
Cusp Bifurcation in Metastatic Breast Cancer Cells
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Abstract

Ordinary differential equations (ODEs) can model the transition of cell states over time.

Bifurcation theory is a branch of dynamical systems which studies changes in the behavior

of an ODE system while one or more parameters are varied. We have found that concepts

in bifurcation theory may be applied to model metastatic cell behavior. Our results show

how a specific phenomenon called a cusp bifurcation describes metastatic cell state transitions,

separating two qualitatively different transition modalities. Moreover, we show how the cusp

bifurcation models other genetic networks, and we relate the dynamics after the bifurcation to

observed phenomena in commitment to enter the cell cycle.
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1 Introduction

Cell types have been modeled as stable steady states, or equilibria, of ordinary differential

equations

ẋ = V (x, α)

such that x ∈ Rn is a concentration vector representing the cell’s molecular composition and α ∈ Rj

is a vector of j parameters, representing internal and external characteristics, including reaction

rates. Here, to identify steady states, we seek the values of xα which satisfy V (xα, α) = 0. If

the eigenvalues of the derivative of V (xα, α), denoted DxV (xα, α), all have negative real part then

nearby solutions all tend to xα as time increases. It is possible that V (x, α) may have a unique stable

state, multiple stable states or even more complicated dynamical behavior. Each stable equilibrium

xα,i corresponds to a cell type. If the parameter α varies with time because of genetic, epigenetic,

spacial effects or other factors, then we may have stable state xα(t) depending on α(t) describing

the behavior of cells transitioning from one type to another. We will give examples coming from the

study of metastatic breast cancer. However it should be noted that such analyses may be generalized

to other biological networks such as cell division [15] or synthetic gene circuits [29].

Regarding metastasis, much attention has been devoted to two cellular states: epithelial (E)

and mesenchymal (M), each recognizable by the levels of specific proteins [22, 21, 7, 32, 11]. Normal

epithelial (E) cells are not motile and can grow (divide) in response to growth signals, as opposed to

mesenchymal (M) cells that can detach from epithelial layers and are motile, but less likely to divide

[24]. This choice between cell division and movement is the “go-or-grow hypothesis” [10]. Since

metastasis requires departure from a primary site and growth at a different site, both the epithelial-

mesenchymal transition (EMT), and mesenchymal-epithelial transition (MET) seem to be required

[1]. Thus, EMT alone is not always sufficient for metastasis [9] if a binary classification into E and M

3



cell types is assumed since MET is required for growth in the new location. Moreover, EMT might

not be necessary either, according to recent work [9] [16] that showed that most metastatic cells do

not undergo EMT, and EMT inhibition does not reduce metastasis. Furthermore, metastasis relies

on detached cells invading their tissue neighborhood and accessing the bloodstream, which occurs

on top of EMT, under the control of different genes called pro- and antimetastatic regulators, such

as BACH1 and RKIP [6].

Many recent studies indicate that EMT and MET are more complex than binary processes,

i.e., they are transitions between more than two distinct, well-defined cellular states [5, 13, 12]. One

or more intermediate, “hybrid” or “partial” EMT cell states with mixed E/M properties have been

described [14, 2, 4]. Recent computational work varied the number of hidden intermediate states,

aiming to improve fits to experimental data [3]. The results indicated that intermediate states can

accelerate EMT. It seems possible that these intermediate EMT states are sufficient for metastasis

[8]. In general, the number of such intermediate states is unknown, raising the question: Can the

number of intermediate states go to infinity, allowing continuous transitions? And what defines the

boundary between such continuous transitions versus the widely-studied discrete transitions, with a

finite number of distinguishable steady states?

We are interested in studying the transitions which involve pro-metastatic and anti-metastatic

mono-stables states of cells, analogous to EMT and MET, using mathematical models derived from

bifurcation theory. In the model ẋ = V (x, α), the variables x(t) and parameters α(t) are time de-

pendent and represent proteins involved in metastatic cell transitions. We decide to view the stable

equilibria of the system as “cell types” as in Smale and Rajapakse [29] where they identify conditions

in biological networks for which a pitchfork bifurcation in 2 and 3 variable systems with one param-

eter exist. The pitchfork bifurcation may not be stable. There is a stable two parameter bifurcation

called the cusp bifurcation which includes a pitchfork as a one dimensional sub-bifurcation. We use
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known methods [28] to verify that a pitchfork exists in the metastasis model by Lee et al.[6], which

was strongly suggested by Figure 1. Moreover we have verified that all the examples of pitchfork

bifurcations proven by Smale and Rajapakse in [29] concerning “Repressillator” and “Toggle” syn-

thetic gene circuits are actually one dimensional sub-bifurcations of cusp bifurcations. Furthermore,

we plot the cusp curve which is the projection of the fold onto the parameter space and see that

it divides regions in the parameter space. The regions separated by the curve and cusp point may

correspond to biological transitions of two types. The first is what we call a continuous transition,

as it relates to the biological phenomenon where there may be “hybrid” or “partial” cell types and

occurs when there is only one stable equilibrium in the dynamical system. As we mentioned pre-

viously, this transition type may be sufficient for metastasis, however the state types and whether

or not they are a continuum are unknown. The second transition we have called a discontinuous

transition between binary cell types, or anti-metastatic and pro-metastatic cells, and this happens

when a stable equilibrium bifurcates and two stable equilibria and one unstable equilibrium (saddle)

appear.

Further experimentation and testing must be done to verify that this analysis of the mathe-

matical dynamics of cusp bifurcations corresponds to the biological phenomenon. Additionally, we

believe that these findings can be generalized and that cusp bifurcations may exist in models which

describe other biological networks such as cell division[15]. In what follows we show a novel appli-

cation of bifurcation theory in biology, address the question of non-binary transitions in metastasis,

similar to the behavior of transition between E and M cells, and discuss further applications of these

concepts. We have also provided an Appendix as a tutorial in bifurcation theory and any relevant

code at the end of the paper.
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2 Cusp bifurcation and metastatic cell transitions

2.1 Metastatic cell transition as an ODE model

In the model from the paper “Network of mutually repressive metastasis regulators can pro-

mote cell heterogeneity and metastatic transition”[6] Lee et al. considered three differential equations

with two parameters V (R,L,B, ρ, k) where R,L,B are real positive variables and ρ, k are real pos-

itive parameters. R,L,B represent the proteins RKIP, let-7 and BACH1 which interact in the cell

and are highly relevant for determining breast cancer metastasis. The parameters ρ and k describe

the instability of RKIP and insensitivity of BACH1 to self-regulation, respectively. The equations

are

dR

dt
=

1

1 +B
− ρR

dL

dt
=

aRr

mr +Rr
− L− cLB ≡ V (R,L,B, ρ, k)

dB

dt
= s+

(S − s)kb

kb +Bb
−B − cLB

The constants are set to s = .02, S = 20, c = 200,m = 2, b = 3, r = 5, p = 10, a = 1000. Let

~x = (R,L,B) so for convenience we may write V (~x, ρ, k) and take derivatives with respect to ~x.

Observable cell states are equilibria of the system V (~x, ρ, k). For ρ, k fixed, equilibria are

points ~x such that V (~x, ρ, k) = 0. The equilibrium is stable if the real parts of the eigenvalues of

DxV (~x, ρ, k) are negative. All solutions of the ODE which start near a stable equilibrium tend to

the equilibrium as time increases. An equilibrium may lose its stability and a bifurcation may occur

as we vary (ρ, k) if one of the eigenvalues tends to have zero real part or more specifically, if the

eigenvalue becomes zero. In other words, to find bifurcations, we are looking for the solutions of the

determinant Det[DxV (~x, ρ,K)] = 0.

Via an intricate analysis of the ODE, Lee et al. divide a region in the (ρ, k) parameter plane
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Figure 1: Map of dynamics from Lee et al. [6]. Grayscale shading indicates monostability. Darker

shading corresponds to higher BACH1 levels. Yellow color indicates bistabiltiy. The red star indi-

cates the expected cusp point where (ρ,K) = (1.0024,0.6595).

into three sub-regions (Figure 1). One region with a single stable equilibrium corresponding to

an anti-metastatic state of the cell, one with a single stable equilibrium corresponding to a pro-

metastatic state of the cell and one with three equilibria, two of which are stable. This suggests that

as ρ, k vary the state of the cell may start in one mono stable region and pass through a bi-stable

region to the other mono stable region. Thus the boundary separating the bi-stable and mono-stable

regions is a curve of interest. It is defined by the solution of

V (~x, ρ, k) = 0

Det[DxV (~x, ρ, k)] = 0

There are now 4 equations in 5 unknowns to solve. We assume that the rank of the derivative of

this system is 4 when the equations are satisfied. By the implicit function theorem we may graph a
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curve for an under determined system [27] to (locally) locate the set of solutions. In this case this

is a curve which has a tangent direction. The curve projected onto the (ρ, k)-plane is smooth and

locally separates the regions if the tangent vector to the curve is not vertical. This type of point is

called a saddle node point. If the tangent vector to the curve is vertical then the projection of the

point to the (ρ, k)-plane is a cusp point. The shape of the bi-stable region is such that we suspected

that there is a cusp point, which we do in fact find to be close to the red star in Figure 1.

A cusp point is the (ρ, k) parameter coordinates of a non-degenerate solution of the following

five by five system of equations.

V (~x, ρ, k) = 0

Det[DxV (~x, ρ, k)] = 0

∇xDet[DxV (~x, ρ, k)] • (~v) = 0

(1)

Here ∇x denotes the gradient in terms of ~x which we take of the determinant of the derivative.

We then calculate the dot product with (~v) which is the first column of the adjugate matrix of

DxV (~x, ρ, k). We assume (~v) is not zero. The rank of DxV (~x, ρ, k) is two where the equations are

satisfied because DxV (~x, ρ, k) is a 3 by 3 matrix with an eigenvalue equal to zero. Since the map

has maximal rank it is stable even if the parameters vary slightly.

The solution to the equations (1) define the values of proteins R,L,B and the parameter

values ρ, k required at the cusp point. In order to observe metastasis, cells must traverse from the

bottom to the top and back in Figure 1. To the left of the cusp, which is the grey area of Figure 1,

we have cells that can transition continuously from one state to another (Figure 2a). To the right of

the cusp, cells must cross the bistable region in yellow in the upward direction and then again in the

downward direction, where the cell plots are discontinuous (Figure 2b). We explain this further in

the Discussion section below. Mathematically, these processes can be computed by finding solutions
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of the system where either k or ρ are fixed. In the first case, k is fixed and must be less than its

cusp point value, and in the second k must be greater than the cusp point value. In Figure 2 we

draw sketches of what we expect these solutions to look like and how they relate to metastasis.

(a) Path of α outside of bistable region
(b) Path of α through bistable region

Figure 2: Two different modes of cell state transitions between monostable regions

2.2 Methods and model verification

We built a Newton’s Method algorithm in MATLAB for an under determined system of

equations to validate the ρ, k solution values identified by Lee et al. We used MATCONT[31], a

continuation toolbox for ODEs, to isolate a cusp point on the (ρ, k)-plane and plot the projection

of the cusp curve. We also built codes in MATLAB to visualize the various behaviors of the system

which can be found in the Appendix.

2.3 Results and cusp point analysis

To validate this is in fact a cusp point, we used Newton’s Method and verified (~x, ρ, k) =

(0.9321, 2.2184, 0.0435, 1.0281, 0.1343) is a solution of the equations (1). In Figure 3 the results of
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the Newton’s Method algorithm show various iterations where all the values are very close to 0.

When plotting ρ, k we found a similar separation of the regions defined by Lee et al. (Figure 4).

Figure 3: Results using Newton’s Method algorithm

(a) MATCONT (b) Newtons Method

Figure 4: Cusp Point plots

Next, we numerically verified that the five by five system has an invertible derivative at the

solution. At a cusp point the tangent to the cusp exhibits a pitchfork bifurcation. [28]

Figure 5: Pitchfork Bifurcation
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Figure 5 is a plot of the pitchfork bifurcation around the cusp point (ρ, k) = (1.0281, 0.1343)

where the tangent vector is (-0.1542,1). For values of T moving in the positive direction of the

tangent, B consistently has 3 solutions, two stable equilibria which are the upper and lower branches

of the pitchfork and one unstable equilibria in between. In the negative direction of T we find only

1 solution.

We explore how varying values of ρ affects B in Figures 6 and 7. First we note that near the

cusp point for different values of k > .13 we see a similar curve (Figure 6). If we follow a solution

from the lower monostable region it disappears as ρ increases, at 1.024. This is the first limit point

(LP) or equilibrium in the graph. Then B increases towards the value corresponding to the other

stable equilibrium which is the upper limit point. The curve between the two limit points represents

the bistable region which we showed in Figure 2b. The bistable region in Figure 1 corresponds to

the unstable equilibrium and the space between the two limit points. At the second limit point B

crosses from the bistable to the monostable region. As ρ increase B stays in the upper branch of

the curve. As ρ is approaching zero B tends towards the upper limit point. The limit points are

where ρ crosses the cusp line for fixed k, thus demonstrating hysteresis. We may interpret this as

having a concentration of antimetastatic cells for values of ρ = {0, 1.024} and a concentration of

prometastatic cells from ρ = {.761,∞} which “mix” in the bistable region.
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(a) k=10 (b) k=20

Figure 6: Vary ρ for fixed k = 10 and k = 20

In Figure 7, if k < .13 or less than the value required at the cusp, the solution curve is

S shaped and B is increasing continuously as ρ increases. As we continuously increase ρ we pass

from the anti-metastatic to pro-metastatic cell states as in Figure 2a. In this scenario, if points

on the solution curve correspond to various cell types, we could posit that we transition to many

intermediate cell states as we go from one mono-stable state to another. This differs from the case

when k > .13 where we see two distinct sets of cell types.
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Figure 7: Vary ρ for fixed k = .13

Figure 8: Cusp fold plot of ρ and k

Finally, in Figure 8 we plot the surface B. If we intersect the solution plane at a fixed value of

k the solution curves are similar to Figures 6 and 7 depending on the choice of k. If we intersect the

plane at the cusp point where the surface folds we have a solution curve which looks like a pitchfork,
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as demonstrated in Figure 5. Furthermore, if we project the fold lines of the surface onto the ρ, k

plane we end up with a curve and cusp point as seen in Figure 4. Figure 9 illustrates these three

perspectives and summarizes how the solution and cusp curves relate to the surface.

Figure 9: Cusp fold plot analysis

2.4 Cusp Bifurcation in other networks

2.4.1 Gene circuits

The cusp point is relevant to many areas of biology besides metastasis. It should be found

for gene networks described earlier as bistable or multistable. This applies to the toggle switch,

one of the foundational gene circuits in synthetic biology. Thus, we considered the 2-gene and a

3-gene networks from Appendix 1A and 1C of Smale and Rajapakse [29], as other examples of a cusp

bifurcation in biological systems. Smale and Rajapakse showed that pitchfork bifurcations exist for

these networks. Below we give an analysis of the 2-gene network.

We used MATCONT to show that a cusp point occurs for the system

ẋ =
α1

1 + ym
− x

ẏ =
α2

1 + xk
− y
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(a) Plot varying α1,m where α2 = 2 (b) Plot varying α2,m where α1 = 2

Figure 10: MATCONT 2-gene cusp results

(a) Plot of x,m (b) Plot of y,m

Figure 11: MATCONT pitchfork bifurcation

In Figure 10(a) we set α2 = 2 and m = k > 0. As we varied α1 and m we found a cusp exists

at (x, y, α1,m) = (1.00, 1.00, 2.00, 1.99). In Figure 10(b) we set α1 = 2, m = k > 0 and varied α1

and m. A cusp point exists at (x, y, α2,m) = (1.00, 1.00, 2.00, 1.99). This aligns with Smale and

Rajapakse’s results [29]. They set α1 = α2 = 2, m = k > 0 and proved that a pitchfork bifurcation

occurs at the point m = 2. They note that for all 0 ≤ m < 2 there is only one solution to the one

parameter system which is (x, y) = (1, 1). It can be shown that for values past the cusp, or when

m > 2, there are three solutions and we have the same pitchfork scenario as we described earlier in

Figure 5. We plot the pitchfork using MATCONT in Figure 11.
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In Figure 12 we used the same fimiplicit3 plot in MATLAB as we did for Figure 8. We

plot the solution surface of x and y separately and vary the two relevant parameters (α1,m) and

(α2,m) respectively. The surfaces both are folds which we would expect to see for a cusp bifurcation.

Figures 10(a) and (b) are the projection of the fold on the (α1,m) and (α2,m) plane. As for the

metastasis-regulatory network, the cusp point separates the parameter ranges for continuous versus

discontinuous transitions.

(a) 2-gene x, α1,m plot (b) 2-gene y, α2,m plot

Figure 12: Matlab fimplicit3 plots

2.4.2 Cell Division

Another important network for which our analysis applies drives the cell cycle. Rajapakse

and Smale [30] suggest that the pitchfork bifurcation may explain some of the properties of cellular

division. The decision of cells between cycling and senescence is driven by a bistable network,

the core of which is a variant of the toggle switch involving CDK2 and Rb (Figure 2.A in [15]).

Considering the above analysis for the toggle switch, the cell cycle network might also be modelled

as a Toggle, with a pitchfork or cusp bifurcation. Thus, we use the 2-gene Toggle network from Smale

and Rajapakse [29] to demonstrate what could be happening during cell division and how it relates

to a cusp bifurcation. We use the toggle switch to illustrate some biologically relevant features of the
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dynamics and note that the bifurcations of the cell cycle network will occur at different, currently

unknown parameter values.

Since the toggle switch has two steady states, one of which corresponds to entering the cell

cycle, we need to assign a biological meaning to the other steady state. We propose that the other

steady state corresponds to differentiation, which is known to be antagonistic with cell cycling [23]

[20].

The dynamics of a differential equation with fixed parameters after the pitchfork or cusp

bifurcations are:

1. There are 3 equilibria, two sinks and a saddle.

2. The forward orbit of any point tends to one of the equilibria.

3. The orbits which tend to the saddle, called the stable manifold of the saddle, form an (n-1)

dimensional disc which separates the two basins of the stable equilibria.

In Figure 13 we produce a vector plot using the 2-gene Toggle network from Smale and

Rajapakse [29]. We see all three behaviors listed in this image, where the upper sink could be low

CDK2/high Rb, the lower sink is high CDK2/low Rb and the x = y line divides paths a cell may

take as they differentiate if they initiate above the line or proliferate if they begin on a path below

the line.
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Figure 13: Vector plot of 2 gene circuit system to show 3 equilibria [29]

Almost all orbits tend to one of the stable equilibria. An orbit starting near the red line will

have very slow dynamics. Paths close to the unstable equilibria and far from the stable equilibria will

take a long time to arrive near a stable equilibrium. In the case of cell division one stable equilibrium

corresponds to the cell being proliferative, and the other to the cell differentiation. Points close to

the stable manifold will have fast dynamics as they tend to the sink. However, points close to the

unstable equilibria and far from the stable equilibria will define cells that may appear quiescent

for a long time, although ultimately they will commit to cycling. Cells distributed along the green

arrows could have drastically long waiting times before entering the cell cycle, as observed in the

experiments.

We see the same behavior in 3 dimensions. The 3 dimensional system is defined by Smale

and Rajapakse as [29] follows:

ẋ =
α

1 + zm
− x

ẏ =
αxm

1 + xm
− y

18



ż =
α

1 + ym
− z

To find the behavior in the bistable region we set α = 2 and m = 3. In Figure 14 we show the 3

equilibria as black stars, and the forward orbits are the blue dotted lines each tending towards one of

the equilibria. The eigenspace of the saddle is a plane that divides two regions in three dimensions,

separating the two basins of stable equilibria. This plane is an approximation of the stable manifold

of the saddle. We use ode45 in MATLAB to solve the system starting from various points in the

space. Most points stay on the same side of the manifold as where they started.

(a)

(b)

Figure 14: Matlab plot of eigenspace and solution curves in blue. Lines in magenta are the eigen-

vectors of the saddle point which determine the eigenspace.

We suggest that the same behavior is seen in the system involving CDK2, Rb and Ef2 (Figure

2.A in [15]). In our model we may interpret x, y, z as EF2, CDK2, Rb respectively. In this space as

z increases x, y decrease and solutions tend to the stable sink in the upper left hand corner of Figure

14(b), which corresponds to differentiation. Conversely, as z decreases, x, y increase and solutions

tend to the sink in the lower right hand corner of Figure 14(b), which corresponds to cell cycle entry.

This reflects a switch behavior in cell division with 3 variables.
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There is a symmetry in the 2-gene model when m > 2, α1 = α2. In two dimensions the line

x = y is the stable manifold that separates the two cell behaviors. Any initial point with x > y or

x < y will converge to the same stable equilibirum. Similarly when considering the 3 dimensional

model the stable manifold of the saddle separates the space such that all orbits tend to the sink of

the same side. While our model is the linear approximation of the stable manifold it is clear that for

values of x that are large enough, all orbits tend to the stable state which corresponds to high CDK2

concentrations. This is the observed situation with CDK2 and proliferation [15]. In the examples

the line in 2-dimension and the disc or eigenspace in 3-dimension approximate the true manifold

and are based off simple gene networks, however, it could be interesting to develop a more accurate

model of cell division to combine the findings in the two papers referenced [29, 15]. Furthermore,

one could demonstrate that a pitchfork or cusp bifurcation exists in cell division as well.

3 Discussion

We have identified a cusp bifurcation in the model provided by Lee et. al. To observe such

a bifurcation the critical points of a system must be stable. Here we will explain the mathematical

process to find such a bifurcation as it applies to our model in some more detail.

In Figure 10 we have superimposed potential paths of α(t) in the space of parameters ρ and

k from Figure 1.

The time-evolution of the parameters α(t) = (ρ, k) shows possible transitions between stable

cell types. Here, the green line indicates how values of α(t) begin in the monostable anti-metastatic

region (A), traverses an ambiguous monostable region and arrives into the monostable pro-metastatic

region (P). These transitions we will call APT, or PAT depending on the direction. The unique

stable state of the differential equations x(t) evolves together with α(t) but the possible cellular
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(a)

(b)

Figure 15: (a) Time-evolution exclusively through monostable regions. Every point on the path

is monostable.(b) Image of monostable cells. Pro-metastatic cells in black, Anti-metastatic cells in

white and intermediate monostable cells in continuous transition region in grey.

type ultimately transitions between pro-metastatic and anti-metastatic states. Therefore this image

represents a continuous transition depending on which way the path is traversed. It is important to

note that both transitions traverse the ambiguous region to the left of the bistable region. Cells in

this ambiguous region are neither pro- nor anti-metastatic. They are in an intermediary biologically

ambiguous state where the pro-and antimetastatic states become indistinguishable. Such ambiguous

parameter regions must also appear in all other analyses describing bistable or multistable systems,

but they have not been mathematically characterized from the perspective of metastasis. Analogies

may exist with the physics of phase transitions, e.g., liquid and gas phases becoming indistinguishable

beyond the critical point of water.

In Figure 11 the path of α(t) crosses the boundary between the monostable and bistable

regions. Similar transitions have been extensively described in the EMT/MET literature. At first

we consider the path as it goes up transitioning from anti-metastatic to pro-metastatic (APT). As
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(a)
(b)

Figure 16: (a) Transition between monostable regions traversing bistable mixed region. (b) Image

of Discontinuous transition. Monostable Pro-metastatic cells in black, Monostable Anti-metastatic

cells in white and cells in mixed Bistable region in both white and black.

the path crosses the boundary at t0, the edge of the bistable mixed region, the stable state x(t)

continues on while a new equilibrium point is created which we denote x′(t0). Over time the point

x′(t) splits into a new stable point x′1(t) and a saddle x′2(t). In the bistable region there are three

equilibria x(t), x′1(t) and x′2(t). If we cross the higher boundary of the bistable region a stable point

and a saddle collide and annihilate each other that is, x(t) and x′2(t) collide.

This would be a discontinuous transition in the direction A to P, since at every point along

the path where the A and P states co-exist, they correspond to separate sets of variables xA and

xP , which are clearly distinguishable. There is no ambiguity at any point about an individual

cell being in one state or another. But now as we run this path backwards to produce a PAT

we see that the state of the cell corresponds to x′1(t) as x(t) tends to x′1(t) in the bistable region.

Thus traversing the path in one direction and then the other exhibits hysteresis. Hysteresis is
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another hallmark of discontinuity. Unlike continuous transitions, discontinuous EMT/MET has

been extensively investigated for many regulatory networks.

Here is a picture in 1-dimensions of what is happening.

Figure 17: 1-dimensional time phases of stable states

Now if we imagine that metastasis will require an APT transition followed by a PAT transition

we see that the PAT transition may require that the parameter cross the whole bistable region in

reverse. The region near the star in Figure 1 would seem to provide the most fertile region for such

a transition in both directions. This applies to both continuous and discrete transitions, to the left

and right of the red star. We will call the star point the cusp point, the reason will become clear

below. Two questions are immediate:

1. What determines the path α(t) of continuous or discontinuous transition that the cell will

trace out in the parameter space?

2. Will the paths of the cells stay away from or pass close to the cusp point? What is the

23



biological significance of this alternative? Will paths that pass close to the cusp be more likely to

undergo an APT transition, followed by an PAT transition, and thus be more likely to establish

distant tumors?

We addressed these questions in connection with metastatic cell state transitions above. We

also proposed the possibility of seeing the same behavior in 2 or 3-gene circuits and in cell division

dynamics that mimic a “Toggle” network. A general and in depth perspective on the mathematics

behind finding a cusp bifurcation is introduced in the appendix which we hope could be applied

to other biological networks. It is possible even more biological systems exhibit cusp and pitchfork

bifurcations where a simple binary transition may not sufficiently describe the biological phenomenon

and we think that it is possible to show mathematically that these systems bifurcate.

Further interesting work would be to solve the equations in Lee et al. symbolically to make

sure we have all possible solutions and it would be valuable to rigorously prove that the rank of the

derivative is always 4. A forthcoming analysis of the initial results in Figures 13-16 could be made

to generalize the observation of cusp bifurcations in other biological networks and extend the theory

in a variety of biological phenomenon. Finally, in order to have confidence that the dynamics we

described in this paper relates to metastatic transitions more experimentation is required to validate

the theory.
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5 Appendix A: Cusp Bifurcation Methods

So far our analysis has been based on the rather fine numerical work of Lee et. al.[6] repre-

sented in Figure 1. But we may give a more analytical treatment of the figures which in this case

and much more generally establish the existence of the cusp point and give a sharper description of

the geometry of the division into monostable and multistable regions near it. The discussion of how

the stable states change along paths in the parameter space will be the same in this greater gener-

ality. The subject matter is called bifurcation theory. We are given smooth differential equations

ẋ = V (x, α) as above where x ∈ Rn and α is a parameter in Rj and V : Rn ×Rj → Rn. In our case

α is a real parameter so j = 1.

Bifurcation theory studies how the behavior of the solution of V changes as α changes. This

is a very well developed subject [18, 25, 17]. The two stable bifurcations which will interest us are

the saddle-node and cusp bifurcations. We will use the referenced numerical methods to find them.

[26, 19] The equation 1) V (x, α) = 0 defines the equilibria. Recall that in general

V (x, α) : Rn × R→ Rn

and we assume that when V (x, α) = 0

equation 2) DV (x, α) goes from Rn+1 → Rn and the rank of the derivative is n.

So the set of zeros is locally a curve near (x, α) by the implicit function theorem.
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We assume one of the eigenvalues of the derivative DxV (x, α) is 0, so we add

equation 3) Det[DxV (x, α)] = 0

and now we assume that

(V (x, α), Det[DxV (x, α)]) : Rn × R→ Rn × R

has rank n+ 1.

So x, α is an isolated solution of equations 2) and 3), and the curve of zeros is tangent to the

α =constant plane. A saddle of index k and one of index k − 1 collide and annihilate or appear if

the parameter runs in the opposite direction.

Here is an illustration of the saddle node bifurcation from Scholarpedia in one dimension and

one parameter.

Figure 18: Saddle-node bifurcation in the one-dimensional system [26]

If n = 2 or higher, here is the dynamical picture in the plane. In general the downward arrow

represents an (n− 1) dimensional plane of the non-zero eigenvalues.
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Figure 19: Saddle-node bifurcation on the plane in the system [26]

Now if we have two parameters ρ and k

V (x, ρ, k) : Rn × R2 → Rn

Then

1′)V (x, ρ, k) = 0

defines the set of equilibria and we assume

2′)the rank of D(V (x, ρ, k)) = n

so the set of equilibria near (x, ρ, k) is a 2-dimensional surface. On the surface we have

those equilibria with a zero eigenvalue where the number of equilibria might be changing, these are

described by adding the equation

3′) Det[DxV (x, ρ, k)] = 0

and we assume that the map (x, ρ, k)→ (V (x, ρ, k), Det[DxV (x, ρ, k)]) has rank n+ 1 where

the two equations are satisfied. Hence the solution is a curve near (x, ρ, k).

When we project the curve on the parameter plane, (ρ, k) there is either A) no singularity

of the projection, i.e. no tangent vector to the curve is vertical or B) there is a singularity of the

projection, that is a tangent vector to the curve which is vertical.

In case A) there are two possibilities:
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Figure 20: Fold projected on parameter plane

Aa) 0 is a simple eigenvalue of Dx(V (x, ρ, k) along the curve.In this case the projected curve

divides the plane near (ρ, k).On one side there is no equilibrium on the other side, there are two of

index j and j − 1. So in a region of interest to us, a saddle and a sink. If a curve in the parameter

plane crosses the projected curve we see a saddle-node bifurcation.

This is called a fold bifurcation.

Ab)There is a point along the curve where the rank of DxV (x, ρ, k) is n − 1 but a second

eigenvalue is 0.Now when a curve crosses the projected curve we may create a saddle of index j and

another equilibria of index j − 1 or j + 1 depending on where the crossing takes place and for some

values of the parameter there are limit cycles. We don’t see this behavior in the data of Lee et al.

and we will not discuss it. This bifurcation is called a Bogdanov-Takens bifurcation.

There are generically five types of bifurcations of equilibria depending on two parameters

(See Kuznetsov). All might be interesting for biology.

Case B) is the one that interests us. It is the cusp bifurcation. There is a singularity of the

projection, that is a tangent vector to the curve which is vertical. Recall that the tangent to the
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curve is the null space of the derivative of (V (x, ρ, k), Det[DxV (x, ρ, k)]). Now for a vertical vector

(v, 0, 0) to be in the null space it is necessary and sufficient that

4′) Dx(V (x, ρ, k)(v) = 0 and

5′) ∇xDet[DxV (x, ρ, k)] • (v) = 0

The references above give methods for determining that these equations have a solution.

When equations 1′) and 3′) are satisfied DxV (x, ρ, k) has a kernel as Det[DxV (x, ρ, k)] = 0 so we

would like to express the vector v in terms of (x, ρ, k). Assuming that DxV (x, ρ, k) has rank n− 1

when V (x, ρ, k) = 0 then at least one of the (n−1) by (n−1) minors has non-vanishing determinant

and the adjugate matrix is not zero. By Cramer’s Rule any non-zero column of the adjugate matrix

is in the kernel of DxV (x, ρ, k).

So a cusp point is defined as a non-degenerate solution of the n + 2 by n + 2 system of

equations

V (x, ρ, k) = 0

Det[DxV (x, ρ, k)] = 0

∇xDet[DxV (x, ρ, k)] • (v) = 0

(2)

Where v is a non-zero column of the adjugate matrix of DxV (x, ρ, k).

Here are some pictures of the cusp bifurcation when n = 1.
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Figure 21: Cusp bifurcation in the one-dimensional system [19]

The surface below is the surface of equilibria. Outside of the cusp region there is one equi-

librium and inside 3.

Figure 22: Equilibrium manifold near a cusp bifurcation [19]

As a path crosses the cusp curve away from the cusp point itself the equation has a saddle-

node bifurcation. The picture of cubics illustrates again what is happening in 1-dimension. The two

curves of the cusp are tangent at the cusp point. So the cusp point is a place where the hysteresis

effect may in some sense be briefest. See questions 1 and 2 above.
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A strategy for the analysis of equilibria might be to look for non - degenerate solutions of

V (x, α) = 0 and Det[DxV (x, α)] = 0 for saddle node bifurcations and of the system of equations

(2) where DxV (x, α)(v) = 0, Det[DxV (x, α)] • (v) = 0 and v is a column of the adjugate matrix of

DxV (X,α) for cusp bifurcations. The region in Figure 1 looks like there might be a cusp bifurcation

which puts a sharper definition of the regions and supports the cell transitions in Figure 2.

6 Appendix B: Matlab Code

Figure 1

%function zB = funB(t,B)

function zB = funB(B)

%no shBACH1 here

global s S c K m b r rho a

zB = s+(S-s)*K^b/(K^b+B^b) - B*( 1+ (a/(m^r*rho^r*(1+B)^r+1)) * (c/(1+c*B)) );

function [Ld,Lt] = LOSSderiv(B)

global s S c K m b r rho a

% loss term

Lt = B.*(1+ (a./(m^r*rho^r*(1+B).^r+1)).*(c./(1+c*B)));
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fderiv_num1=(m^r*rho^r*(1+B).^r+1).^2.*(1+c*B).^2;

fderiv_num2=a*c*(m^r*rho^r*(1+B).^r+1).*(1+c*B);

fderiv_num3=a*c^2*B.*(m^r*rho^r*(1+B).^r+1);

fderiv_num4=a*c*m^r*rho^r*r*B.*(1+B).^(r-1).*(1+c*B);

fderiv_den=(m^r*rho^r*(1+B).^r+1).^2.*(1+c*B).^2;

% fd1=1+a*c./((m^r*rho^r*(1+B).^r+1).*(1+c*B));

% fd2=B.*(a*c^2*(m^r*rho^r*(1+B).^r+1))./((m^r*rho^r*(1+B).^r+1).^2.*(1+c*B).^2);

% fd3=B.*(a*c*m^r*rho^r*r*(1+B).^(r-1).*(1+c*B))./((m^r*rho^r*(1+B).^r+1).^2.*(1+c*B).^2);

% derivative of loss term

Ld=(fderiv_num1+fderiv_num2-fderiv_num3-fderiv_num4)./fderiv_den;

%Ld=fd1-fd2-fd3;

clear all; close all;

global s S c K m b r rho a alpha

L=3;

paramrange=logspace(-L,L,100);

B=logspace(-5,3,100);
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colorsetR=[0.5 0 0; 1 0 0; 1 .5 .8];

colorsetB=[0 0 0.5; 0 0 1; 0 1 1];

clear isbist;clear lowBACH1;

s=0.02;

S=20;

c=200;

m=2;

b=3;

r=5;

a=1000;

% scan rho: RKIP degradation rate

% scan alpha: shBACH1 effect

Krange=paramrange;

rhorange=paramrange;

ctr1=1;

%figure;

for rho=rhorange

ctr2=1;

for K=Krange

lhs=B.*(1+ (a./(m^r*rho^r*(1+B).^r+1)).*(c./(1+c*B)));

rhs=s+(S-s)*K^b./(K^b+B.^b);

%subplot(7,7,(ctr1-1)*7+ctr2);plot(B,lhs,’LineWidth’,2);hold on;plot(B,rhs,’r’,’LineWidth’,2);set(gca,’XScale’,’Log’,’YScale’,’Log’);
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[Ld,Lt]=LOSSderiv(B); % get the derivative of the loss term, and the loss term

seekdownslope=1-sign(Ld); %TRUE is loss term’s derivative is negative or 0

midP=mean(B(find(seekdownslope)));

%[a K any(seekdownslope) 3]

%chance for bistable region next

if(any(seekdownslope) && Ld(floor(mean(find(seekdownslope))))*Ld(end)<0 && Ld(floor(mean(find(seekdownslope))))*Ld(1)<0)

zD1=fzero(’LOSSderiv’,[B(1) midP]);

zD2=fzero(’LOSSderiv’,[midP B(end)]);

[Ld1,Lt1]=LOSSderiv(zD1);

[Ld2,Lt2]=LOSSderiv(zD2);

Gt1=(s+(S-s)*K^b./(K^b+zD1.^b)); % gain term 1

Gt2=(s+(S-s)*K^b./(K^b+zD2.^b)); % gain term 2

isbist(ctr1,ctr2)=(Lt1-Gt1>0)*(Gt2-Lt2>0)*(zD2-zD1>0);

lowBACH1(ctr1,ctr2)=(Gt2-Lt2<0);

%[a K (Lt1-Gt1) (Gt2-Lt2)]

%sBACH1a(ctr1,ctr2)=Gt1-Lt1; % gain term - loss term = dB/dt

%sBACH1b(ctr1,ctr2)=Gt2-Lt2; % gain term - loss term = dB/dt

%monostability is certain

else

isbist(ctr1,ctr2)=0;
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zD=fzero(’funB’,[0 B(end)*100]);

lowBACH1(ctr1,ctr2)=(zD<0.2);

%sBACH1(ctr1,ctr2)=zD<0.2;

end;

ctr2=ctr2+1;

end;

ctr1=ctr1+1;

end;

xvec=log10(rhorange);yvec=log10(Krange(1:47));

[xx,yy]=ndgrid(xvec,yvec);

% figure;mesh(xvec,yvec,atan2(yy,xx));

atval=atan2(yy,xx);

atval(48,length(Krange))=0;

% figure;imagesc(log10(rhorange),log10(Krange),atval/min(min(atval)));colorbar;

% figure;imagesc(log10(rhorange),log10(Krange),isbist);colorbar;

B = bwboundaries(isbist);

%mask=isbist>0.5;

bistsurf=isbist*0.5+lowBACH1;

%bistsurf=lowBACH1;

%bistsurf(:,1:47)=(atval(:,1:47)/min(min(atval))).^0.75;
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bistsurf(:,1:47)=(atval(:,1:47)/min(min(atval)));

figure;

I=imagesc(log10(rhorange),log10(Krange),bistsurf);

patch(log10(Krange(B{:}(:,2))),log10(rhorange(B{:}(:,1))),[0.8 0.7 0.2])

%imagesc(log10(rhorange),log10(Krange),sBACH1);colorbar;

hold on;cb=colorbar;

%patch(log10(rhorange(isbist)),log10(Krange(isbist)),’g’);

% plot(log10(10),log10(.05),’o’,’Color’,colorsetB(1,:),’LineWidth’,2,’MarkerSize’,20);

% plot(log10(10),log10(.5),’o’,’Color’,colorsetB(2,:),’LineWidth’,2,’MarkerSize’,20);

% plot(log10(10),log10(5),’o’,’Color’,colorsetB(3,:),’LineWidth’,2,’MarkerSize’,20);

%

% plot(log10(10),log10(.5),’^’,’Color’,colorsetR(3,:),’LineWidth’,2,’MarkerSize’,16);

% plot(log10(.1),log10(.5),’^’,’Color’,colorsetR(1,:),’LineWidth’,2,’MarkerSize’,16);

% plot(log10(.1),log10(5),’^’,’Color’,colorsetB(3,:),’LineWidth’,2,’MarkerSize’,16);

plot(log10((Krange(47)+Krange(48))/2),log10((rhorange(50)+rhorange(51))/2),’*’,’Color’,’r’,’LineWidth’,2,’MarkerSize’,20);

[(Krange(47)+Krange(48))/2 (rhorange(50)+rhorange(51))/2]

set(gca,’FontSize’,16,’YDir’,’normal’);

xlabel(’log_{10}(K): BACH1 insensitivity to self-repression’,’FontSize’,16);

ylabel(’log_{10}(\rho): RKIP instability’,’FontSize’,16);

colormap(gray);grid on;caxis([0 1]);
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text(0,2,{’Monostable’,’Pro-metastatic’},’Color’,[1 1 1],’FontSize’,18,’FontWeight’,’Bold’);

text(0.1,-2.2,{’Monostable’,’Anti-metastatic’},’Color’,[0 0 0],’FontSize’,18,’FontWeight’,’Bold’);

text(1.5,-.5,{’Bistable’,’Mixed’},’Color’,[0 0 0],’FontSize’,18,’FontWeight’,’Bold’);

set(cb,’TickLabels’,flipud(get(cb,’TickLabels’)))

Figure 3

function [lastDW,lastN,N,Wx,DWd,DWw]=NewtonsMethodfcn(eqns,x0,vars,count)

NTable=[];

WxTable=[];

vars0=x0;

W=double(subs(eqns,vars,vars0));

DW=jacobian(eqns,vars);

DWsub=double(subs(DW,vars,vars0));

if rank(DW)==size(DW,2)

DWdagger=inv(DWsub);

else

DWdagger=DWsub’*inv(DWsub*DWsub’);

end

DWW=DWdagger*W;

Nprime=vars0’-DWW;

WNprime=subs(eqns,vars,Nprime’);

NTable=[vars0’,Nprime];
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WxTable=[W,WNprime];

for j=1:count

W=double(WNprime);

DWsub=double(subs(DW,vars,Nprime’));

if rank(DW)==size(DW)

DWdagger=inv(DWsub);

else

DWdagger=DWsub’*inv(DWsub*DWsub’);

end

DWW=DWdagger*W;

Nprime=Nprime-DWW;

NTable=[NTable,Nprime];

WNprime=double(subs(eqns,vars,Nprime’));

WxTable=[WxTable,WNprime];

end

lastDW=DWsub;

lastN=Nprime;

N = double(NTable);

Wx = double(WxTable);

DWd=DWdagger;

DWw=DWW;

%script to generate table using Newtons Method function

s=.02;
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S=20;

c=200;

m=2;

b=3;

r=5;

a=1000;

syms R L B rho K

assume([R L B], ’Real’)

assume([R L B], ’Positive’)

eqn1=(1/(1+B))-rho*R;

eqn2=((a*R^r)/(m^r+R^r))-L-c*L*B;

eqn3=s+(((S-s)*K^b)/(K^b+B^b))-B-c*L*B;

%a11*(a22*a33 - a23*a32) + a13*a21*a32 from Jacobian matrix

eqn4=(-rho)*((-B*c-1)*(-L*c-(B^(b-1)*K^b*b*(S-s))/(B^b+K^b)^2-1)

-(-L*c)*(-B*c))+(-1/(B+1)^2)*((R^(r-1)*a*r)/(R^r+m^r)-(R^r*R^(r-1)

*a*r)/(R^r+m^r)^2)*(-B*c);

eqns=[eqn1;eqn2;eqn3;eqn4];

vars=[R,L,B,rho,K];

%table format
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SizeW=[4 6];

varTypesW={’double’,’double’,’double’,’double’,’double’,’double’};

varsW={’W(X0)’,’W(X1)’,’W(X2)’,’W(X3)’,’W(X4)’,’W(X5)’};

RowsW={’eqR’,’eqL’,’eqB’,’eqDet’};

vars1=[0.932146,2.218409,0.043501,1.028071,0.134353]; %cusppt from matcont

[newDW,newN,N,Wx,DWd,DWw]=NewtonsMethodfcn(eqns,vars1,vars,5);

insertT=Wx(:,1:6);

WX=table(’Size’,SizeW,’VariableTypes’,varTypesW,’VariableNames’,

varsW,’RowNames’,RowsW);

WX(:,:)=array2table(insertT)

Figure 4

s=.02;

S=20;

c=200;

m=2;

b=3;

r=5;

a=1000;

syms R L B rho K

assume([R L B], ’Real’)

assume([R L B], ’Positive’)

eqn1=(1/(1+B))-rho*R;
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eqn2=((a*R^r)/(m^r+R^r))-L-c*L*B;

eqn3=s+(((S-s)*K^b)/(K^b+B^b))-B-c*L*B;

eqn4=(-rho)*((-B*c-1)*(-L*c-(B^(b-1)*K^b*b*(S-s))/(B^b+K^b)^2-1)

-(-L*c)*(-B*c))+(-1/(B+1)^2)*((R^(r-1)*a*r)/(R^r+m^r)-(R^r*R^(r-

1)*a*r)/(R^r + m^r)^2)*(-B*c);

eqns=[eqn1;eqn2;eqn3;eqn4];

vars=[R,L,B,rho,K];

rhoKFW=[]; %list to save curve coordinates in forward direction

rhoKBW=[]; %list to save curve coordinates in backward direction

vars1=[0.932146,2.218409,0.043501,1.028071,0.134353]; %cusppt from matcont

[newDW,newN,N,Wx,DWd,DWw]=NewtonsMethodfcn(eqns,vars1,vars,5);

rhoKFW=[N(4:5,end)];

rhoKBW=[N(4:5,end)];

%adjust index range to plot more points

for k=1:5

deg=10^(-k);

ker=null(newDW)*(deg);

null(newDW);

x0p=newN+ker;

x0m=newN-ker;

x1p=x0p;

x1m=x0m;
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for j=1:20

[newDW2,newN2,N2,Wx2,DWd2,DWw2]=

NewtonsMethodfcn(eqns,x1p’,vars,1);

[newDW3,newN3,N3,Wx3,DWd3,DWw3]=

NewtonsMethodfcn(eqns,x1m’,vars,1);

ker2=null(newDW2)*deg;

x1p=newN2+ker2;

rhoKFW=[rhoKFW,N2(4:5,end)];

ker3=null(newDW3)*deg;

x1m=newN3-ker3;

rhoKBW=[rhoKBW,N3(4:5,end)];

end

end

plot(rhoKFW(2,:),rhoKFW(1,:),’o’,rhoKBW(2,:),rhoKBW(1,:),’o’,

0.134353,1.028071,’d’)

xlabel(’K’)

ylabel(’\rho’)

Figure 5

s=.02;

S=20;
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c=200;

m=2;

b=3;

r=5;

p=10;

a=1000;

syms R L B rho K

assume([R L B], ’Real’)

assume([R L B], ’Positive’)

eqn1=(1/(1+B))-rho*R;

eqn2=((a*R^r)/(m^r+R^r))-L-c*L*B;

eqn3=s+(((S-s)*K^b)/(K^b+B^b))-B-c*L*B;

%rho,K values from MATCONT CONTINUATION

rho0=1.028071;

K0=0.134353;

D=jacobian([eqn1;eqn2;eqn3],[R,L,B,rho,K]);

vars=[R,L,B,rho,K];

%cusp pt from MATCONT

varscusp=[0.932146,2.218409,0.043501,1.028071,0.134353];

subs(D,vars,varscusp);

null(subs(D,vars,varscusp));

nullsp=null(double(subs(D,vars,varscusp)));

43



nullsp(4,1);

nullsp(5,1);

vector=[nullsp(4,1)/nullsp(5,1);1];

tvec=linspace(-.01,.01,100);

Bvec=[];

for i=1:5

rhoK=vector*tvec(i)+[rho0;K0];

X=vpasolve(subs([eqn1;eqn2;eqn3],[rho,K],[rhoK(1),rhoK(2)]));

Bvec=[Bvec,X.B];

end

Bvec3=[];

for i=51:100

rhoK=vector*tvec(i)+[rho0;K0];

X=vpasolve(subs([eqn1;eqn2;eqn3],[rho,K],[rhoK(1),rhoK(2)]));

Bvec3=[Bvec3,X.B];

end

T=[tvec(1:50),tvec(51:100),tvec(51:100),tvec(51:100)];

Bt=[Bvec(1:50),Bvec3(1,:),Bvec3(2,:),Bvec3(3,:)];
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figure(2)

plot(T,Bt,’o’)

xlabel(’T’)

ylabel(’B’)

Figure 8

s=.02;

S=20;

c=200;

m=2;

b=3;

r=5;

a=1000;

syms R L B rho K

assume([R L B rho K], ’Real’)

assume([R L B rho K], ’Positive’)

eqnB = @(K, rho, B) s + (S-s)*K^b/(K^b+B^b) - B*(1+a*c/((m^r*rho^r*(1+B)^r+1)*(1+c*B)));

fimplicit3(eqnB)

xlabel(’K’);

ylabel(’rho’);

zlabel(’B’);
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set(gca, ’Xscale’,’log’)

set(gca, ’Yscale’,’log’)

zlim([0,10])

Figure 12

syms x y a m

assume([x y a m],’Real’)

assume([x y a m],’Positive’)

figure

fimplicit3(@(a,m,x) (a/(1+(2/(1+x^m))^m)) - x, [0 3 0 3 0 3])

xlabel(’\alpha_1’); ylabel(’m’); zlabel(’x’);

title(’2-gene network, plot x vary \alpha_1,m’)

figure

fimplicit3(@(a,m,y) (2/(1+(a/(1+y^m))^m)) - y, [0 3 0 3 0 3])

xlabel(’\alpha_2’); ylabel(’m’); zlabel(’y’);

title(’2-gene network, plot y vary \alpha_2,m’)

Figure 13

alpha=2;

x = -1:.2:3;

y = -1:.2:3;

[X,Y] = meshgrid(x,y);

m = 10; %vary m
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V1 = alpha./(1+Y.^m)-X

V2 = alpha./(1+X.^m)-Y

uV1=V1./sqrt(V1.^2+V2.^2);

uV2=V2./sqrt(V1.^2+V2.^2);

hold on

quiver(X,Y,uV1,uV2,.5,’c’)

plot(1,1,"*r",2, 0,"ro",0, 2,"ro",x,x,’r’)

str={’saddle’,{’sink’,’high CDK2’,’low Rb’},{’sink’,’low CDK2’,’high Rb’}}

text([1.1 2.1 0.1],[1 0 2],str)

text(-.5,-.5,’x=y’,’Color’,’red’)

xlabel(’x’)

ylabel(’y’)

title(’2-gene vector field, m=10, \alpha=2’)

hold off

Figures 14 - 16

alpha=2;

m=3;

%% Solution curves and eigenspace

figure(1)

vec = linspace(0,4,3);

plot3(1,1,1,’k*’)
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hold on

syms x y z

%eigenvectors of the saddle

x0=[1,1,1] % saddle pt

DxV=jacobian([

(alpha/(1+z^m))-x;

((alpha*x^m)/(1+x^m))-y;

(alpha/(1+y^m))-z],[x,y,z]);

A=double(subs(DxV,[x,y,z,alpha,m],[x0,alpha,m]));

[evec,eval]=eig(A);

real1=(evec(:,1)+evec(:,2))/2;

real2=A*real1;

%eigenspace

xs=linspace(0,2,5);

ys=linspace(0,2,5);

[Xs,Ys]=meshgrid(xs,ys);

a=((real1/norm(real1))’+x0)-x0;

b=((real2/norm(real2))’+x0)-x0;

n=cross(a,b)

Z=(-n(1).*(Xs-1)-n(2).*(Ys-1))./n(3) + 1;
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surf(Xs,Ys,Z,’FaceColor’,[1 0 0],’EdgeColor’,’none’,’FaceAlpha’,.4)

eigdir=[((real1/norm(real1))’+x0);x0;((real2/norm(real2))’+x0)];

plot3(eigdir(:,1),eigdir(:,2),eigdir(:,3),’m-’,’LineWidth’,2)

clear x y z

t=[0,20];

for i=1:length(vec)

for j=1:length(vec)

for k=1:length(vec)

X0=[vec(i),vec(j),vec(k)];

[t,x_out]=ode45(@xdot, t, X0);

plot3(x_out(:,1),x_out(:,2),x_out(:,3),’b:’)

plot3(x_out(end,1),x_out(end,2),x_out(end,3),’k*’)

end

end

end

[t,x_out]=ode45(@xdot, [0 100], [0.5 0.5 2.5]);

sink1=x_out(end,:);

[t,x_out]=ode45(@xdot, [0 100], [2.5,2.5,.5]);

sink2=x_out(end,:)-[0,0,.05];

grid on

xlim([0 2])
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ylim([0 2])

zlim([0 2])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

title(’Plot of solution curves divided by the eigenspace’)

legend(’Equilibria’,’Eigenspace’)

hold off

%% Surfaces

[x,y] = meshgrid(linspace(-1,10));

yy = (2*x.^m)./(x.^m+1);

zz = 2./(x.^m+1);

xx = 2./(x.^m+1);

figure(2)

plot3(1,1,1,’r*’,’MarkerSize’,12)

hold on

surf(xx,y,x,’FaceAlpha’,0.2,’FaceColor’,’b’,’LineStyle’,’none’)

surf(x,yy,y,’FaceAlpha’,0.2,’FaceColor’,’r’,’LineStyle’,’none’)

surf(x,y,zz,’FaceAlpha’,0.2,’FaceColor’,’g’,’LineStyle’,’none’)
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plot3(sink1(1),sink1(2),sink1(3),’ko’,’MarkerSize’,12)

plot3(sink2(1),sink2(2),sink2(3),’ko’,’MarkerSize’,12)

%surf(x,yy,xx)

xlim([0 2])

ylim([0 2])

zlim([0 2])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

grid on

legend(’saddle’,’x’,’y’,’z’,’sink’)

title(’3-gene solution surfaces and nullclines’)

hold off

%% Vector plot

clear x y z

figure(3)

x = 0:.5:2.5;

y = 0:.5:2.5;

z = 0:.5:3.5;

[X,Y,Z] = meshgrid(x,y,z);

V1 = alpha./(1+Z.^m)-X;

V2 = alpha*X.^m./(1+X.^m)-Y;

V3 = alpha./(1+Y.^m)-Z;
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uV1=V1./sqrt(V1.^2+V2.^2+V3.^2);

uV2=V2./sqrt(V1.^2+V2.^2+V3.^2);

uV3=V3./sqrt(V1.^2+V2.^2+V3.^2);

quiver3(X,Y,Z,uV1,uV2,uV3,.3)

hold on

plot3(1,1,1,’r*’)

plot3(sink1(1),sink1(2),sink1(3),’ko’)

plot3(sink2(1),sink2(2),sink2(3),’ko’)

xlim([0 2])

ylim([0 2])

zlim([0 2])

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

title(’3-gene vector field, m=3, \alpha=2’)

hold off

%% Projections

clear x y z X Y Z

x = linspace(0,4,20);

y = linspace(0,4,20);

z = linspace(0,4,20);

Y = (2*x.^m)./(x.^m+1);

Z = 2./(y.^m+1);
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X = 2./(z.^m+1);

figure(4)

% XY

nexttile

plot(x,Y)

title(’Projection on x-y plane’)

xlabel(’x’)

ylabel(’y’)

% ZX

nexttile

plot(X,z)

title(’Projection on z-x plane’)

xlabel(’x’)

ylabel(’z’)

% YZ

nexttile

plot(y,Z)

title(’Projection on y-z plane’)

xlabel(’y’)

ylabel(’z’)

%% ODE function
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function dx=xdot(t,x)

alpha = 2;

m = 3;

dx=zeros(3,1);

dx(1)=(alpha/(1+x(3)^m))-x(1);

dx(2)=((alpha*x(1)^m)/(1+x(1)^m))-x(2);

dx(3)=(alpha/(1+x(2)^m))-x(3);

end

54



References

[1] Thomas Brabletz. Emt and met in metastasis: where are the cancer stem cells? Cancer cell,

22(6):699–701, 2012.

[2] Gianluca Selvaggio et al. Hybrid epithelial-mesenchymal phenotypes are controlled by microen-

vironmental factors. Cancer research, 80(11):2407–2420, 2020.

[3] Hanah Goetz et al. A plausible accelerating function of intermediate states in cancer metastasis.

PLoS computational biology, 16(3):e1007682, 10 Mar. 2020.

[4] Ievgenia Pastushenko et al. Identification of the tumour transition states occurring during emt.

Nature, 556(7702):463–468, 2018.

[5] Jingyu Zhang et al. Tgf-β-induced epithelial-to-mesenchymal transition proceeds through step-

wise activation of multiple feedback loops. Science signaling, 7(345):ra91, 30 Sep. 2014.

[6] Jiyoung Lee et al. Network of mutually repressive metastasis regulators can pro-

mote cell heterogeneity and metastatic transition. PNAS, vol. 111,3 (2014): E364-73.

doi:10.1073/pnas.1304840111.

[7] Joseph B Addison et al. Functional hierarchy and cooperation of emt master transcription

factors in breast cancer metastasis. Molecular cancer research : MCR, 19(5):784–798, 2021.

[8] Kamen P Simeonov et al. Single-cell lineage tracing of metastatic cancer reveals selection of

hybrid emt states. Cancer cell, 39,8:1150–1162, (2021).

[9] Kari R Fischer et al. Epithelial-to-mesenchymal transition is not required for lung metastasis

but contributes to chemoresistance. Nature, 527(7579):472–6, 2015.

[10] Keith S. Hoek et al. In vivo switching of human melanoma cells between proliferative and

invasive states. Cancer Res, 68(3):650–6, 2008 Feb 1.

55



[11] Megan Mladinich et al. Tackling cancer stem cells via inhibition of emt transcription factors.

Stem cells international, 2016:5285892, 2016.

[12] Mingyang Lu et al. Microrna-based regulation of epithelial-hybrid-mesenchymal fate deter-

mination. Proceedings of the National Academy of Sciences of the United States of America,

110(45):18144–9, 2013.

[13] Mohit Kumar Jolly et al. Emt and met: necessary or permissive for metastasis? Molecular

oncology, 11(7):755–769, 2017.

[14] Nicole M Aiello et al. Emt subtype influences epithelial plasticity and mode of cell migration.

Developmental cell, 45(6):681–695.e4, 2018.

[15] Sabrina L. Spencer et al. The proliferation-quiescence decision is controlled by a bifurcation in

cdk2 activity at mitotic exit. Cell, 155(2):369–383, 2013.

[16] Xiaofeng Zheng et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but

induces chemoresistance in pancreatic cancer. Nature, 527,7579:525–530, (2015).

[17] Willy J.F Govaerts. Numerical Methods for bifurcations of dynamical equilibrium. SIAM, 2000.

[18] John Guckenheimer and Philip Holmes. Non-linear Oscillations, Dynamical Systems and Bi-

furcation of Vector Fields. Springer, 1983.

[19] John Guckenheimer and Yuri A. Kuznetsov. Cusp bifurcation. http://www.scholarpedia.

org/article/Cusp_bifurcation, 2013.
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