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Al;gebraic Settings for the Problem “P # NP?”

Le;ilore Blum, Felipe Cucker, Mike Shub, and Steve Smale

ABSTRACT. When complexity theory is studied over an arbitrary unordered
ﬁeM K, the classical theory is recaptured with X = Zs. The fundamental
resQlt that the Hilbert Nullstellensatz as a decision problem is NP-complete
over K allows us to reformulate and investigate complexity questions within an
algebraic framework and to develop transfer principles for complexity theory.

| Here we show that over algebraically closed fields K of characteristic 0
the fundamental problem “P % NP?” has a single answer that depends on the
trax.:tability of the Hilbert Nullstellensatz over the complex numbers C. A key
component of the proof is the Witness Theorem enabling the elimination of
transcendental constants in polynomial time.

i 1. Statement of Main Theorems

We consider the Hilbert Nullstellensatz in the form HN/K: given a finite set
of polynomié,ls in n variables over a field K, decide if there is a common zero over
K. At first the field is taken as the complex number field C. Relationships with
other fields and with problems in number theory will be developed here.

This article is essentially Chapter 6 of our book Complexity and Real Compu-
tation (to be published by Springer). Background material can be found in [Blum,
Shub, and Smale 1989].

Only machines and algorithms which branch on “h(z) = 07" are considered
here. The symbol < is not used. Thus the development is quite algebraic, eventually
using properties of the height function of algebraic number theory. A main theme
is eliminating constants. The moral is roughly: using transcendental and algebraic
numbers doesn’t help much in speeding up integer decision problems.

Let Q be the algebraic closure of the rational number field Q. The following
will be proved.

THEOREM 1. IfP = NP over C, then P = NP over Q, and the converse is also
true. ’
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BEMARK 1. Here C may be replaced by any algebraically closed field contain-
ing Q.

Now we are going to define an invariant 7 of integers (and polynomials over
Z) which describes how many arithmetic operations are necessary to build up an
integer starting from 1. More precisely, a computation of length | of the integer
m is a sequence of integers, xo,z1,...,2; where -p = 1, ; = m and given k,
1 < k < I, there are 4,7, 0 < 4,j < k such that z; = x; o z; where o is addition,
subtraction or multiplication. We define 7 : Z — N by 7(m) is the minimum length
of a computation of m.

The following is easy to check, where here and in the sequel log denotes log,.

PROPOSITION 1. For all m € N one has 7(m) < 2logm.

If m is of the form 22k, then 7(m) = loglogm + 1. The same is essentially true
even if m is any power of 2.

Open Problem. Is there a constant ¢ such that
7(k!) < (logk)® all k € N?

We remark that if “factoring is hard” using inequailities then the open problem
has a negative answer.!

DEFINITION 1. Given a sequence of integers ax we say that ay is easy to com-
pute if there is a constant ¢ such that 7(ax) < (logk)¢, all k > 2, and hard to
compute otherwise. We say that the sequence ay is ultimately easy to compute if
there are non-zero integers my. such that myray is easy to compute and ultimately
hard to compute otherwise.

In Sections 5 and 6 we will prove:

THEOREM 2. If the sequence of integers k! is ultimately hard to compute, then
HN/C, the Hilbert Nullstellensatz over C, is intractable and hence P # NP over C.
Thus in that case, P # NP over Q.

Next consider the analogous situation for polynomials with integer coefficients
f € Z[t]. A computation of length [ of f is a sequence of u; € Z[t] where up = 1,
up =1t w = f and given k, 1 < k < [ there are i,j, 0 < 4,j < k such that
uk = u; o u; where o is addition, subtraction or multiplication. Define 7 : Z[t] — N
by 7(f) is the minimum length of a computation of f.

Let Zer(f) be the number of distinct integral zeros of f. The following has a
certain plausibility:

HYPOTHESIS. Zer(f) < 7(f)° for all non-zero f € Z[t].

Here c is a universal constant. We don’t know if the hypothesis is true or false,
even, for example, with the constant ¢ = 1.

1Here ig a sketch of the proof. Suppose to the contrary that k! is easy to compute and n is
the product of primes p and g where p < k < ¢. We will show how to easily factor n.
Let 20,21,...,7; = k! be a short computation of k!, I < (logk)¢. Then we induce a short

computation of 7 = k! mod n using

(zo mod n,z1 mod n,...,7 =& mod n).
By the Euclidean Algorithm, y = ged(r,n) may be easily computed. By our hypothesis it follows
that y = p, and thus our assertion is proved.
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THEOREM 3. If the above Hypothesis is true then NP # P over C, and NP # P
over Q.

2. Eliminating constants: Easy cases

In this se(r‘tion we begin a study of the problem of eliminating the constants of
a computation without an exponential increase in the time. Our first result asserts
that this can jalways be done if the constants lie in an algebraic extension of the
given field K.| The result holds for fields of any characteristic.

To start ufe briefly and informally recall some notation and definitions. Suppose
M is a machine over a commutative ring (or field) R with unit. Then both the
input and output spaces of M are R*®, and the state space is R... Here R™ is the
disjoint union|

| R%=UgsoR™
and Ry is the bi-infinite direct sum space over R. Elements of R., have the form
L= ( y L2, T-1,20 - '7:13'7"27"')

where z; € R for all integers i, z; = 0 for |k| sufficiently large, and . is a dis-
tinguished marker between zp and z;. We call z; the “i-th coordinate” of 2 and

z1,...,T, the “first n coordinates” of z. For brevity, and when the intent is
clear from context, we sometimes omit the negative coordinates and write elements
of the state space as (n,z1,22,...,%p,0,...) or (z1,%2,...,2n,0,...), or even
(z1,22,. .. ,Zp).

The machine’s input map, associated with its input node, takes a point z €
RA.C R® a.nd maps it to
' (...,0,0,n.2,23,...,20,0,0,...) € Reo.

Here n is the size of z.

The outth map, associated with the machines’s output node, takes a point
z=(..,m| 2,2,...) € Rs and maps it to (21,... ,2m) if m is a positive
integer, to the unique point of R° if m = 0, and is undefined otherwise. These
maps make sense if the characteristic of R is 0. If the characteristic is positive, we
replace n and m here by the appropriate number of 1's to the left of the distinguished
marker. '

Machines also have computation, shift and branch nodes with associated oper-
ations (polynomial or rational maps, right/left shifts and the identity) and associ-
ated next state and next node maps. Without loss of generality, we assume that at
branch nodes, machines branch right or left depending on whether or not the first
coordinate z; of the current state x is 0.

A decision problem over R is a pair (Y,Yp) where Yo C Y C R*. Here Y
is the set of problem instances and Y is the set of yes instances. For example,
HN/K is a decision problem over K where Y’ = {finite polynomial systems over K}
and Y, = {finite polynomial systems over K that are solvable over K}. A finite
polynomial system over K is represented as an element of K°° assuming some
standard listing of its coefficients.

A machine M over R decides the problem (Y,Yp) if, for all inputs y € Y, M
outputs 1 if y € Yy and 0 if not. The halting time, Tp(y), is the length of the
computation path, or sequence of nodes, traversed from input y to output. The
problem (Y, Yp) is in class P or in polynomial time over R if it can be decided by a
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machine with halting time bounded by a fixed polynomial in the size of y, for all
y € Y. Polynomial time is our notion of tractability.

The problem (Y,Yp) is in class NP over R if there is a machine M’ such that
forally € Y, y € Yp if and only if there is a witness w € R* such that, given input
(y,w), M’ outputs 1 in time bounded by a fixed polynomial in the size of y. We
say (Y,Yy) is NP-complete over R if it is in class NP/R and every problem in class
NP/R can be encoded in (Y,Yp) in polynomial time. It follows from [Blum, Shub,
and Smale 1989] that, for any field K, HN/K is NP-complete over K.

DEFINITION 2. Suppose K C L are fields and (Y, Y;) is a decision problem over
L. The restriction of (Y,Yp) to K is (Y N K>, Yy N K°°). The same applies to the
case where K is a ring.

PROPOSITION 2. Let M be a machine over a field L which is an algebraic
extension of a field K. Then there is a machine M’ over K and a constant ¢ > 0
(depending on M) with the following property. For any decision problem (Y,Yp)
over L decided by M, the restriction of (Y,Yp) to K is decided by M’, and the
halting time satisfies

Tr(y) < cTy(y), forallye Y N K™,

PROOF. Since M has only a finite number of constants, then by restriction,
M is also a machine over a subfield of L that is a finite algebraic extension of K.
Thus, our proposition will follow if we assume that L is a finite algebraic extension
of K, and show it for this case. So we make this assumption.

Consider L as a vector space over K of dimension q. Thus L may be represented
as K? where the inclusion K C L is represented as the inclusion of K in K? as the
first coordinate.

We now construct a machine M’ over K that on inputs from K°° simulates
M on these inputs with halting time increased by no more than a multiplicative
constant. The state space of M’ is considered as (K7)» so that it also represents
Loo. An initial subroutine of M’ in effect takes an input from K and writes it as
the first coordinates in (K?)ac.

Without loss of generality, we may assume that at any computation node of
M, the computation performed is either addition, multiplication, subtraction or
division of two elements of L. (Any machine can be so converted with at most a
multiplicative constant increase in halting time.) Since addition and multiplication
in L are represented by fixed symmetric bilinear maps over K

B, : K K- K*?

B: ¢ KV B —~+KY
M’ can simulate the addition and multiplication nodes of M by incorporating these
polynomial maps in computation nodes. Subtraction nodes of M are simulated in
M’ by multiplication by (—1) followed by B.. Division of b by a is accomplished by
solving the linear system B (a,y) = b for y by Gaussian elimination. This requires
on the order of ¢° steps. In each of these simulations, constants from L that occur

in M are replaced by their corresponding g-tuples over K.
Since z = (1,... ,,) represents the zero element in L if and only ifz; =0

fori=1,...,q, branching in M is simulated by checking if the first ¢ coo¥'dinat<?s
of an element in the state space of M’ are zero. Shifting right or left in M is
simulated by shifting right or left g times in M ’. Care is taken to keep track of the
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intended lengths of sequences in the computation. A final subroutine ensures that
the 3ppropria§te finite sequence (Z1,Zq41,%2g4+15 .+ »Tmgs1) Of the coordinates of
the “final staﬁle” z in a computation is output.

Using tl}q isomorphism between K¢ and L, one can see that on inputs y €
Y N K, M gives the same answers as M with the desired time bound where ¢ is
on the order of ¢®. O

The proof doesn’t require M to be a decision machine, merely that the outputs
of M are deﬁl?ed over K, i.e. are in K, for inputs over K,

PROPOSI’I“ION 3. Let R be an integral domain and K its quotient field. Let
(Y, Yp) be a chision problem solved by a machine M over K in time T. Then M
can be replaced by an equivalent machine without division, with constants only from
R, and with halting time ¢T' for some ¢ € N. Thus, there is a machine over R
solving the restriction of (Y,Yo) to R in time ¢TI for some ¢ € N.

PROOF. A machine M without division that simulates M is obtained by “dou-
bling” the space used in the computation. An initial subroutine of M’ takes an input
(1, 29,... ,24) to (2s,21,1,29,1,...,%s,1,0,...) in the state space of M’. Note

that elements & = (z1, 22, ... ,7,0,...) in the state space of M may be represented
(non—uniqueley) by elements in the state space of M’ of the form
n n d| n
(z(1 ],:clld],:cg ],x[zl,... ,xL 1,9:?',0,...)

i)
where z; = ‘331' for all 4 < s. Since K is the quotient field of R, elements of K

have representation in R..

Computation nodes of M’ perform the natural modification of the operations
associated with the computation nodes of M which, as above, are assumed to be
the basic arithmetic operations over K. In particular, a computation node in M
that performs a division f(x1,z2) = (z1/z2) is replaced in M’ by a computation
node with as.s%;ciated map

ol ), o) = (o i)

Constants from K in M are replaced in M’ by pairs of constants from R. So
for example, A computation node of M with associated map f(z1) = k1 with
constant k € K, is replaced in M’ by a computation node with associated map
g(m[{‘], m[ld]) = i(p:v[f'], qw[ld}) for some p, ¢ € R with k = p/q. Thus, if an initial input
to M’ comes from R, all states in the subsequent computation will be in Ru.

A branch node in M that tests if 2, = 0 is replaced in M’ by one that tests if
ar:[lnI =0 and al'[ld] #0.

Finally, M accepts an input z, i.e. M outputs the value 1 given input z, if the
first coordinate of the final state in the computation is 1 (and the 0-th coordinate
is 1). Consequently, M’ is designed to accept an input if the first and second
coordinates of the final state in the computation are equal but not 0 (and the 0-th
coordinate is 2). Similar considerations apply for rejecting an input.

The overall slowdown of M’ with respect to M is linear.

Thus, M’ has the requisite properties for both conclusions in the statement of

the proposition. O
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3. Witness Theorem

We need an algebraic theorem, which we call the Witness Theorem, for the
proof of pur main results. This section is devoted to that theorem.

The first step is to extend the definition of T to polynomials in several variables
over Z. Let G € Z[t,,... ytn]. Quite similarly to the one variable case, consider
finite sequences

(oo nstas Lty =10)
where for 1 < k < s, u; = v o w for some VW € {t1,...,th,up = Liug,...,up—1}
and o is +, — or x. Then 7(G) is the minimum such s.
DEFINITION 3. Define a witness w @l for f € @[tl, oot asaw satisfying
the property that if f(w) = 0 then f =0, ie. f isthe zero polynomial.
In situations we encounter, [ is presented so that it is not obvious if it is Zero,
THEOREM 4 (Witness Theorem). Let F(z,t) = F(ml,...,xr,tl,.;.,tz) be a
polynomial in v + | = n variables with coefficients in Z and let F, € Q[ty,.. oy tl]
be defined by F(t) = F(,t) for eachz € Q . Suppose that N is a positive integer
satisfying:
logN >4dn7? + 4, 7= T(F).

Then for x € Q', there exists an algebraic number wy in 2V, 2, .. 2N} such
that the point w = (wi,... ,w) where w; = w,, i = 2,....1 is a witness for
P €Qltyy. .11

Our proof of the Witness Theorem depends heavily on the use of heights of

algebraic numbers. _ o
The height H : Q — Q is a function whose properties are summarized in the

following proposition.

PROPOSITION 4. (a): H(1)=H(0)=1, H(2) =2, Hw) > 1, H(-w) =

H(w), H (3) = H(w)
(b): H(v+w) < 2H(v)H(w)
(c): H(w*) = H(w)*, H(vw) < H(v)H(w)
H(v

(d): Hv+w) > {5

(e): H(vw) > Hi((% if w # 0.

A definition of H and proofs of (a) and (c) are given in [Lang 1991]. Moreover
(b) is proved in the appendix to this section. Note that (d) follows from (b) by

H(v) = H((v+w) —w) < 2H(v + w)H (w).

Now divide by 2H (w).
Similarly we obtain (e) from (c) by

Hv)=H ((vw)-tlz) < H(vw)H (w).

Note that, in general,

H (Xn:fz) < Q"ﬁH(mi).

=0
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All that is used in this section is the existence of a function H : Q — Z, with
properties (2), (b) and (c) (and hence also (d) and (e)). It is a good exercise to

prove Proposition 4 for Q with H(r) = max(|p|, |g[) where r = £ and ged(p,q) = 1.
—

Ifge g[t] is a one variable polynomial, and g(t) = Ef=0 a;t', define H(g) =
I-.[;i=[] H(al)i
PROPOSITION 5. For all g € Qlt] and all w € Q

H(g(w)) < 2*H(w)*H(g).
PRrOOF. | Use Horner’s argument
d
H (Z: a‘-wi) = H(ao +w(a; +w(az + -+ w(ag-1 +wag))...))

i=0
< 2H(ao)H(w)H(a1)H(w)H(az). ..

d
= 2] H(a)H(w)". m|
1=0

If G(z) -}-: S aaz® is a polynomial in n variables over Q, let

? H(G) =[] H(6o)-

PnoposTrION 6. For G € Z[ty,...,t,), let T=7(G). Then
H(G) <27

Toward i;he proof we have the following lemma whose proof is simple and
straightforward.

LEMMA 1. The degree of G is less than or equal to 27. The number of mono-
mials in G, Wexed by a, is less than D™, where D = 27. O

We prove now Proposition 6.

PROOF OF PROPOSITION 6. It goes by induction on 7. One checks it by in-

spection for T = L.
Now let G = FF' where 7(F), 7(F') <1 (thecase G=F+F orG=F - F',
is even simpler). Write F(z) = 3_aa2® Fl(z) = S bsz? and G(z) = Y ¢,27.

Then
| C-' = 207_ﬁbﬁ.
B8

Note thaf by Lemma 1, the degrees of F', F' and G are less than or equal to D
and the number of terms in F, F’ and G is even less than D™. Then

H(e,) < []2H(a,-p)H(b)
g
2P" H(F)H(F").

IA

Thus .
H(G) < (2P"H(F)H(F'))P".
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By the induction hypothesis

n n n({r— 2
H(G)S2D2 .2D 2n(r—1)%+1

SO
log H(G) < D> 4 D" 22n(r—1)’+1
& 22n‘r ES 2n722n(r—1)2+1
< 22n1‘2
for 7 > 2. il |

The next proposition while simple, with a short proof, is crucial for the Witness
Theorem.

PROPOSITION 7. Let g E@[t] be a non-constant polynomial in one variable of
degree d. Then for every z € Q,

Hig(a)) > 2

2¢H(g)’
PROOF. Write

d
g®) =Y ait’, aa #0, d>0.
i=0

Then

d-1 :

H(g(z)) = H (ada:d + E aw‘)

=0

1 H(a4z?)
a-1_ .

‘H (Ze:o a;T )
1 H(z)*
24 H(aq)H (z)%1H(ao) . .. H(ad-1)
1 H(z)
2¢ H(g)
Here we have used Propositions 4 and 5. O

COROLLARY 1. For g € Q[t], if H(z) > 2%H(g), then g(z) # 0 unless g [ijs
ZETO.

Forz€Q" let

v

2

2

H(z) = max H(z;).

1<ikn
For G € Qlty, ..., ta] and 2 = (z1,...,2:) €Q , 7 <, let
Gapoior (trats ey tn) = C(@1y s s trg, oo En)-

PROPOSITION 8. For any G € Q[t1,...,tn) and & = (21,...,%;) € Q" with
r < n we have

H(Gay...s,) < HG)2H(2)P™"
where degree G < D, and H(z) = H{zy,...,2:).
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PROOF. Lét Gt) = Y, aat®. Note that Gs,,. .z, € Qltrs1y-.-1ta] is &
polynomial whose coefficients may be indexed by (ert1,...,an) and, for each
(RPN, ,an)1 have the form

& ™
Zaazl‘,...,zﬁ‘

where the suni is over @ = (a1,...,a,) such that the last n — r entries of a are
(Olpeptsoe ,an), We must estimate the product of the heights of these coefficients
to obtain the proposition. The estimate is similar to that used in Proposition 5.
The estimate for the height of a coefficient of G-........... 18
< 2" [ H)H(z:)*...H(z,)™
a=(ay,...,0r)
o< 2 ] H@)H@?”.
: o= (als ,C!,-)
Take the product over all the coefficients to get
n n+1
H(Gg,,...x,) < vl (G)H(z)D
yielding the necessary estimate. O
For the llairoof of the Witness Theorem we may assume that w; is one of
N with largest height so
| H(w) 2 wax(2", H(zi)").
Then H(w;) > 1 and H(w;) > H(wji-1).

Now with| these z,w as in the Witness Theorem, for each j = .,1 and
= (Bj+1,-- ,ﬂz) we will define a one variable polynomial G’ S0 that we w111 be

able to apply the one variable lower bound of Proposition T

Write
F(z,t) = Z g, p7t°
a=(a1,..,0r)
B=(B1,....01)
then define |
G%(t) = 3 Gapr®w .. WP

a=(ai,...,or)

B=(B1,.r1B5:B541,.,81)

LEMMA 2 For each j =1,...,l and B as above
‘ H(w,) > 3P H(G),
PROOF. le 4. It is sufficient to prove that
H(w;) > 2P H(Foun,...sws—1):
or yet by Proposition 8 that
| H(w;) > 2PH(F)(2H (21, .., %ry W1, -+ Wj=1)
Now use Propomtmn 6. The needed estimate is:
| 9P . 97" (9H (w;—1))?"" if j>1
H(wJ) > { D 22m’ ( ( d )) Dn+1 i_f . l
| 22 .2 3(max(2, H(a))) =1

n+l
)P
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Now use D = 27, and verify that
log N > 7+ 2n7% + 2(n + 1)r. O
The Witness Theorem is almost proved. Use Proposition 7 with j = [ in
Lemma 2. We obtain
Glﬂ(t) = Fz:wle---ywl—l(t)’ B =0
and
H(w;) > 2P H(G}).

Therefore Fy ), ... w,_, is zero. So for each 3,

Z ag g wdt .. .wlﬂi‘ll =0.
0‘—‘(&1,...,&").
B=(B1,....01-1,51)
Continuing the same process for [ — 1,/ —2,...,1, we obtain eventually for any

~

B =(B,...,H) that
E a, 5z% =0.
(o]
This yields our theorem. O

Appendix to Section 3

In this appendix we prove part (b) of Proposition 4. We could not find it in

the literature.
To do so, we need to use some notions from algebraic number theory. References

for these notions can be found in Section 9.

DEFINITION 4. Hg(u) = H max(1, |u|,/*), where Mk is the set of valua-

veMEg
tions of K. If v restricts to vy then define
N, = [Ky 1 Fyl,

the degree relative to the completions.

DEFINITION 5. H(u) = H K(u)ﬂ’év?, for v € K. It can be shown that this is
independent of K.

LEmmA 3. Y N, = [K : Q], where Mx = MFUMj, M the archimedean

vEMEE
valuations and M}, the non-archimedean valuations. O

Now for the proof of part (b) of Proposition 4.
PROOF OF PROPOSITION 4 (B). We may write:

Hi(z+y) = [ max(l|z+y0*) [ mex(1lz+yl")
veMge veM}

T 2™ I] (max(t,lzle D)™ [T (max(q, e, lylo))™

veMg veMgE veMp

IA

from properties of | |,, archimedean and non-archimedean respectively.
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Since '

| max(Llal lyl,) < max(, al,) max(L lyl,),
Hy(z +y) < 274%™ T (max(1, 2,))™ ] (max(1, [yh))¥.

‘ vEMK veEMg
Using the lemma it follows that

! Hi(z +y) < 259 Hy (2) Hi ().

Taking roots %we thus obtain

H(z +y) < 2H(2)H(y). d

. 4. Elimination of Constants: General Case
The mair(L focus of this section is the following proposition.

PROPOSITION 9 (Elimination of Constants). Let K C L be fields where K c
Q. Let (Y,Yy) be a decision problem solved by a machine M over L. Then there is
a machine M' over K solving the restriction of (Y,Ys) to K and a constant c € N
such that Ty (y) < T (y)° for ally e Y N K.

LEMMA 4 For the proof of the preceding proposition, it is sufficient to consider
the case L = [K(s1,...,8;) where s1,...,s1 45 a transcendence base for L over K (1.
e., the s; aregalgebraically independent over K).

PROOF. ?The machine M over L uses a finite number of constants 7y,...,7- €
L. Therefore M can be considered as a machine over K(n1,...,n) C L by restric-
tion. -

By a standard theorem of algebra (in field theory) one may rewrite the sequence
My---yNr 8S S1,..-,55, 41, - -, g Where the s1,...,8 form a transcendence basis
for K(s1,...,s) over K and the pi,...,u, are algebraic over K(81,...,81). Now
apply Proposition 2 to obtain a machine over K (s1,...,8) with the same values
on inputs from K> as M and only a constant multiple increase in time. O

PROOF OF PROPOSITION 9. We give the proof of the Elimination of Constants
Proposition where L has the form given in Lemma 4. By Proposition 3 we may
suppose that| each computation node of the machine M is an arithmetic node (+,
—, X) and that each constant in M is a polynomial in § = (s1,..., s;) over K. Let
a = (aj,... amn) be asequence of all the coefficients occuring in these polynomials.
We may then suppose each constant in M is of the form p(a,s) where p is a
polynomial aver Z. Let C be the sum of the 7(p) over all constants in M.

We construct a machine M’ over K that given input y = (Y15:--+Un) €
Y N K™ generates a computation path that simulates the computation path v, =
(Mo, - -+ M, -+ - ) generated by M on input y. The critical construction is to simulate
the branching structure of 4,, and to do this with at most a polynomial increase in
time. {

So suppdse n is a branch node and g, the associated step t branching polyno-
mial. That 18, g, is the composition of the successive computations occuring along
the computation path 7, through step . We may consider g; as a polynomial in
Yy, @, and 8 dver Z with 7(g:) <t+C. The computation path 7, branches right or

left according to whether or not g:(y,a,8) =0.
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We construct M’ so that given input y = (31,...,%,) and “time” t, M’ gener-
ates elements wi, ..., w; in K to replace s, ... , 8 and thus obtain a machine over
K. To produce wy, let N = 4(n+m +1)(t + C)? + 4 and repeat squaring of each
2,%15-+sYn, @1, .., N times (not giving a unique w1, but a set of them). Let
wy,...,w be as in the Witness Theorem. Now test if g;(y, @, w) = 0 successively
for each one of the n + m + 1 choices.

If any one of these g¢(y,a,w) # 0 then g;(y,a,s) # 0 and we branch ac-
cordingly. On the other hand by the Witness Theorem, if y € K and all the
g¢(y,, w) = 0, then gi(y,a,s) = 0. Tt is easy to check that the total increase in
time is polynomial so that we have proved our proposition. O

Denote the decision problem HN over a field K by (Y, Yox).
LemMmA 5. If K C L are algebraically closed fields then
(Y2 N K™, Yor N K*™) = (Y, Yok).
That is, the restriction of HN/L to K is HN/K.

Proor. Write Yz, = |JY% n,k,a Where YL n k.4 is the space of k-tuples of poly-
nomials, each of degree < d, in n variables over L. Let Yp 1 nkq be the subset
with a common zero. Since clearly Y; N K*° = Yk it is sufficient to show that
Yo,L,nk,a N K = Yo,k n.k,d-

This latter amounts to showing that if {f;}X_, € Yz n k4N K> have a common
zero ¢ € L™, then the f; must have a common zero in K™. But this follows directly
from the model completeness of the theory of algebraically closed fields. Alterna-
tively, if the f; have no common zero in K", then by Hilbert’s Nullstellensatz, there
exist gi, ¢ = 1,...,k, polynomials in n variables, such that } g; fi = 1. Evaluation
at { gives a contradiction. This proves Lemma 5. O

Now we can prove the first statement of Theorem 1.

PROOF OF THEOREM 1 (“IF” DIRECTION). Suppose P = NP over C. Then
HN/C € P by a machine M over C. Then M “solves” HN/Q, (inputs from Q)
by Lemma 5, but M is still a machine over C. Now apply Proposition 9 to obtain
a machine over Q solving HN/Q in polynomial time. By the NP-completeness of
this problem, P = NP over Q. O

5. Twenty Questions

Toward the proofs of Theorems 2 and 3 we introduce a decision problem we
call “Twenty Questions” which is of independent interest.

Let R be a ring (integral domain) or field of characteristic 0 which we consider
without order and let N be the positive integers. Then Twenty Questions over R
is the problem:

Given input (k,ht(k),z) € N x N x R, decide if z € {1,2,...,k}.
Here ht(k) is defined to be the largest natural number less than or equal to log k.

Even if R happens to be an ordered ring as Z, we continue to branch only on

equality tests.
Twenty Questions over any ring R can be decided in time 3k by the machine

in Figure 1. Can one do better? We don’t know. But if R = Z, and branching on
order is permitted, then the decision time is approximately log &, with the algorithm
used in the parlor game called Twenty Questions.
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g &=l
|
; z=37
| No
Qutput Yes je—ji+1l |—ml j=k+17
|
*Yes
i Output No

i FIGURE 1. A machine for Twenty Questions.

We say that Twenty Questions over R is tractable if it can be decided in time
(log k)¢ over R where c is some constant (depending only on R). The next theorem
shows that if Twenty Questions over Z is tractable, then so is the order relationship
itself.

THEOREM 5. If Twenty Questions over Z is tractable, then on input (z,y) €
Z x Z, one can decide if x < y in time polynomial in max(log |z, log |y|).

ProoOF. Figure 2 shows a machine that solves the problem. This machine
halts after visiting at most 3k + 2 nodes where k is the first integer greater than
max(log |z|,log |y]). Of these nodes, 2k are Twenty Questions for 2,22, ...,2* twice
each, hence the total time is

|

k
2) j+k+2
j=1

which is less than or equal to

2(ﬂ2+—1)) k42 O

THEORE;M 6. If P = NP over C, then Twenty Questions over C is tractable.

PROOF. iThe method is to embed Twenty Questions in a decision problem
(Y, Yyes) which is in NP over C. Then if NP = P over C, (Y, Yyes) is in P over C and
there is a machine M which decides Twenty Questions in time bounded by (log k)°,
¢ a constant, Here M is the restriction of the machine which decides (Y, Yyes) in

polynomial time.
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Input (1,2,z,%)

¢

o=y7 — =
Y Yoo Output z =y
No }
z—ye{l,...,b}?
e N\
Output z <y y—z€{l,...,b}?
o \
Output z <y (a,b,,y) « (a+ 1, 2b,z,y)

FIGURE 2. A machine computing < in Z.

The decision problem (Y, Yyes) is described as follows:

Y=C and Yje'= U Yyes,x Where
keN

Yiosi = {(k, bt (K), 215 . - - s 20(8)) | 22 € {1, k}}
The embedding of Twenty Questions in (Y, Yyes) is simply:
(k, ht(k), z) — (k,ht(k), z,1,...,1)

where the number of ones is ht(k) — 1. The proof is finished by the next lemma.

LEMMA 6. (Y,Yye) is in NP over C.

ProoOF. The NP¢ machine operates on variables

(ul,ug,zl,...,zn,wo,...,wn,vjo,...,'vj,.) fOI'J = 1,2,3,4.

O

It checks if uy is an integer by addition of 1’s. It checks if the input size
(given with the input by definition) is 6ug + 5. If so n = ua. It checks if wp, =1,
wi(w; — 1) = 0 and vj(vji — 1) = 0 for i.= 0,...,nand j = 1,2,3,4. It checks
if up = Yo 2'w;. It sets z; = Yoo 2tvji for j = 1,2,8,4. Finally it checks
ifu =2+ Z;=1 z2. If so it outputs Yes. Note that if the tests are verified,

j.
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|
the w’s and v’s are 0 or 1; u;, the z; and hence z; are non-negative integers and
uz = ht(u,). ”Ijhe time required is a constant times us.
Finally we|show that every element of Yjs » has a positive test. Let

(kyht(k), 215+« s 2ne(k)) € Yyes,k-
Then z; is a nén-negative integer so that k — z, is sum of four integers squared,
k— 2 =2 + 7% + 23 + 72, O

REMARK 2. The result and proof of Theorem 6 are valid if C is replaced by Q
everywhere in *.he statement.
|

THEOREM;!7. If Twenty Questions over C is tractable, then Twenty Questions
over Z is tractable.

PROOF. It! follows immediately from the elimination of constants in Sections 2
and 4. 3 a

! 6. Proof of Theorems 2 and 3

PROOF Oq THEOREM 3. Suppose that P = NP over C. Then by Theorems
6 and 7, Twenty Questions over Z is tractable. Thus there is a machine over Z

deciding i
|Given (k,ht(k),z) € Z x N x N x Z, does z € [1,k]?

in time (log k)?. By the Canonical Path Theorem for each k there is a one variable
non-trivial polynomial g € Z[t] vanishing on the set {1,2,...,k} with 7(gx) <
(log k)©.

Observe that the hypothesis preceeding Theorem 3 is now violated. That is

Zer(g) > k > (log k)¢ > 7(gx) for k > ko.

We now prove Theorem 2.

PROOF OF THEOREM 2. We know that for each k, the degree of gy is less than
or equal to 27(%). So there is an integer [, |I| < 97(9%) with g.(I) # 0. We may
assume |!| is minimal satisfying gx(l) # 0. By Proposition 1, 7(l) < 27(g) so that
(1) < 2(logk)°. Then gy is zero at each integer between 0 and [. Observe that
gx(1) has k! as a factor by checking the 2 cases | < 0 and [ > k. Moreover by
evaluating gx at {,

7(gx(1)) < 3(logk)“.

Let my, = gx(l)/k! (I depends on k also) in the definition of ultimately hard to
compute. Th.iﬁ finishes the proof of Theorem 2. &l

7. Main Theorem, An Algebraic Proof of the Converse
Let K bel an algebraically closed field and L a field, K C L. A set § C
Klt1,. .. ,tn) determines an algebraic set Vi C K™ by z € Vi if and only if f(z) =0
for all f € S. Moreover S also determines an algebraic set V;, C L" by z € Vi, if
and only if f(z) =0all f € S.
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LEMMA 7. With S and notation as above, let V[ be the algebraic set defined by
Vi={ze(L)"|fz)=0all f € K[t1,...,ta] 3 f =0 on V).
Then V; = V.

PROOF. Since clearly V} C Vi, it is sufficient to show that any f € K[ty,...,t,]
vanishing on Vi must also vanish on V.. But by the Hilbert Nullstellensatz such an
[ satisfies, for some [ > 0, f' € Ix(S), the ideal generated by S over K. Therefore
f* also vanishes on V. and hence § does. o

Therefore V7, is determined by V.

PROPOSITION 10. Let S C Klzy,...,z,] and g1,...,g; € Klz1,...,2n]. Let
Vk and Vi be defined by S. If there is a point z € Vi, such that g;(z) # 0,for all
i=1,...,1 then there is a point 2’ € Vi such that g;(') #0, Vi =1,...,1.

PROOF. We first prove the proposition in case Vi is irreducible. Now proceed
by induction on /. The case [ = 0 is already done in the proof of Lemma 4.

By induction we suppose the assertion proven for I — 1 and establish it for .
Assume that z € Vi, and g;(z) # 0 for all i = 1,...,l. By induction the set I/ of
2’ € Vi such that g;(z') # 0, for all i = 1,...,! — 1 is non-empty and Zariski open.
If there is no 2’ € U such that g;(z’) # 0 then g; is zero on U and hence zero on
Vi by the irreducibility of V. Hence by the Nullstellensatz there is an m such
that g/" is in the ideal I (S) generated by S in K[x1,...,zy]. Hence g/" is also in
the ideal I.(S) generated by S in L[zi,...,2,] and g; vanishes on V; which is a
contradiction. The general case is finished by the next lemma. O

LEMMA 8. Let Vg C K™ be an algebraic set with Vi the union of algebraic
sets Vi and V5. Then

V=WV, LUV .

PrOOF. For i = 1,2, the ideals satisfy I(V;) D I(Vkx). Thus if z € L;,
it =1 and 2, then z € V. On the other hand if z ¢ Vi, UV, 1, then there
exist f; € I(Vi,x), i = 1,2 such that f;(z) # 0. Thus fifa(z) # 0 and fif2 ¢
IV UI(Va) =1(Vk)sox ¢ V. O

A basic quasi-algebraic formula over a ring R is:

fiz)=0,..., filz) =0
91(33) # Os ,gk(x) :lé 0
where the f; and g; are elements of R[t;,...,ty], for some m € N.
A basic quasi-algebraic formula over R C K, K a field, defines a basic quasi-
algebraic set over R in K™ by

V={$€Km |f,<($)=0,.z'=1,...,l, g,-(a:);éO, j=1,...,k}.

A basic quasi-algebraic formula over Z defines a basic quasi-algebraic set over Z in

K™ for any field K.
A subset of K™ is quasi-algebraic over R if it is the union of a finite number

of basic quasi-algebraic sets over R. Quasi-algebraic sets over R in K™ are closed
under finite union, finite intersection and the operation of taking complements.



ALGEBRAIC SETTINGS FOR THE PROBLEM “P # NP?” 141

PROPOSITION 11. Given n,m there is a finite set of basic quasi-algebraic for-
mulas over Z such that: given any field K, n X m matriz A over K, and vector
b€ K" then the linear equation A(z) = b has a solution in K™ if and only if (A, b)
s in the Msi-algebmic set in K™*™+" defined by these formulas.

PROOF. ) The system A(X) = b has a solution if and only if there are k columns
of A such that the (n x k) matrix B determined by them has rank k while the
n x (k+ 1) matrix obtained by adjoining the column b also has rank k, 0 < k < m.

Thie condition is expressed in terme of the determinants of the minore of A
which are pdlynomial over Z in the coefficients of A. O

|
COROLLARY 2. Given m, n, and a vector of degrees d = (da,...,dy), there is
a finite set of basic quasi-algebraic formulas over Z such that for any algebraically
closed field K, the system of equations

fi(z)=0,..., fm(z) =0, deg f; = d;

has a solution in K™ if and only if the coefficients of the f; lie in the quasi-algebraic
set determined by these formulas.

PROOF. | By the effective Nullstellensatz, the system fi(z) =0,..., fm(z) =0
has no common zero if and only if there exist g;, i = 1,...,m of degree < C such
that "7, fig: = 1. This is a system of linear equations in the coefficients of the f;
and the abo¢|'e proposition finishes the proof. O

THEOREM 8. Let K C L be algebraically closed fields. If P = NP over K, then
P = NP over L.

PROOF. | It suffices to show that the machine M which decides Hilbert’s Null-
stellensatz o+/er K in polynomial time decides it over L with the same polynomial

time bounds;L

Fix n, m and d. Let K, ma be the set of corresponding inputs of HN/K,
and Ly m.4 for HN/L. Thus f € Knm,q consists of m polynomials fi,..., fm of
K[t1,. .., tn) with degree f; = di. The yes subset of Knm,q will be denoted by
Ko.m.d.o, and the yes subset of Lnm.d by Lnm,d,o-

Assume M has two output nodes, yes and no and that the time bound for
inputs of Kpn m.q is T.

Consider a yes instance y of HN/L and let Ny 1 be the node of M in the orbit
of y at time T".

Since Ky m,d,0 a0d Ln,m,d,o are defined by the same sets of basic quasi-algebraic
formulas over Z and the node is determined by the basic quasi-algebraic formulas
over K determined by the branch nodes in the orbit of y up to time T, Proposition
10 implies that there is a yes instance of Ky mq at node Ny r at time T. Thus

Ny 1 is the yes node. '
The same argument applies to a no instance, interchanging yes and no. O

8. Ma’;in Theorem, A Model Theoretic Proof of the Converse

In this section we give an alternate proof of Theorem 8 using model theoretic
results and techniques. Assuming K C L are algebraically closed fields, it suffices

to prove the following two lemmas.
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LEMMA 9. If M is a polynomial time machine over K that outputs the value
0 or 1 when input an element of K>, then the same is true when K is replaced by
L (and hence by any field extension of K).

LEmMA 10. If M is a time-bounded machine over K that decides HN/K, then

the set of inputs to M from L™ that output the value 1 is ezactly the set of yes
instances of HN/L.

Lemmas 9 and 10 follow easily from the Model Completeness (Strong
Transfer Principle) of the theory of algebraically closed fields:

Suppose K C L are algebraically closed fields and & is a first order sentence in
the language of fields with constants from K. Then & is true when interpreted in
K if and only if ® is true when interpreted in L.

To prove Lemma 9, let p be the polynomial time bound for M over K and let
H be the computing endomorphism of M over K. We apply the Strong Transfer
Principle to each sentence ®,, n > 0 (seen easily to be writable as a first order
sentence over K):

Vy32o . . . zp(nyIw(zo = (1,9) &7;(:1) zp = H(2k-1) & 2p(n) = (N, w)
& (O(w) =0 or O(w) =1)]
where y = (y1,...,¥n) and w = (wy,... ,wWp(m))-
The sentence ®,, asserts that for each input to M of size n, the computation

halts in time bounded by p(n) with output value 0 or 1. Each sentence ®,, is true
in K, so each is true in L.

We use the same technique to prove Lemma 10. For each m,d,n let
fl(ylix) =0,... ,fm(ym’m) =0
be the general system of m polynomial equations of degree d in n variables z =
(21y... ,2n) and variable coefficients y* = (¥*1,...,%%), i = 1,... ,m (here I de-
pends on d and n). Let p(n) be a (not necessarily polynomial) time bound for M.
We apply the Strong Transfer Principle to each sentence ®,, g.n, m,d,n > 0:

vyt Yy Fe(&R, fi(y, 7) = 0) <=

33'0 ves 3‘zp('ml)a'l»u[zo = (ls (y15 sen 1ym)) &Zg';l) 2 = H(zk—l) & Zp(ml) = (Na w)
& O(w) = 1]}

The sentence ®,, 4, asserts that for each sequence of coefficients T
(from the given field), the system fi(y',z) =0,..., fm(y™,z) = 0 has a solution
(in the given field) if and only if M with input (y',...,y™) halts with output 1.
Each such sentence is true in K, therefore each is true in L.

9, Additional comments and bibliographical remarks

The part of Theorem 1 asserting P = NP over C implies P = NP over Q, is
proved here for the first time. The same is true for the Witness Theorem of Section 3
and Proposition 9 as well. The converse in Theorem 1 is due to Michaux [1994] who
gave a model theoretic proof similar to ours. Much of the rest is from [Shub and
Smale TA). In particular Theorems 2 and 6 are proved in that paper. A version of

Theorem 5 is used in [Shub 1993].
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The function 7 is a version of standard concepts in algebraic complexity theory
as for example in Heintz and Morgenstern [1993] There is also a simpler function
without multiplication in the old subject of additive chains (see Scholz [1937] and

i{;g;h [1981]). Some results on 7 are in [de Melo and Svaiter TA] and in [Moreira

The relationship of the open problem in Section 1 to factoring was first pointed
out to us by Don Coppersmith. For related results on factoring see [Strassen 1976].
For the necessary material on heights needed in Section 3 and its appendix see
[Lang 1001]. :Lang [1003] is a good background in general for the algebra and in
particular for|the field theory (e.g. Lemma 4 of Section 4).

REMARK |3 Michaux [1994] also proves that if C C K C L where K is alge-
braically clos#d, then P = NP over L implies P = NP over K.

REMARK |4 Bruno Poizat has pointed out the following result.
THEOREM 9. If P = NP over an infinite field K, then K is algebraicaly closed.

The proof is based on a result of Angus Meintyre [197 1] stating that if an
infinite field admits elimination of quantifiers then it is algebraicaly closed. Then
the idea is that if P = NP over K, HN/K is solved by a time bounded machine over
K. Then it can be shown that K admits elimination of quantifiers. An analogue of
Mcintire’s result to ordered and valued fields can be found in [Mcintyre, McKenna,
and van den Dries 1983].

REMARK {-5 It follows from Theorem 1 and the previous remark that the prob-
lem P = NP over K reduces to the single problem P = NP over Q in characteristic
Z€ro. f

Open Problém Does a similar result prevail in characteristic p # 07 And for
real fields?
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