES and expands EY, More
precisely, there are constants C > 0 and A < 1 such that ITf"v | <CV vl
for any tangent vector v € ES any 2> 0 and || Tf " v || <CN|lv| for any
tangent vector v € EY and any n > 0.

This formal definition corresponds to the expanding and contracting
- features of our example. Smale’s Axiom A imposes a hyperbolic structure
on a set of weakly recurrent points. A point x € M is called wandering if
there is a neighborhood U of x in M such that f*(U)n U = ¢ for some
n > 0. The wandering set is open and invariant and its complement the
non-wandering set, (f), is a closed invariant set.

Axiom A : a) (f) has a hyperbolic structure ;

b) the periodic points of fare dense in (f). Under these hypo-
theses Smale proves :

Theorem. If f: M - M satisfies Axiom A then Q(f)=Q, U...UQ,
where §2; are closed and f invariant and each £; contains dense orbits.

WS(Qf) is defined to be those points x € M such that /" (x) - €, as
n - oo, That £, be an attractor means that W° (£2,) contains a neighborhood
of ;.

Theorem (Bowen). If f is a C* Axiom A diffeomorphism then §2; is an
attractor if and only if the measure of WS (£2;) in M is bigger than 0.

Thus every C? Axiom A diffeomorphism, f, must have an attractor
and almost every point must tend to an attractor under iterates of f. Also
there is a measure M on a C? attractor £2; such that

. 1 i -11 i
- % (] -+ f gd,
n ;= 9

for almost every x in wS (£2,) and any continuous g defined on Ws(ﬂr).
This measure was constructed by Ruelle, and has interesting ergodic pro-
perties.

Given an Axiom A attractor £2; there is a manifold M; € M with di-

mension M; = dimension M, f(M;) C Interior M; and fi ") = ;.

f is structurally stable on M;. Thatisifg : M, = M;is C? close enough
to f there is a homeomorphism 4 : M; = M; such that gh = Af, This result
is contained in the works of Robbin and Robinson.
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Similar theorems are known for vector fields, that is time independent
ordinary differential equations. The study of time dependent time periodic
equations is like the study of diffeomorphisms in the component of the
identity. How the regions of attraction are divided requires studying the
global features of the systems.
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DISCUSSION

The discussion, introduced by Ivar Ekeland, has singled out three main points.

First, the type of attractor described in the paper, which also exists for continuous
flows, should not be considered as some untractable object : on the contrary it is rather
pleasant because it carries an ergodic measure.

Next, if the economists have not yet encountered such attractors, for instance in
optimal growth, it is because they mainly work in a two dimensional capital-labour
framework ; then Poincaré’s theorem : “any invariant compact set contains a fixed
point or a closed orbit"”, excludes the type of situation peresented in the paper.

But, last remark, in higher dimensions, even the case where some dynamics are
Hamiltonian does not exclude the appearance of the described situation.



