On the Entropy Conjecture: a report on conversations among R. Bowen, M. Hirsch, A. Manning, C. Pugh, B. Sanderson, M. Shub and R. Williams.

recorded by

Charles C. Pugh.

The topological entropy of a map $f: M \to M$, h_f , measures how much f mixes up the point set topology of M while $f_*: H_*(M; \mathbb{R}) \supset \mathbb{R}$ measures how much f mixes up the algebraic topology of M. For the past few years it has seemed likely that h_f dominates f_* . Precisely Entropy Conjecture. If M is compact and f is any diffeomorphism then $\lambda_f \leq h_f$ where λ_f is the logarithm of the largest modulus of the eigenvalues of f_* ; i.e., $\exp(\lambda_f)$ = the spectral radius of f_* .

There is a fair amount of evidence in favour of this conjecture. For example, those diffeomorphisms for which it holds form a $\,{}^{\rm C}$ -dense set in Diff(M) [see 7]. It holds for Anosov diffeomorphisms and for all known structurally stable diffeomorphisms [8]. Finally, Anthony Manning has proved it for all homeomorphisms if M has dimension \leq 3 [6]. Besides, he proved that h_f is <u>always</u> $\geq \lambda_{1f}$ = the log of the spectral radius of $f_* \mid H_1(M; \mathbb{R})$. Here we point out that the Entropy Conjecture fails for some homeomorphisms of high dimensional manifolds, and that H₁ cannot be replaced by H₂ in Manning's Theorem. Theorem. There exists a homeomorphism f of some smooth M⁸ with $0 = h_f < \lambda_f$. In fact $f_* \mid H_2(M; \mathbb{R})$ has a real eigenvalue > 1. Proof. Let A be an Anosov diffeomorphism of the 2 - torus, On $\mathrm{H}_1(\mathrm{T}^2)$, A_* has an eigenvalue $\mu > 1$ so $\lambda_A > 0$. g: [-1, 1] \rightarrow [-1, 1] be a monotone homeomorphism fixing only \pm 1 and having a source at -1, and a sink at +1. Let K be the twopoint suspension of T^2 , $K = T^2 \times [-1, 1]$ with $T^2 \times \{\pm 1\}$ pinched to points P_+ and define $B: K \to K$ by

B is a homeomorphism whose nonwandering set, $\Omega(B)$, is exactly the two "poles" P_{\pm} . Therefore, the topological entropy of B is zero [1]. On homology, B_{\star} is just A_{\star} with the dimensions increased by 1. Hence $\lambda_B>0$.

Since K is not a manifold, we are not finished. Let $i: K \to \mathbb{R}^8$ be a PL - embedding. Any two PL - embeddings of K in \mathbb{R}^4 are equivalent by an ambient PL - homeomorphism of \mathbb{R}^8 (see [4] and [5], actually \mathbb{R}^6 would suffice for this) so there exists \overline{B} making

$$\begin{array}{ccc}
K & \xrightarrow{i} & \mathbb{R}^8 \\
B \downarrow & & \downarrow \overline{B} \\
K & \xrightarrow{i} & \mathbb{R}^8
\end{array}$$

commute. Let N be the star neighbourhood of iK in the second barycentric subdivision of a triangulation of \mathbb{R}^8 which includes iK. Then N and $\overline{B}N$ are regular neighbourhoods of K. Any two such are PL - equivalent [3], so there is a PL - homeomorphism $h: \overline{B}N \to N$ fixing all points of K. The composition $h \cdot \overline{B}$ is a homeomorphism $C: N \to N$ extending B to N.

Take two copies of (N, K), say (N_-, K_-) and (N_+, K_+) . Identify them across ∂N , glueing by the identity map. This produces a compact combinatorial 8 - manifold M containing the compact set $L = K_- \cup K_+$. By [3], M has a compatible smooth structure. On M there is a homeomorphism E which is just C on each copy of N. To make the sought-after f, we shall compose E with a deformation D of M which "dominates" E.

In Lemma 2.3 of [2], Moe Hirsch shows that there is a transverse field across ∂N . In fact, through each point $x \in \partial N$ he finds a unique segment in N from x to $y \in K$. This gives a PL - surjection R: $[-1, 1] \times \partial N \to M$ such that

 $R \mid (-1, 1) \times \partial N \qquad \text{is a homeomorphism onto} \quad M - L$ $R \mid \{0\} \times \partial N \qquad \text{is the inclusion} \quad \partial N \hookrightarrow M$ $R \mid \{\pm 1\} \times \partial N \qquad \text{is a surjection to} \quad K_{\pm} \qquad .$

Lift E to (-1, 1) × ∂N by R, $\overline{E} = R^{-1} \circ E \circ R$, and define $e(t) = \inf{\{\overline{E}_1(t, w) ; w \in \partial N\}} -1 < t < 1$

where \overline{E} = $(\overline{E}_1, \overline{E}_2)$ respecting $\mathbb{R} \times \partial \mathbb{N}$. Since E is a homeomorphism which leaves $L = K_- \cup K_+$ invariant, it is clear that -1 < e(t) < 1, $e(t) \to \pm 1$ as $t \to \pm 1$, and that e is continuous. Let τ : $[-1, 1] \to [-1, 1]$ be any homeomorphism < e

$$\tau(t) < e(t)$$
 -1 < t < 1.

Consider

 $\overline{D}: [-1,\ 1] \times \partial N \quad \to \quad [-1,\ 1] \times \partial N \quad (t,\ w) \quad \mapsto (\tau(t),\ w)$ which covers the homeomorphism $D:M \to M$. The composition $\overline{D} \circ \overline{E}$ has the property

$$\overline{D}_{1} \circ \overline{E}(t, w) = \tau \circ \overline{E}_{1}(t, w) \ge \tau \circ e(t) > t$$

for -1 < t < 1 and $\overline{D} = (\overline{D}_1, \overline{D}_2)$ respecting $\mathbb{R} \times \partial \mathbb{N}$. Hence $f = D \bullet E$ has the property that

$$f^{n}(x) \rightarrow K_{+} \text{ as } n \rightarrow + \infty \qquad x \in M - L$$
.

Therefore $\Omega(f) \subset L = K_- \cup K_+$ and since $f \mid K_+$ is just B, $\Omega(f)$ is finite. Therefore f has zero entropy [1]. In $H_*(T^2; \mathbb{R})$, A_* sends some non-zero 1-cycle a onto some multiple $\mu a, \mu > 1$, and B_* sends its suspension, b $\in H_*(K; \mathbb{R})$, to the multiple μb .

Think of b as a 2-cycle lying in K_+ . We claim that b $\neq 0$ in $H_*(M; \mathbb{R})$. Suppose b bounds some 3-chain c in M. Since M is smooth, we can assume c is transverse to K_- . Since c and K_- have total dimension < 7, this means c $\cap K_- = \emptyset$. But $M - K_-$ retracts to K_+ , so

b = ac in $M - K_{\underline{}} \implies b = 0$ in $H_*(K_+)$

a contradiction. Thus, $f_*(b) = B_*(b) = \mu b$ for some $\mu > 1$ and

non-zero b \in $\Pi_*(M;\mathbb{R})$. Since f_* has this eigenvalue $\mu > 1$, the log of its spectral radius, λ_f , is > 1, completing the proof of our theorem. Remark 1. The construction of f can be done in the PL category. For A, g, h, R exist as PL maps, so B, C, E, \overline{E} are PL. Near $t=\pm 1$, e(t) measures how sharply E propels points away from K_+ and toward K_- . Since E is PL, e is differentiable at $t=\pm 1$, and $0 < e'(\pm 1) < \infty$. Hence τ , \overline{D} , D, and f exist as PL maps. Remark 2. f has only four periodic points and yet $\sum_{i=0}^{8} (-1)^i \operatorname{trace} f_{*i}^n \to \infty$ as $n \to \infty$. Thus by the Lefschetz Trace

 $\sum_{i=0}^{8} (-1)^{i} \operatorname{trace} \ f_{*i}^{n} \to \infty \quad \text{as} \quad n \to \infty \quad \text{Thus by the Lefschetz Trace}$ Formula, f provides an example of an isolated fixed point p of a PL homeomorphism with the property that

Index(f^n at p) $\rightarrow \infty$ as $n \rightarrow \infty$.

Moreover, there is no C^1 g homologous to f on M^8 with a finite $\Omega[9]$, so this example cannot be smoothed. We could have done the same construction on a seven-manifold, M^7 . On M^7 the Lefschetz formula does not eliminate the possibility of finding a smooth g homologous to f with a finite Ω . The existence of such a g would contradict the entropy conjecture.

References.

- R. Bowen, Topological entropy and Axiom A, Proc. Symp. Pure Math.
 14, AMS, Providence R.I., 1970, 23-42.
- 2. M. Hirsch, On combinatorial submanifolds of differentiable manifolds, Comm. Math. Helv., 36(1962) 103-111.
- 3. M. Hirsch, On smooth regular neighbourhoods, Ann. of Math., 76 (1962) 524-529.
- 4. J.F.P. Hudson, Piecewise Linear Topology, Benjamin, New York, 1969.

- W.B.R. Lickorish, The piecewise linear unknotting of cones,
 Topology, 4 (1965) 67- 91.
- 6. A. Manning, Topological entropy and the first homology group, these Proceedings.
- 7. J. Palis, C. Pugh, M. Shub and D. Sullivan, Genericity theorems in topological dynamics, these Proceedings.
- 8. M. Shub, Topological entropy and stability, these Proceedings.
- 9. M. Shub and D. Sullivan, A remark on the Lefschetz fixed point formula for differentiable maps, Topology, 13 (1974) 189-191.

Address: C. Pugh, University of California, Department of Mathematics, Berkeley, California, 94720, U.S.A.

C. Pugh was partially supported by NSF grant GP.14519 and the joint US - Brazil NSF - CNPq fund.