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On the Work of Steve Smale on the
Theory of Computation

MICHAEL SHUB*

The theory of computation is the newest and longest segment of Steve Smale’s
mathematical career. It is still evolving and, thus, it is difficult to evaluate and
isolate the more important of Smale’s contributions. I think they will be as
important as his contributions to differential topology and dynamical sys-
tems. He has firmly grounded himself in the mathematics of practical algo-
rithms, Newton’s method, and the simplex method of linear programming,
inventing the tools and methodology for their analysis. With the experience
gained, he is laying foundations for the theory of computation which have a
unifying effect on the diverse subjects of numerical analysis, theoretical com-
puter scignce, abstract mathematics, and mathematical logic. I will try to
capture some of the points in this long-term project. Of course, the best thing
to do is to read Smale’s original papers; I have not done justice to any of
them.

Smale’s work on the theory of computation begins with economics [Smale,
1976]. Prices p = (p,...,p,) € R for £ commodities give rise to demand and
supply fl.*nctions D(p) and S(p). The excess demand function f(p) = D(p) —
S(p) € R | has as the ith coordinate the excess demand for the ith good at
prices p. A price equilibrium is a system of prices p for which f(p) = 0, that is,
supply equals demand.

:_ f:R, >R’
and the =problcm is to find a zero of f*. Given a C* function f: M - R"

defined on a domain M c R", Smale suggested using the “global Newton”
diﬂ“erentirl equation

| D) = ~ 4w

¥ Parliallj' supported by an NSF grant.

1 Actually, f is assumed to be scale invariant f(AP) = f(P) for 4> 0 so f may bc
restricted |to the unit sphere intersect R’, S.™'. Walras’ law is p* f(P)=0, so f is
tangent to $7”" and the problem is to find a zero of this vector field.
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FIGURE 1

where 4 is a real number depending on the sign of Det(Df(x)). The solution
curves of this equation through points x with f(x) # 0 are inverse images of
rays pointing to zero.

or what is the same, inverse images of points x € §*~* for the function
g:M — E—s"!

defined by g(x) = f(x)/| f(x)|| and where E = {x € M|f(x) = 0}. With the
right boundary conditions, the “global Newton” vector field is transverse to
the boundary and g is nonsingular on the boundary.

By Sard’s theorem, almost every value in $"7" is a regular value, and for
almost every m € M, g~*(g(m)) is a smooth curve. If M is compact, this curve
must lead to the set of zeros E.

Smale proved the existence of price equilibria this way. Differential equa-
tion solvers can then be used to locate these points. Smale pursued these
ideas with Hirsch in [Hirsch-Smale, 1979] where they suggested various ex-
plicit algorithms for solving f(x) = 0. In particular, their work included poly-
nomial mappings

f:C"—C™ (or R"— R")

which are proper and have nonvanishing Jacobian outside of a compact set.
. An interesting feature of these algorithms is that their natural starting
points are quite far from the zero set; for example, in the discussion of global

Newton above, they are in oM.

The global Newton differential equation had been considered previously
and independently by Branin without convergence results. The polynomial
system g: R? —» R? proposed by Brent,

gl(xth) = 4(xl + xl)':
ga(x1,%3) = 4(x; + x5) + (x; + X2)((x, — 2P +x3-1),

is illustrated in [Branin, 1972] and reproduced below. The curve |J| = 0is
Det(g) = 0. Note the region of closed orbits and nonconvergence which are
close to zero,
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FIGURE 2

Other algorithms for the location of pure equilibria were known. Scarf, in

particulat, had developed simplicial algorithms; see [Smale, 1976] for a dis-
cussion of this. Having competing methodologies to solve the problem led
Smale to|develop a framework in which to compare their efficiency. Smale’s
article “The Fundamental Theorem of Algebra and Complexity Theory”
[Smale, 19817 is a startling step forward. Consider the first three paragraphs
of the paper:
The main goal of this account is to show that a classical algorithm, Newton’s method,
with a standard modification, is a tractable method for finding a zero of a complex
polynomial. Here, by “tractable” I mean that the cost of finding a zero doesn’t grow
exponentiplly with the degree, in a certain statistical sense. This result, our main
theorem, Pves some theoretical explanation of why certain “fast” methods of equa-
tion solving are indeed fast. Also this work has the effect of helping bring the discrete
mathematics of complexity theory of computer science closer to classical calculus and
geometry.
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A second goal is to give the background of the various areas of mathematics, pure and
applied, which motivate and give the environment for our problem. These areas are
parts of (a) Algebra, the “Fundamental theorem of algebra”, (b) Numerical analysis,
(c) Economic equilibrium theory and (d) Complexity theory of computer sciencg,

An interesting feature of this tractability theorem is the apparent need for use of the
mathematics connected to the Bieberbach conjecture, elimination theory of algebraic
geometry, and the use of integral geometry.

The scope of the undertaking is very large and the terrain unclear. It was
the discrete theoretical computer scientists who had the most developed no-
tion of algorithm, of cost, and of complexity as a function of input size. For
them, the space of problems, complex polynomials of a given degree, so
natural for a mathematician is not natural because it is not discrete. From
another direction, numerical analysts have practical experience with root-
finding, algorithms which are fast and algorithms which are sure, algorithms
which are stable and those which are not. In [Smale, 1985], we see Smale
grappling again with these questions. First, there is the quote from von
Neumann quoted again in [Smale, 1990].

The theory of automata, of the digital, all or none type, as discussed up to now, is
certainly a chapter in formal logic. It would, therefore, seem that it will have to share
this unattractive property of formal logic. It will have to be from the mathematical
point of view, combinatorial rather analytical.

... a detailed, highly mathematical and more specifically analytical, theory of autom-
ata and of information is needed.

and Chapter 2, Section 6

6. What is an algorithm?

PROBLEM 11. What is the fastest way of finding a zero of a polynomial? This is a
kind of super-problem. I would expect contributions by several mathematicians rath-
er than a single solution. It will take a lot of thought even to find a good mathematical
formulation.

In some ways, one could compare this problem with showing the existence of a zero
of a polynomial. The concept of complex numbers had to be developed first. For
Problem 11, one must develop the concept of algorithm to deal with the kind of
mathematics involved. Consistent with the von Neumann statement quoted in the
introduction, my belief is that the Turing approach to algorithms is inadequate for
these purposes.

Although the definitions of such algorithms are not available at this time, my guess is
that some kind of continuous or differentiable machine would be involved. In so
much of the use of the digital computer. inputs are treated as real numbers and the
output is a continuous function of the input. Of course a continuous machine would

be an idealization of an actual machine, as is a Turing machine.

The definition of an algorithm should relate well to an actual program or flow-chart
of a numerical analyst. Perhaps one could use a Random Access Machine (RAM, see
Aho-Hopcraft-Ullman) and suppose that the registers could hold real numbers.
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T_hcn onr} might with some care expand the list of permissible operations. There are
pitfalls along the way and much thought is needed to do this right.

To be able to discuss the fastest algorithm, one has to have a definition of algorithm.
I have used the word algorithm throughout this paper, yet I have not said what an
algorithm is. Certainly the algorithms discussed here are not Turing machines; and to
force them into the Turing machine framework would be detrimental to their analysis.
It must be added that the idealizations I have suggested do not eliminate the study of
round-off error. Dealing with such loss of precision is a necessary part of the program.

Problem [1 is not a clear-cut problem for various reasons. Factors which could affect
the answer include dependence on the machine, whether one wants to solve one or
many problems, time taken to write the program, whether polynomials have large or
small degree, how the problem is presented, etc.

So in [Smale, 1981] he has launched into a discussion of the total cost of
an algorithm without a precise notion of cost or algorithm available; these
will come later! To have enough conviction that such a long-range project
will work out is not uncharacteristic of Smale.

When [Smale was awarded the Fields Medal in 1966 for his work in differ-

ential topology, René Thom wrote (translation my own):

.. Smale Eis a pioneer, who takes his risks with calm courage, in a completely unex-
plored domain, in a geometric jungle of inextricable richness he is the first to have
cleared a path and planted beacons. [Thom, 1966]

Returning to the 1981 paper, Smale restricted the class of functions for
which roots are to be found to complex polynomials of one variable and
degree d| normalized as f(z) = ) {-oa;z' with ¢;e C g, =1 and |a;| < 1 for
1 < i < d; call this space P,(1). For complex polynomials f, the Jacobian is
always >0, so global Newton can be taken as

B e D1
— .
8
FIGURE 3

Now the solution curve through z, is the branch through z, of the inverse of
image oflthe ray from f(z,) to 0, and because f is proper, it does lead to a zero
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of f with the exception of a finite number of rays which contain the critical
values of f. Incidentally, this argument proves the fundamental theorem of
algebra, To turn the proof into an algorithm, Smale considers the Euler
approximation to the solution of the differential equation, for h a positive
real,

Ni(f)(2) = z = hDf " (2)f(2).

When h = 1, this is Newton’s method; we denote this also by N(f). Newton’s
method gives quadratic convergence near simple zeros, so Smale defines an
approximate zero of f as a point where Newton’s method is converging
quadratically.

Definition. z, is an approximate zero for fiff |z, — z—,| < (2P A gy ),
where z; = N(f)z;-,. The goal becomes to find an approximate zero of f.

Smale uses x, = O as a starting point for his algorithm and then iterates
N,(f). The first main theorem using Lebesgue measure on Fy(1) in [Smale,
1981] is:

Main Theorem. There is a universal polynomial S(d, 1/u), and a function h =
h(d, 1) such that for degree d and p, 0 < p <1, the following is true with
probability 1 — p. Let xq = 0. Then x, = Ny(f)(x,-1) is well-defined for all
n > 0 and x, is an approximate zero for f where s = S(d, 1/u).

More specifically, we can say, if s = [100(d + 2)]°/u, then with probability 1 — 4, x;
is well-defined by the algorithm for suitable h and x, is an approximate zero of f.

Borrowing the notion of polynomial cost computation from computer sci-
ences, Smale has proven that approximate root-finding is “polynomial” in
the degree d and one over the probability of failure.

The theorem reflects Smale’s notion that fast algorithms fail sometimes (as
Newton’s method does) and are slow near where they fail, thus making a
statistical analysis appropriate.

The proof of the main theorem is very long involving all the ingredients
quoted above. Moreover, there are some outstanding questions on mean
value theorems for polynomials. Smale proves:

Theorem 1. Suppose f(z) is a complex polynomial with f(0) = 0 and '(0) # 0,
then
(a) there is a critical point © (i.e., f'(©) = 0) such that
1720 LSO _ s
- < 4
Ko OFf




28. On the Work of Steve Smale on the Theory of Computation 287

(b) thereis a critical point © with

/@) 1
1] 1)

!
Smale r#ises the problem [Smale, 1981]:
|

<4,

Problem

(a) Can the 4 in (a) of Theorem 1 be reduced, perhaps to 1?
(b) Can the 4 in (b) of Theorem 1 be reduced to 1, in fact, to 1 — 1/d?

I do not think there has been much progress on (a). There is some progress
on (b) by Tischler [1989].

It was these problems that got me involved in analyzing Newton’s method.
On one of my many trips to Berkeley, Steve was working on Theorem 1 for
his complexity analysis which was to become the 1981 paper. He asked me if
I could irove something like Theorem 1 above for some constant; in fact, he
thoughtlthe constant should be 1. I was able to see the first case of the
inequality (here my memory is a little different than Steve’s) for the second
derivatiye by applying Bieberbach’s estimate for a, to the inverse of f, which
must be defined and injective on a disc of radius at least the smallest modules
of a critical value. I told this to Steve and returned to New York. I had no
idea what he wanted it for. The next year I was in Berkeley on a sabbatical,
[Smale, 1981] was already written and Steve was teaching a course on it,
which I took. Steve and I began collaborating during the semester; our work
was finally published in [Shub-Smale, 1985] and [Shub-Smale, 1986a]. We
extended the analysis that Steve did to higher-order methods which we called
generalized Euler iterations. It was our impression at the time that using
methods of order Ind for d degree polynomials might be the most efficient
among ‘Wincremental” algorithms. We gave a lower bound estimate for the
area of the approximate zeros in P,(1) across the unit disc which was later
improve‘h; see [Friedman, 1990; Smale, 1986]. By choosing starting points far
from the|roots, we were able to improve the cost estimates of [Smale, 1981]
for finding approximate zeros. We also studied the problem of finding small
values of polynomials. Examining the foliation of the complex plane C by
inverse images of rays for a polynomial f, we found that the inverse images
of rays with small angle with respect to critical rays occupy about the same
proportipn (i.e., angle) of a large circle. For algorithms of Newton—Euler type

we proved:

Theorem A. For each f, ¢, there is a Newton—Euler Algorithm which terminates
with probability 1 and produces a z with |f(z)| < e. The average number of
iteration is less than O(d + |loge|).
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Theorem B. There is a Newton—Euler algorithm which produces an approxi-
mate zero for f € Py(1) with probability 1 and average number of iterations
O(dlogd).

Theorem B improved the main theorem in [Smale, 1981] in the sense that
the estimate given there does not produce a finite average cost algorithm,
Theorem A was improved in [Smale, 1985a; Kim, 1988a; and [Renegar,
1987b], where |loge| is replaced by log|loge|. Also Schonhage and others
have zero finding algorithms of different flavor. Most recently, Neff [1990]
has made a good contribution. Renegar [1987a] proved and an n-variable
analogue of Smale’s 1981 main theorem, and Canny [1988, 1990], Renegar
[1989], and others have studied more algebraic approaches to the n-variable
root-finding problem. Recently, Sutherland [1989] has an interesting result
about the convergence of Newton’s method itself on large circles.

Already in [Smale, 1981], the average case analysis of the Dantzig’s sim-
plex method for linear programming is cited as Problem 6. Consonant with
Smale’s perspective that fast algorithms are not always fast the simplex meth-
od was known to be a worst-case exponential but practically highly efficient.
The linear programming problem (LPP) is: Given m x n matrices A and
vectors b € R™, ¢ e R", determine if the function ¢x has a minimum on Ax =2 b
and x > 0. If it does, find a point x which minimizes it.

Taking a Gaussian distribution on R™ x R™ x R" and letting p(m,n) be
the number of steps of Dantzig’s self-dual method to solve LPP, Smale
[1983a] proves that p is sublinear in the number of variables; see also [Smale,
1983b].

Theorem 2. Let p be a positive integer. Then depending on p and m there is a
positive constant c,, such that for all n

p(m,n) < c,,n'.

In [Smale, 1985a] which won the Chauvenet Prize of the Mathematical
Association of America in 1988, Smale confronts some new issues. First is the
problem of ill-posed problems. In the fall of 1983, Lenore Blum was visiting
New York and we studied the problem of the average loss of precision (or
significance) in evaluating rational functions of real variables. Let & be the
input accuracy necessary for desired output accuracy é. Then |Iné| — |Ing| is
the loss of precision (or significance for relative accuracy). We showed this
loss was tractable on the average [Blum—Shub, 1986]; Smale focused on
linear algebra. There the condition number, K, = [ 4] [A71], of a matrix A
measures the worst-case relative error of the solution x of the equation Ax =
b divided by the relative error of the input b. Thus, log K, measures the
worst-case loss of significance. Smale wrote an explicit integral for the aver-



28. On the Work of Steve Smale on the Theory of Computationi 280
age of log K, and Ocneanu, Kostlan, Renegar, and othets made progress
toward its estimation. Finally, Edelman [1988] has shown that up to an
additive constant the average is Inn. This result helps explain the success
of fixed precision computers in solving fairly large linear systems. Demmel
[1987a; 1987b] interprets the condition number as the inverse of the distance
to the determinant zero variety, i.e., the singular matrices. Thus, there is an
analogy between the success of fast algorithms and the intrinsic difficulty of
robust computation. They are both measured in terms of distance to a sub-
variety of bad problems. This theme surfaces again in Smale’s work, although
the precise relationship remains somewhat mysterious. |

The same 1985 paper dealt with two other problems. The efﬁc1ency of
approximation of integrals: I will not say much about this except that Smale
showed that the trapezoid rule is more efficient than Riemann integraiion on
the average for fixed error on #* functions, similarly Simpson’s rule is more
efficient for #? functions. Newton’s method is an example of a purel‘£ itera-
tive algorithm for solving polynomial equations. A purely iterative algorithm
is given as a rational endomorphism of the Riemann sphere which depends
rationally on the coefficients of the polynomials (of fixed degree d) which are
to be solved. A purely iterative algorithm is generally convergent if for almost
all (f, x) iterating the algorithm on Xx, the iterates converge to a root of f.
Smale [1986] conjectures that there are no purely iterative generally donver-
gent algorithms for general . McMullen [1988] proved this for d ; 4 and
produced a generally convergent iterative algorithm for d = 3. For|d = 2,
Newton’s method is generally convergent. Doyle and McMullen [1979] have

|
gone on to add to this examining d = 5 in terms of a Galois theory ofpurely
iterative algorithms. In contrast, Steve and I showed in [Shub-Smale,
1986b] that if complex conjugation is allowed, then there are generally con-
vergent purely iterative algorithms even for systems of n complex polyno-
mials of fixed degree in n variables.

Smale has devoted a lot of effort to understanding Newton’s method These
are recounted in [Smale, 1986], but let me mention a few of the results of this
paper and [Smale, 1985b]. ‘

To generalize the one-variable theory, Smale considers the zero-ﬁndmg
problem for f: E — F, where f is an analytic map of Banach spaces. Newton’s
method is the same z' = N(f)z = z — Df(z)"*f(z), and the definition .of ap-
proximate zero is the same. |

Definition. z, is an approximate zero for f iff ||z, —z,_, | <(1 22t Ilz,] —Zo|,
where z, = N(f)z,,. ‘

Let B(z,f) = B(z) = |Df(z)"*f(2)|, i.c, B is the norm of the Ncwtop step
2 — 2. Let 3(f,2) = 7(2) = Supy, I(1/KDDS) DY ()| ¥ and let a(s,f) =
B(z, /)y(z, f); from [Smale, 1985a].
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Theorem A. There is a naturally defined number a, approximately equal to
0.130707 such that if a(z, f) < oy then z is an approximate zero of f.

Thus, we have a test for approximate zeros in terms of data computed at
the point z alone, and which is, hence, quite different from Kantorovich-type
estimates for the domain of convergence of Newton’s method that require
estimates of derivatives on a neighborhood, and it is very useful. Smale uses
it to geét an estimate on global Newton, Given f: E — F and z, € E, suppose
Df ~*(z) is defined on the whole ray tf(z,) for 0 < t < 1, so that we may invert

the ray. Call the inverse image o. Let M(z,, f) = max. ., «(z, f)/|| f(z)] and
if o is not defined.

Theorem 3 [Smale, 1986] (The Speed of a Global Newton Method). There
exist (small) positive constants ¢ real; ¢ an integer with this property. Let f:
E - F be analytic, z, € E with M(z,, f) < 0. Suppose n is an integer

n>clflzo))IM(zo.f) A=1/n

Let w; = (1 — iA)f(zo), i =0, ..., n. Then, inductively, z; = Nf_,, (z;-,) is well-
defined and z, is an approximate zero of f.

Renegar and I [Renegar—Shub, 1992] use a version of these theorems to
give a simplified and unified proof of the convergence properties of several of
the recent polynomial time linear programming algorithms. For one vari-
able, Kim [1988a] also considered the algorithms of Theorem 3.

Smale [1986] also estimates y(f,z) for a polynomial f in terms of the
norms of the coefficients, the norm of z, and the norm of the derivative of f
at z. With this estimate, he was able to prove:

Theorem 4 [Smale, 1986]. The average area of approximate zeros for f € Fy(1)
is greater than a constant ¢ > 0, where c is independent of d.

Smale [1986] also dealt with a regularized version of the linear program-
ming problem which I will not consider here. Smale [1985a] asserts:

A study of total cost for algorithms of numerical analysis yields side benefits. It forces
one to consider global questions of speed of convergence, and in so doing one intro-
duges topology and geometry in a natural way into that subject. I believe that this will
have a tendency to systematize numerical analysis. This development could turn out
to be comparable to the systematizing effect of dynamical systems on the subject of
ordinary differential equations over the last twenty-five years.

We have already seen geometry. In [Smale, 19871, he turns his attention to
topology. To begin with, Smale defines a (uniform) algorithm for a problem,
An algorithm is a rooted tree, the root at the top for input. Leaves are at the
bottom for output. There is an input space .# a state space &, and an output
space @ which are finite-dimensional real vector spaces.
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m 9: & = & rational
Pr¥.m polynomial

These algorithms are also called tame machines; they are limited, for exam-
ple, by the fact that there are no loops.
A problem is a subset X < .# x (] Let S: X > Y be the restriction of the

An example of a problem is the g-all root problem for f ¢ F,, the space of
complex univariate monic polynomials.

X,c P x Ci= {(ﬂ(al,--—,ad))lf=}j(2~r;)and %~nl<s) and

lem f: X > v, jet K(f) be the kernel of f*; H*(Y) » H¥*(X) and K(f)=
{ye H¥Y)|f *(y) = 0}, where H*(Y) is the singular cohomology ring of Y.
The cup length of K (f)is the maximum number of element y,, ..., v of K(f)
s.t. the cup product MY Uy # 0. Smale [ 1987] proves:

Theorem 5. Le; f: x — y be a problem. The topological complexity of f is
bigger than or equal to the cup length of K(f).
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He applied this result to prove, via a complex algebraic topology computa-
tion, the main theorem of Smale [1987].

Theorem 6. There is a e(d) > 0 such that for all 0 < & < &(d) the topological
complexity of the e-all root problem for P, is greater than (log, d)*?.

This result has been vastly improved by Vasiliev, [1988]. Levine [1989]
has also worked on n-dimensional analogues.

In the fall of 1987, Lenore Blum and Steve Smale were visiting at Watson.
Steve began extending his model of computation from tame machines to
allow loops and to work over ordered rings. Soon all three of us were
involved.

First, we specify a ring, the functions we compute on the ring, and the
branching structure. Our functions are polynomial or rational, involving only
a fixed finite number of variables, and having a finite number of nontrivial
coordinates. We branch on #0 or =0 and >0 or <0. Examples are:

1. the integers Z with polynomial functions (i.e., with +, —, x) and branch-
ingon >0 or <0;

2. the integers Z with polynomial functions and branching on #0 or =0;

3. the reals R with rational functions and branching on >0 or <0;

4. the complexes C with rational functions and branching on #0 or =0.

Frequently, we suppress the functions or the branching structure. If we dis-
cuss machines over Z, R, or C without further qualification, we mean 1, 3,
and 4, respectively.

Our machines now are finite-directed graphs with one input node, compu-
tation nodes, branch nodes, output nodes, and a certain fifth node. The input
and output spaces are the infinite direct product of the ring with itself, R,
and the state space is Z, x Z, x R®. All computations only involve and
affect a finite number of the coordinates of R™. The two Z, s are like counters
and a fifth node will copy the contents of the jth coordinate to the ith of R®
if the first two coordinates are (i, j).

This is all worked out formally in [Blum-—-Shub-Smale, 1989] except that
there we always assume the ring ordered and branching done on =0 or
<0.

By doing things in an integrated way, we hope that the various settings will
illuminate one another, that the theory of recursive functions and complexity
over R or C, for example, will benefit from the more developed discrete
theory, On the other hand, we do not want to be so general that we lose the
basic contacts with algebra and the geometry and topology of the reals and
complexes.

A simple example of a machine over R is given by the iterates of the

complex polynomial g(z) = z* + 1.
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input ze ¢

compute g(z) and replace z by 4(z)

2% < 4

This machine halts on the basin of infinity and fajls to halt on its comple-
ment, the Julia set.

The computable functions over the integers are the usual computable func.
tions, while over the reals, most Julia sets are not halting sets, Universal
machines are constructed over any ring,

To study the complexity of a problem, two additional pieces of data are
required: the input size of the problem and the cost of the computation,

The size of an elemen is the length plus the height. The length of an element
is the least k such that x = (xl,...,x,‘_l,O,...,O,...] and x; = Ofori> k. The
height of x = 5 SRS TE | height x, over all ;. Now we need to define

Thus, we have various settings in which to discuss complexity. I list a
few.
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Inp@t size Ring Functions Branching Cost

1) bit | z polynomial >0o0r <0 bit
2)bit z polynomial >0or <0 algebraic
3) bit | Vi polynomial =0or #0 bit
4) bit | Z polynomial =0or #0 algebraic
5) dimension R rational =0or <0 algebraic
6) logarithmic R rational =>0or <0 logarithmic
7) dim¢nsion C rational #0or =0 algebraic
8) logarithmic C rational #0or =0 logarithmic
9) bit Z linear #0o0r =0 bit

10) dimension RorC linear =0or #0 algebraic

Given a problem X < # x 0, f: X - Y, we say that f is in class P if there
is a machine M which solves the problem, a real constant ¢ > 0, and a posi-
tive integer q such that for input y € Y, Cy(y) < c(size y)"

A special class of problems are decision problems (Y, Y,.): Given a set of
inputs Yand a subset Y,,, determine if y € Y is in Y. '

A decision problem (Y, ¥,.,) is in NP if therc are constants ¢ >0, ge Z,
and a machine M with input space # x #’ such that on inputs (y,y) €
Y &7

(a) M outputs 1 (yes) or 0 (no);

(b) M outputs 1 only if y € ¥

(c) if y € ¥, then there is a y'e S’ such that M outputs 1 on (y,)’) and
Cu(3,y') < clsize y).

This is the formalism of NP completeness theory (see [Garey—Johnson,
1979]). In analogy with the standard problem in setting (1), one may ask for
decision problems:

Problem. Does P # NP?

A decision problem (Y, Y,,,) is called NP complete if given any other deci-
sion problem (Y, ¥,.,) there is a machine M which maps (Y', Y,.) to (¥, Y,.,)
faithfully (i.c, M takes an input y' € Y’ into X, iff y'e Y,..) and 3¢ >0,
g € Z.,. such that Cy(y’) < c(size y')* for ally'e Y.

Thus, P # NP iff any NP-complete problem is not in P.

For each complexity setting (1)—(10) above, we may consider the existence
of NP complete problems and the question: Is P # NP? In [Blum—Shub-
Smale, 1989], we mainly considered case (5) which we simply refer to as over
R. Similarly, the standard setting (1) is called over Z and (7) is called over C.
The next theorem is proved in [Blum-Shub—Smale, 1989] over R, but the
arguments apply more generally; so I state it over C as well.

Theorelﬁ 7. (1) Let 4-satisfiability be the decision problem (F, #,;) where F is
the set of all 4th degree polynomials f: R" » R for all ne Z, and %, are
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those f such that 3x € R" with f(x) = 0. Then 4-satisfiability is NP complete
over R.

(2) Let Hilbert Nullstellensatz (HN) be the decision problem (¥, #,.;) where
F is all sets of k polynomials of arbitrary degree

fiC'=C, i=1,...,k

forallnand ke Z,. and %, are those for which the algebraic set they define
is nonempty, i.e., 3x € C" s.t. fi(x) = 0,Vi = 1, ..., k, or what is the same set of
those for which 1 is not in the ideal generated. Then HN is NP-complete over
C.

The & in HN could also be replaced by systems of degree <d whered = 2.

In Rio de Janeiro, last January, Smale discussed the problem of the exis-
tence of N P-complete problems and the question P # NP in various settings.
Megiddo [1993] proves a general N P-completeness theorem. The question
P # NP does not make much sense in all of our settings because in settings
(2) and (4), there are problems in NP which are not even decidable. In Rio,
Smale proved that P # NP in settings (9) and (10) and presented some ideas
on (3), (6), and (8). In [Shub, 1993], I give a simple argument for setting (3).

To extend the notion of the polynomial time algorithm to the numerical
analysis context requires incorporating approximate solutions and round-off
error into the problem. It is not exactly clear in all cases how to do this.
A beginning was made in [Blum-Shub—Smale, 1989; Smale, 1990] went
further.

In [Blum—Shub-Smale, 1989, we consider ¢ as a variable and the effect of
scaling on approximate solutions. We take as a new size the logarithmic size
+|Inel, and as cost function the algebraic cost. In [Smale, 1990], the round-
off error is incorporated and probabilistic algorithms. For round-off error,
the size is taken as dimension +In|e| + In W, where W is a weight which
might reflect the logarithmic size and the inverse of the distance to the ill-
posed problems. The cost reflects the admissible round-off error and the
polynomial class is called numerically stable. Whereas the notion of numeri-
cal stability is good for computations, it does not seem good for algorithms
because according to the definition there is no numerically stable algorithm
for the square root. So here I will make another attempt which is slightly
different in the definition of admissible error and uses a different cost func-
tion. The computation of a machine M on input y is described by the com-
puting endomorphism (n;, x;) = H,(n;_y,x;_, ), where essentially (n;_,, Xi_y) 18
the (node, state) at time i — 1 and (n;, ;) is the (next node, next state) with
the further conditions that n, is the input node, xo = y, i1,y is an output
node, and M output X1 -

We will say that the sequence (m;,x;) is 2 3-pseudo-computation if n, is the
input node, and for i = 1 |(n;, x;) — Hpg(my—y, %;-1)| < 0.

Now given a problem f: X — Y, a machine M, an input ye Y, and an
¢ > 0, then & is an admissible error (round-off and input error) for (g, y, M) if for
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any d-pseudo-computation x; with |y — xo| < 8 there is a first time I such
that n; is an output node and x; is within ¢ of a solution to problem instance
y,i.e., 3x € f~1(y) such that the distance from x; to x is less than or equal to ¢.

Let 8(c,y) = (¢, y, M) be the maximum admissible round-off error, The
round-off cost

\Cele,y)= min max over §-pseudo-computations of
i 0 <d=<dle,y)

Ix (max logarithmic height (x;) + |log™ d(e, y)l),
| O«<izl
where lbg“ is min(log, 0).
The input size of input (g, y) as in [Smale, 1990] is taken as

S(e, y) = dimension + log |¢] + log W,

where W is a weight representing the size of y, the inverse of the distance of y
to the ill-posed problems, or something like the condition of the problem
instance y; see [Smale, 1990] for a discussion of this. The polynomial class
are those problems for which there are algorithms (machines) for which 3¢ >
0 and ge Z, such that

Crle,y) < cS(e, ).

For univariate polynomial root-finding, Myong-Hi Kim has found such
algorithms [Kim, 1988b]. When round-off error is not taken into account,
|log|log(s)|| is perhaps more appropriate than |loge|; see [Renegar, 1987b].
The role of the distance to the ill-posed problems is less clear, although size
of coefficients must play a role because of scaling.

The work of Smale in conjunction with Blum [Blum-Smale, 1993] on
Godels theorem is in this volume so I will not comment on it. Also to be
mentioned are the expository articles [Smale, 1988; 1989] where some of
Smale’s philosophy on real number machines are exposited for a general
audience.

Appendix: Personal Reminiscences by Mike Shub

I first met Steve Smale during the 1961-62 academic year. I was a sophomore
at Columbia College. Some of my older roommates had a copy of one of
Steve’s papers on structural stability and they couldn’t make out some of the
subtleties of the definition. I think it had to do with epsilons and deltas.
Somehow they put me up to going to see Steve and asking about it. Steve
answered my question rapidly and succinctly but at a depth I didn’t even
know existed. Apparently I had phrased my clementary question in terms
close to problems he was thinking about. He must have thought me quite
presumptuous. I am still frequently shocked when Steve answers some ques-
tion of mine or a colloquium question at a depth I didn’t imagine.
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The next year my friends advised me to try to take Steve’s graduate course
in differential topology since he was a famous topologist who had proven a
great theorem. In those days Columbia College didn’t have much of an un-
dergraduate mathematics curriculum. Many math majors vied in taking gra-
duate courses which we were frequently hopelessly unprepared for. I enrolled
for Steve’s course. The very first day, he arrived and announced that the
course would be about infinite-dimensional differential topology because
that was where the most interesting work was to be done. In the class the first
day was Sammy Eilenberg and other luminaries of the Columbia math de-
partment. Steve began by defining the derivative in Banach space. He didn’t
quite get it right, and the class degenerated as various of the luminaries
shouted out suggested corrections. I ran out and bought Lang’s infinite-
dimensional Introduction to Differential Topology downtown at the publish-
er’s office (it wasn’t in the bookstores yet), and began struggling with Lang
and Ralph Abraham’s course notes which were trailing the lectures. I was
always behind, but some of the seniors could follow. Sometimes as I was
sitting through a lecture which I couldn’t understand I broke into giggles as
Steve would get confused at the blackboard only to be saved by an under-
graduate. One day, Serge Lang took David Frank who was also enrolled in
Steve’s course and me to lunch. He explained that while the undergraduates
were locally correct, Steve was almost always locally wrong but globally
correct. Actually, in the many courses I have taken from Steve since I haven’t
noticed so many local errors, but Serge’s hyperbole was comforting at the
time. Steve left Columbia after the spring semester 1964 for Berkeley. David
Frank and I decided to go to Berkeley for graduate school. Steve and Clara
offered us their car to drive across the country. David and Kathy Simon were
getting married. So the three of us first drove to Pittsburgh for their wedding
and then on to California. Beth Pessen and I got married that September.

The fall semester at Berkeley that year was dominated by the Free Speech
Movement. David, Kathy, Beth, and I were loyal foot soldiers in the move-
ment. Steve Smale and Moe Hirsch were prominent faculty supporters. The
Free Speech Movement had a very good effect on faculty—student relations
in general on the Berkeley campus. The faculty and students were thrown
together and made common cause on a political matter where they were
more equals than in academic disciplines. The faculty became more aware of
student concerns and reached out to accommodate a spirit of reform and
even revolution. David, Kathy, Beth, and I were arrested in Sproul Hall.
David and T were, I believe, the only math graduate students among the
800 or so students arrested there on December 8. David was taken to the
Berkeley jail. I to Santa Rita. Steve actually went down to the Berkeley jail
and bailed David out. I was released early the next morning when the faculty
raised the funds to bail us out en masse.

That spring Steve was co-chairman of the Viet Nam Day Committee with

Jerry Rubin. I was on the steering committee. Sometime that year I remem-
ber Steve telling Charles Pugh that he had proven that structurally stable
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systems were not dense. I was amazed by his ability to do research in the
midst of all the turmoil. Beth and I were frequently at Steve and Clara’s for
dinnersiand parties that year and the next, and they were sometimes at ours.
The last one that I remember was in our house shortly before Steve and Clara
left for|Europe in the summer of 1966. I remember telling Steve that I
thought a teach-in should be organized at the International Congress of
Mathematicians in Moscow that year. Given what actually happened on the
steps of{ Moscow University as Steve recounts it, a teach-in in 1966 was quite
far-fetched. By the spring of 1966 I had already become Steve’s graduate
student. The initial problem, which was quickly done, was to prove the
Kupka+Smale theorem for endomorphisms. I used to stop by at Steve’s
office almost daily to say hello, and tell him anything new or ask questions.
He was{always happy to see me and to hear anything new. But he wasn’t too
interested in technical details or vague ideas. When he started biting his
lower lip, I knew it was time to go. On one of these visits I told Steve that [
thought that the squaring map on the circle was structurally stable. Thus, the
more extensive part of my thesis research began. Steve was always helpful
and encouraging, and good about the big picture. I remember some advice
which took place in strange circumstances. Once we encountered each other
running in different directions as the police were breaking up a demonstra-
tion on Telegraph Avenue. Steve stopped for a moment and said that he
understood why expanding maps were stable; they were contracting. I never
found out what he meant as we had to start running again almost immedi-
ately. Another time, we were in the Greek Theater where some sort of Viet-
nam War protest was taking place; in the midst of watching events on the
stage, Steve asked me if I could prove the expanding map conjecture if I knew
the fundamental group had a nilpotent subgroup of finite index. I already
knew how to do it if the groups was nilpotent.

Those years in Berkeley were heady days not only for politics but for
dynamical systems. Steve returned from infinite dumensions to dynamical
systems theory. After the nondensity of structurally stable systems, he proved
the omega stability theorem. He was writing his 1967 Bulletin paper which
was a distillation and amplification of his previous work. The paper is a
major restructuring of ordinary differential equations from the point of view
of one of the leading topologists of the time. Steve’s enthusiasm and the scope
of his vision created a large group working on dynamics. Charles Pugh
joined the faculty at Berkeley in 1964. Moe Hirsch got involved in dynamics,
partly he has claimed because Steve went on leave and Steve’s students came
around to talk to Moe. Jacob Palis, Nancy Kopell, and I were the first bunch.
There was enough interesting work for all of us and plenty more. Some of it
was important for Steve’s own work as well. In 1969, I was sharing an office
with Steve at Warwick during the dynamical system year. I had been puzzled
by a certain aspect of the stable manifold theorem for hyperbolic sets on and
off for two years. Finally, I could put my finger on my objection. A technical
point in the general theorem was not correct and the omega stability theorem
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depended on it. Steve tried to fill the gap for a while without success. A few
days lat.er, we were in our office and Steve was calmly sitting and working on
somethmg else. I asked him how come. He said he had been asking us guys
to prove the theorem for some years and that we kept saying that we could.
A little later that summer, Charlie, Jacob, Moe, and I indeed did prove a
version which was correct and all that Steve needed.

Steve i¢ always conscious of what he is doing and evaluating its position
within s¢ience. He is willing to undertake enormous projects over the long
term on subjects he finds important. He starts out full of energy and convic-
tion that he will do something important and perhaps a bit naively, but he is
extremely flexible and learns rapidly along the way. Partly, learning proceeds
from talking to people a lot and taking what they say very seriously. Partly,
it comes from going to the library a lot. His time in the library and confidence
that he can learn what he needs to there remind me of the story I remember
(I hope correctly) about Steve’s education in a one-room schoolhouse where
he looked up how to solve linear equations in the encyclopedia. By the time
Steve’s papers are finally written, they tend to be so clear and well-organized
that it is difficult to detect the enormous effort that went into them. I have
been partly involved in Steve’s project on the theory of computation, and
Steve and I have written a few joint papers by now. In 1981 while we were
working on polynomial root-finding, we got a bit competitive as is both our
wonts. Steve always works very hard. But I was lucky to be on sabbatical
while he had to teach, so I could (barely) hold my own.

Over the years, my friendship with Steve has deepened. Recently Steve,
Clara, Beate, and I were on our terrace in New York having a drink. Beate
and I have been married for two years now. Steve described his plans for his
photography. During the three days Steve was in New York to give a lecture,
he also scoured the city looking for the perfect photography paper. “You see,
Beate,” 1 said, “Steve is a man of no small ambitions” and, I should have
added, successes. I think that is true and marvellous. Yet Steve is gentle,
direct, unpretentious, and honest. His views are frequently novel and re-
freshing from mathematics to movies and politics. His reactions personally
and politically have always been sympathetic and on the side of basic human
rights and decency, as long as I've known him from the Free Speech Move-
ment and Vietnam protests until now. I have great admiration, respect, and
affection for Steve and feel very lucky to have been his student and to be his

colleague and friend.
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