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Some Remarks on Bezout’s Theorem
and Complexity Theory

MICHAEL SHUB*

We begin by establishing the smoothness and irreducibility of certain alge-
braic varietics. Whereas these facts must be standard to algebraic geometers,
they do not secem readily available.

For d and n positive integers, let % , and #; , denote the spaces of polyno-
mial mappings and homogeneous polynomial mappings f: C" — C of degree
less than or equal to 4 in the case of F, , and equal to d in the case of H,,.
For a multi-index D = (d,,...,dy), let #p , and 5}, , be the products

k k
[l #,. and [] 4,
i=1 i=1

So an element F € &, , or #;, , is a polynomial mapping F: C" — C*. The
evaluation map ev: #, , x C" — C* and ev: #}, x C" — C* is just the map
(F,x) = F(x). For fixed F, F71(0) = C" is the algebraic set determined by the
simultaneous vanishing of the f} .

Lemma 1. Any y € C* is a regular value for

ev:Hp, x (C" - {0}) > C*
and
ev: Fp ,, x C" - C~.

PROOF. Dev g, ,(h,v) = h(x) + DF,(v). The values of h(x) alone are sufficient to

make Dz . ev surjective.
Thus, by the implicit function theorem the union of the algebraic sets

determined by the F’s is smooth in the product. For Fe %, ,, let Zp =
{x|F(x) = 0}, Zg, = Zz = {(F,x)|F(x) = 0}. Similarly for F € Hy ,, let Z; =
{xeC"— {0}|F() = 0}, Zy, =Zy = {(F,X)€ #;, x (C"— {0})|F(x) = 0},
and Zy, = Zj = {(F,x)€ Zy|F % 0}; Z5 and Z, are ev™"(0), so we have:

Proposition 1. (a) Z; is a connected smooth variety in Fp , x C" of codimen-
sion k;
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(b) Zy and Zy are connected smooth varieties in #p , x (C" — {0}) of co-
dimension k.

Proor. (b) It remains to prove the connectedness. The group of linear iso-
morphisms acts transitively on C" — {0}, and on 5, , x (C" — {0}) by (F,x) -
(Fo L™, Lx), this action preserves Z, and Zz. Thus, the maps Z,, — C" —
{0}, Z3 — C" — {0} are surjective locally trivial fibrations with connected
base and connected fiber so they are connected, as follow: Given (f;, x, ) and
(f2,%,) in Zj;, choose a path x, from x, to x,, for 1 <t < 2. Now lift x, to
(f;, x,) such that £ - /15 the endpoint of this path is in the fiber over x,. This
is a complex linear space minus 0 and, hence, is connected, so we continue the
path in the fiber to (f3, x,). The same argument holds for Z,; for Z5, simply
replace the linear group by the affine group.

We use P(V) to denote the projective space of the vector space V, ie.,
¥V — 0mod the action of the nonzero scalars C* = C — 0 and PC(n — 1) for
the projective space of C".

C* x C* acts freely on (s#} , — {0}) x (C" — {0})

by coordinatewise multiplication. Let N denote the dimension of 3, ,;:

ok ntd—1
N_i=1( d; )

The C* x C* action leaves Z; < #;,, x C* — {0} invariant. As the action
is transversal to S2N-1 x §2n~1 Z. ~ §2N-1 y §2n-1 j5 3 smooth manifold,
and, therefore, the quotient of Z; by the C* x C* action is the same as
Z; nSN-1 x §2"~1 by the unit complexes S' x S!. This later group is
compact. So the quotient by the free action is a smooth subvariety 2, , = Z
of P(#5p,,) x PC(n — 1). As Zj; is connected, so is the quotient manifold 2.
A connected, smooth projective variety is irreducible.

Theorem 1. %}, , is a connected, smooth irreducible projective subvariety of
P(s#p,,) x PC(n — 1) of codimension k.

Let Cp,, = {F € #p,, — {0}]3x € C" — {0} with F(x) = 0}, i.e, Cp, is the
set of those systems with a common root. Let 4, , be the image of Cp ,, in

P(Hp,n)-
Corollary 1. €, , is an irreducible subvariety of P(#p,,).

PRroOF. It is the projection of &, , on P(#5,,); as Zp , is irreducible, its image
must be.

The case of (n — 1) homogeneous polynomials in n variables is the case of
Bezout’s theorem; there are generically
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roots and %), = P(#},,) has the same dimension as % ,, ic., the map
Zp,n © P(5#p) x CP(n — 1) induced by projection on the first factor is a sur-
jection, almost every point is a regular point of the projection, and the fiber
has nd; points. We give a proof here.

Bezout’s Theorem

Let F =(f},-..,fu-1) € P(5#4} ), where f; is homogeneous of degree d; > 0,
not all identically zero. Let Z; = Z(F), j =1, ..., k, be the connected com-
ponents of 2y = CP(n — 1), where Z} is the projection into CP(n — 1) of
Zp — {0} = {x e C*' — {0}|F(x) = 0}. Then we may assign an index i(Z)) to
each Z; which is

(a) positive,

(b) Zf(z,;) =[kid.

(c) i(Z)) = 1 for a nondegenerate isolated zero, and

(d) there are neighborhoods U; of Z; in CP(n — 1) and A" of F in 3, , such
that if G =(gy....,9,-1) € A, then Z(G) = | J; U; and Y i(Z,(G)) = i(Z)),
where the sum is taken over all components of Z(G) contained in Uj.

Proor. First consider closed disjoint neighborhoods U; of Z; in CP(n — 1)
and a ball 4" around F = (f,,...,f,_,) € P(#,,,) such that Z(G) c (J U, for
all G € . The critical values of the projection n: %, , = P(#},,) lie in a sub-
variety 9 of P(#},,) (the “discriminant variety”). A fairly standard calcula-
tion shows that the regular points of the projection = are precisely those F
with nondegenerate zeros. If we consider the polynomial system

F=(f1"--sf;1—1}s f;(xls'“’xn)=xid‘_x:‘s

then we see that F has © d; nondegenerate zeros. Thus, the regular values of
n are open and @ has codimension at least one. Therefore, P(3#}, ,) — 2 is arc
connected. Continuing the roots along paths in P(3#}, ,) — &, we see the num-
ber of roots is constant, off 2. Moreover, 4~ — 2 is also arc connected, and
we define i(Z;) to be the number of roots of any G in A" — 2 which lie in U}
This establishes (b), (c), and (d). To prove (a), we return to the projection
n: Zp., = P(#y.,). Given F € P(#3,,), the connected components Z;, j =
1,..., k, of Zg, and disjoint neighborhoods V; of {F} x Z; in &) ,, we find
points in 4" — @ which are in n(V;) for each i, as follows: Since Z , is
irreducible, the noncritical values of = are open and dense, the image of every
open set contains interior, and since 4~ — 2 is open and dense in .4, there
must be points in ¥; with image in 4" — 2. Now given neighborhoods Uj; of
Z;, choose 4" small enough so that the zeros of all G in A" are in | ) U; and
let V, = (A x U;) n %, ,. This finishes the proof.
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Remark 1. The indices i(Z;) may be given several topological definitions. Let
F=(fi,...,f,-1), where the f; are irreducible and let Z,, be the projection
into CP(n — 1) of the set Z;,. Thus, 2 = () Z,. Let

Z =% XZ, xx% <cCPh—1)x-xCPn-1)
8 g

v
n—1

=CP"'(n—1).

Let A = {(zy,...,2,-,) e CP"}(n — )|z, = z; V; j} be the small diagonal. Z;
is homeomorphic to # N A. We can now compute the homological intersec-
tion of 2 and A in two ways. First, since f; is irreducible, Z(f:) represents
d, times the generator in H, (CP(n — 1)). Now the algebraic structure on
CP""'(n — 1) and the Kunneth formula gives nd, for the intersection of %
and A,

Next consider

Hy(8)

th-‘t}(ll—ll[g) = len-ft}cn—n(cpn-l(ﬂ - 1)) = H[In-d.)(n—l){cpn_!{” - ILCP'-I(" -1)=4)

T

k
Hpn-ayn-t( £ Z — X nA) = ‘; Hauw-syu-0)(Vu Vi = Z))

where V; are disjoint closed neighborhoods of the connected components Z;
of # nA in Z. The intersection number is the image of the generator of
H3y—4yn-1)(Z) in Hy(A). All the maps are induced by inclusion, except for the
isomorphism in the bottom row which is given by excision and the map

Hizpayn-1)(CP* 1 (n — 1),CP"}(n — 1) — A) > H,(A)

which is the Thom isomorphism (see [Dold]). This gives a topological meth-
od of computing i(Z;) when F = (f;,..., f,-) has irreducible components. If
Z; is a nondegenerate zero, Hy,—4ym-1(Vis V; — Z;) contributes a plus 1 to the
sum.

Remark 2. We can also give a topological computation of the index as the
degree of the map

My: Htop(fﬂ.m fﬂ,ﬂ - {f} X Zr) = Htop(P('%.n)l P('#D.u) - {f})
(see [Dold]).

Zulehner has proposed using continuation techniques along a projective
line to solve systems of equations [Zulehner]. Canny’s generalized character-
istic polynomial methods show some of the same geometric features, which
we state in the next theorem. Let L be a projective line contained in P(3#, ,)
and suppose that L is not contained in 2. Then for an open dense set of
points U in L, G e U has nd; zeros and W = %, , n 2™} (U) is a nd;-to-one
covering space of U. n~*(L) is a subvariety of 2, , and W is Zariski dense in
R(L) = V; u**+u V,, where V; are irreducible curves. We claim R(L) = W in
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the usual topology and is, in fact, W union a finite number of points. Suppose
U’ is an open set in R(L) — W, then it intersects some V; in an open set and,
hence, by irreducibility of ¥, W in an open set which is a contradiction. Thus,
R(L) = W. Moreover, R(L) — W only contains points in n~*(L n 2) which
are ' of a finite number of points. These fibers which intersect R(L) cannot
contain varieties of dimension one, for these curves would then have open
sets disjoint from U n V; for each i. So we have proven:

Theorem 2. Let L = P(#,,,) be a projective line not contained in @ and U =
L-9 Let Zp. c P(#.) x CP(n — 1) be the projection of {(F.x) € #,,, —
{0} x C"— {0}|F(x) = O} and n: Z, ,— P(#,,,) the projection. Let W =
7~ (U). Then W is n~*(U) union a finite number of points. = maps W onto L. If
G; € U and converge to F, then the roots of G; converge to n~*(F)n W. More-
over, they have a limit point in each connected component of Z.

Proof. The discussion immediately preceding the theorem proves all asser-
tions but the last sentence, which follows from Bezout’s Theorem.

Zulehner suggests using a variant of Newton’s method to do continuation
of roots on real lines contained in a projective line L. Since L n 2 has at most
degree 2 points, most real lines in L do not meet 2. We are back to a familiar
situation, the projective line L is the Riemann sphere with degree & points
removed representing the discriminant variety in L. We may choose a poly-
nomial, say F = f, = z% — z%, and consider real lines connecting F to the
system we wish to solve, G. For example, we may take the projective line

uG + vF

and let the ratios of u and v lie on the 2deg 2 lines of ratio

E=¢::xp(f 21 ) forj=1,...,2deg 2
v

2deg 2
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This is reminiscent of Smale’s original approach to the fundamental theorem
of algebra.

Recall that the polynomial f is thought of as taking the complex number
S:C — C. In the target space

]
z flz)
,——-—-\—/ f * L]
__....-—-——-‘ L]
FIGURE 2

a point z is chosen in the domain and a straight line drawn from f(z) to 0; as
long as the critical values of f are avoided, the line can be lifted back and
continued to a root & of f. If we think of the image plane as a plane of
polynomials given by changing the constant terms, we have sloved f — f(z)
(with z) then drawn the straight line to f, i.e, (1 — )(f — f(2)) + ¢f = G,, so
G, = f — f(z) and G, = f. Avoiding the critical points of f exactly says that
the line of polynomials G, never has a double root, i.e, that this line misses
the discriminant variety in the space of polynomials. Now the analogy is
complete. It is not so easy to find polynomials whose roots we know and
which are notin 2, but F = (f,...,f,-1)and fi=zF —z5,i=1,...,n,isa
simple example.

Now we need a Newton’s method. There does not seem to be a natural
Newton’s method on projective space. In fact, what we propose is not ana-
lytic and fails to be the classical method even for a polynomial of one com-
plex variable which is then homogenized as a two-variable polynomial which
gives us a method back on CP(1) = §°. But this method is well-suited for

Smale’s a-theory.

Newton’s Method in Projective Space

Let F € #, ,, where D = (d,,...,d.); F:C*** aC", F=(f,...,Js). and f;
is homogeneous of degree d; = 1. For x € C"*, let PT(x) = Null(x), ie., if
X = (Xgseees Xper)y Null(®) = {weC"|w=(Wy,..., W) and Y. X;w, = 0}.
Let Df(x)|PT(x) = P(x).
The projective Newton vector field is
PNV(x) = PNVg(x) = — P(x) ' F(x)

and is defined where P(x)™! exists.
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The projective Newton method is
PN(x) = PN(x) = x — P(x)"'F(x) = x + PNV(x).

Proposition 2. PNV(x) and PN(x) transform appropriately and, hence, are
defined on CP(n).

ProOF. For 4ieC, let A(A%) be the linear map which takes (xi,...,x,) =
A91x 1, .., A%x,).
By the chain rule for nonzero AeC, DF(ix)= A(A%)DF(x)A™" and
PT(Ax) = PT(x). Thus,
PNV(ix) = —P(ix)"'F(ix)

= —(AAP(x)A" ) ALY F(x)

= —AP(x)"'F(x) = APNV(x).
Thus, .

PN (Ax) = Ax + PNV(ix) = i(x + PNV(x)) = APN(x)

and PNV and PN are defined on CP(n). See [Zulehner] for the same differen-
tial equations.

There is:also a spherical version of PN, SN

x — PNV(x)
SN(x) = ————--—— for x of norm one.
lx — PNV(x)|
The figure following Theorem 2 shows rays which do not intersect the dis-
criminant variety in a projective line L. Renegar gives bounds on Newton’s
method in terms of the distance to the discriminant variety in P(#5,)
[Renegar]: In [Shub], I give a lower bound to the distance in P(#},,) com-

pared to the distance in L.

Theorem 3. Let H = CP(n) be a hypersurface of degree m and L a projective
line. Let R be the furthest distance of a point in L from H. Then, for x e L,

m'™z(csc R)d ¢pum(x, H)'™ > dy(x, HN L) 2 depw(x, H).

But I do not think that this estimate is good enough to get good complex-
ity bounds. Canny and Renegar use the u resultant and generalizations; we
will return to these later. The most problematical polynomial systems are
those with excess components, i.e., the algebraic set of zeros has dimension
larger than zero. The simplest example is two linear equations in three vari-

ables which are dependent:
ax+by+cz=0,
ax + by +cz=0.
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The homotopy then can add ¢ times
x—z=0,
y—z=0
to the system, obtaining
(@a+tx+by+(c—1Hz=0,
ax+b+ty+(c—tz=0.
This is solved by the 2 x 2 determinants giving
(—tc + 1% —tc + 3, t(a + b) + 12),
dividing by ¢ gives
(—c+t,—c+t(a+b)+1).

Letting ¢ tend to zero selects the zero (—c, —c,a + b) in the line of zeros of
the original system.

Moreover, the zero of the system varies nicely with t. In general, one has
for £, £, € L that the distance between the sets of zeros Z,, Z,, given by
Theorem 3 satisfy

d(Z;,,Z,,) < Cud(l 1, 62) 1%,
but the Holder constant C, which depends on L is not bounded, as computa-
tion even on linear examples shows.

Problem. Estimate C; in terms of the distance from L to the subvariety of
problems with excess components.

Given homogeneous polynomials f:C"—C, i=1, ..., n— 1, add one
more equation u = Y ., u;x; = 0, where (uy,...,u,) € C". The resultant of
R(fi,+-sf0-1,1), called the u resultant, is then a polynomial function R(u)
which vanishes precisely if there is a root (&,,..., &,) of the system fi, ..., f,—;
s.t. ) u;&; = 0. If there are finitely many solution rays, then R(u) vanishes on
a finite union of hyperplanes see [Van der Waerden]. But if the system has
excess components, R(u) vanishes identically. Canny gets around this prob-
lem by considering the system fi = f, — sx{. The resultant now is a polyno-
mial function in s and u, R(s,u), R(s,u) = ) C,(u)s*. Let k be the minimum
integer such that C,(u) # 0. Call C,(u) the s, u resultant of f. Canny proves
that C,(«) vanishes on a union of hyperplanes containing a subset corre-
sponding to all the isolated roots of the system [Canny].

The situation is analogous to Theorem 2. Let gi(x) = xfi for i= 1, ...,
n — 1. Then f; — sg, represents a projective line L contained in P(#;, ,), D =
(dy,-..,d,-1). When s = o0, the system of equations has a unique solution ray,
(0,...,0,1). This implies that the set V of s for which there are finitely many
solutions is open and dense in L. Now let n: Zp, , — P(#% ,), Z;, = (L),
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and W = n}(V). n maps W onto L, the map is finite-to-one, and W contains
all isolated solution points of the system f; — sg, for any fixed s. Z, is W
union a finite number of excess components over finitely many values of s in
L: this is because those s which correspond to excess components are deter-
mined by the u resultant being identically zero, which defines an algebraic
subset of L. Now since the index of any connected component of zeros is
poxitive, there are points of W arbitrarily close to any connected component
of zeros. Therefore, W has nonempty intersection with every connected
component of zeros of the system f; — sg; for all s. We have thus proven an
analogue of Theorem 2 for the line L and open dense subset V. I will not
bother to restate this theorem except to draw a conclusion which partially
answers a question in [Canny]. The s, u resultant of the system f;, Cy(u),
vanishes on precisely the hyperplanes Y ', w;U; = 0, where (wy,...,w,) €
n~1(0) n W. This follows from [Canny, Theorem 3.2].

Theorem 4. Let f;: C" — C be homogeneous polynomials of degree d; > 1 for
i=1,..., n— 1. Let Cy(u) be the s, u resultant of the system. Then Cy(u)
vanishes on a finite union of hyperplanes Y 1 w; ;u; = 0, where (wy, ..., W,;) is
a solution ray for every j. Moreover, for every connected component of solu-
tions, there is a j s.t. (Wy,...,W,;) in this component.

Problem. What continuation methods correspond to W? Are they practical?

We return to the irreducible varieties %, , = P(3#; ,), where D = (d,,...,dy),
d; > 1. %, is the projectivized set of homogeneous polynomials (fi,..., f;) of
degrees d; which have a common solution ray in C". We have shown that 6p,,
is irreducible, and from Bezout’s theorem it follows that €, , = P(#p,,) for
k < n— 1. Here we give the codimension of 6, , in the other case.

Theorem 5. %, is an irreducible subvariety of P(#p.,) of codimension
max(0,n — k + 1). For k > n, the map from 2y, < P(#p,,) X CP(n— 1) to
%p.. induced by projection on the first factor is generically finite-to-one. When
k = n — 1, the generic number of points is | [i={ d;. When k > n — 1, the map
is generally one-to-one.

PROOF. Add to the equations f(x) = 0, the equations det(M;Df(x)) = 0, where
M.Df runs through the (n — 1) x (n — 1) minors of the derivative of f at x.
Let W, < Zp, be the subvariety defined by the vanishing of all the
det(M;Df(x)). Let Vy., < 6p., be the image of Wp . First, we claim that if
F € %p,, — Vp.n» then every common zero ray of F is isolated and so they are
finite in number. Next, to see that €p , — Vp,, is open and dense in %p,,, it
suffices to produce an open set in %y, — Vp,,. For this, find (# — 1) homoge-
neous polynomials with finitely many solution rays and with the derivative
at each solution ray of rank (n — 1). Complete this system to one which still
has common solution rays. Now, any perturbation of the initial (n — 1) poly-
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nomials still has only finitely many solutions and each has derivative of rank
(n_— 1) i=xH—x¥ i=1,...,n—1,aresuch a system of (n — 1) polyno-
mials. We can add an nth polynomial which is a power of a linear map (L),

where L vanishes at only one of common roots of the f; this will establish the
last statement.

Remark 3, The fact that, for overdetermined systems k > n — 1, the map
from solutions to systems is generically one-to-one implies that the solution

may be given as a rational function of the coefficients on a Zariski dense set
of problems,

Remark 4. For k = n, that is, the case of n homogeneous equations in n
variables of degree D = (d,,...,d,), 6p, = P(#,,) is an irreducible hyper-
surface defined by an irreducible polynomial in the coefficients of the fi- This
is the resultant polynomial [Macauley, Van der Waerden, etc.]; it has degree

(,-ljl dj) ; 1/d,.

If we specialize to homogeneous quadratic equations in n variables, the
vector space ), has dimension n*(n + 1)/2 and the resultant polynomial,
the vanishing of which is necessary and sufficient for the system to have a
nonzero root, has degree n2"~!. Even in this case one may hope to prove that
the resultant cannot be computed in polynomial cost in n and, thereby, estab-
lish that P # NP as below.

Proposition 3, Let H < C" be an irreducible hypersurface given by the irreduc-
ible polynomial P: CN — C. Then any machine M over C which solves the
decision problem (C*, H) must compute a rational multiple of P on a Zariski
dense open subset of H.

Proor. For each path of nodes n,, ..., n, which leads an input h € H to a yes
output node, we have the corresponding subset ¥,  , < H which outputs
on this path. There are countably many ¥, ,, each of which is either
contained in a hypersurface of H and, consequently, nowhere dense in H or
contains an open set of H. As H is not the union of countably many non-
where dense sets, at least one ¥, , must be open.

Say the path of nodes encounter / branch nodes and at each branch node
the composite polynomial rational function computed is f,/g,,i=1,..., . If
fiis not a multiple of P, then ¥, , must take the #0 branch. If f; is never
a multiple of P, then V, . has always taken the #0 branch, but then the
same is true for a neighborhood of ¥, , in C"and M has made an error,
which finishes the proof. The argument actually also shows that V, .,
must be open and dense in H.



- 40. Some Remarks on Bezout’s Theorem and Complexity Theory 453

Corollary 2. Any machine over C which solves the decision problem (#,,,,%), )
must compute a multiple of the resultant on Zariski dense open subsets'of ff,; .
where D = (d,,...,d,), and in particular for n-quadratic homogeneous pol ym;-
mials in n unknowns.

This corollary was independently proven by Steve Smale. He was consider-
ing the question of P # NP in various contexts. One context was machines
over the integers with input size the bit input size, cost the bit cost, and
branching over =0 or #0.

Let 7. denote the non-negative integers. I suggested that (Z, Z, ) is not in
P. Here is a proof worked out with Michael Ben-Or.

Proposition 4. (Z, Z,) is in NP but not in P for machines over Z branching on
#0 or =0 and with bit input size and bit cost.

Proor. First, to see that (Z, Z,) is in NP, note that any non-negative integer
is the sum of four squares. Now to see that the problem is not in P, we use
the following lemma:

Lemma 2. Let f e Z[t] be an integral polynomial with at least k distinct
integer roots. Suppose for some w € Z that f(w) # 0, then | f(w)| = ((k/2)H2.

PROOF. Let 7,, ..., 1, be distinct integral roots of f, and let Q = [ i, (t — 7).
Then f(f) = Q(t)P(t), where P(t) is an integral polynomial. Since P(w) # 0,
|P(w)| = 1, and, hence, | f(w)] = |Q(w)| = ((k/2)!)? since it is the product of k
distinct nonzero integers.

Since (k/2)! has more than k/2 bits, we see that at a branch node if k
elements of 2 take the =0 branch, then the cost of the computation is at
least k. Now if there is a polynomial cost machine, at each branch only
polynomial many inputs of size n may take the =0 branch which gives a
contradiction because 2" inputs must be eliminated by polynomially many
nodes.

Problem. Is this proposition still true if the cost is reduced to the number of
algebraic operations?

This problem is related to Problem 5.1 of [Blum-Shub-Smale]. Given the
integers Z, branching on >0 or <0, and bit input size, does the class of
polynomial cost decision problems P increase if the bit cost is reduced to the
number of algebraic operations? In this context, the class NP certainly gets
larger because it contains undecidable problems (Hilbert’s tenth). Because the
outputs are just 0 and 1, we might compute mod 2 which would make the
algebraic and bit cost comparable. The problem is at branching nodes where
inequalities are verified. A model problem is:
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For fixed k and ¢, give 2(k + ¢) positive integers.
i, ﬂ;,i= 1,...,k, bj,mj,j= I,...,{.
Is [T of > [)=a 5™

This problem is easily seen to be in P with cost the number of algebraic
operations since the powers can be taken by repeated squaring. The bit size
of the numbers, however, gets exponentially large in this procedure. Yet we
have the following surprising theorem.

Theorem 6. The decision problem, a;, n;, b;, m; positive integers, i =1, ..., k,
j=1,...,¢,and [[%; af > [[{=1 b is in P over Z with branching on >0 or
<0, bit input size, and bit cost.

Proor. We use Baker’s theorem [Baker, Theorem 3.1], and refer to [Lang,
Chapter XI, Theorem 1.1]. There is a constant B > 0 with the following
property. Let M = max; ;(a;, b;). Then either

k /
(Z nloga; — ) mlogh; =0
=1 =

or

k /
Y njloga; — ) mylogh;

i=1 =

~ Blk+og M)+ log log M

Thus, we need only compute

k £
Y nloga;, — Y, mjlogh
=1 j=1
to accuracy 0 (input size) **/*! to determine if it is positive, zero, or negative.
This entails computing a polynomial number of bits of the logs of the a; and
by. This can be done rather naively by dividing by a power of two and using
the Taylor series for the log near one, or by Newton’s method or more
sophisticatedly as in [Borwein and Borwein].

This theorem suggests the following naive problem.

Problem, Given an integral polynomial P in variables x; and variable ex-
ponents n, , is it always possible to determine if P =0, P > 0,or P<0in
polynomial bit cost in the bit input size of the x; and n;,?
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