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In this paper we show that a little hyperbolicity goes a long way toward guaranteeing
stable ergodicity, and in fact may be necessary for it. Our main theorem may be
interpreted as saying that the same phenomenon producing chaotic behavior (i.e., some
hyperbolicity) also leads to robust statistical behavior. Examples to which our theory
applies include translations on certain homogeneous spaces and the time-one map of the
geodesic flow for a manifold of constant negative curvatur@es7 Academic Press

1. INTRODUCTION

Boltzman’s ergodic hypothesis underlies statistical mechanics and much of
physical thinking. Yet, in 1954, Kolmogorov announced that there are no ergodic
Hamiltonian systems in a neighborhood of completely integrable ones. In
contrast, in 1962, Anosov found the first open sets of ergodic systems, i.e., stably
ergodic diffeomorphisms and flows. Anosov systems are totally hyperbolic while
completely integrable systems have no hyperbolic behavior at all.

In this paper we study the mixed situation in which a diffeomorphisiis
only partially hyperbolic. Under’f, the tangent bundle splits into three invariant
subbundles, an unstable, a center, and a stable subbundle,

TM=FE"@ E°q® E°.

For examplef can be the time one map of an Anosov flow afitl is the di-
rection tangent to the flow orbits.
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Our main themes are, first, that a little hyperbolicity goes a long way in
guaranteeing stably ergodic behavior (which is more prevalent than one might
have imagined) and, second, that in fact the former may be necessary for the
latter. In both cases we make use of an accessibility concept from control
theory applied to the hyperbolic part of the derivative. As far as we know,
the accessibility property of hyperbolic systems was first used in the dynamical
systems world by Brin and Pesin (1974).

Here are our four main results.

THEOREM A. Suppose that the??, volume preserving diffeomorphism
f: M — M is partially hyperbolic and dynamically coherent. ffhas the es-
sential accessibility property and its invariant bundles are sufficientiydet,
then f is ergodic.

THEOREM B. In addition to the hypotheses of Theorémsuppose thatf
has the (complete) accessibility property, the invariant bundlesare C*, and
the spectrum ofl’f is sufficiently bunched. Thefiis stably ergodic; i.e.f is
ergodic and so is every volume preserving diffeomorphisid ehat C? approx-
imates it.

THEOREMC. The time-one map of the geodesic flow on the unit tangent bun-
dle M of a compact Riemannian manifold of constant negative curvature is stably
ergodic. (It is ergodic as a diffeomorphism, not merely as a flow, and so are all
C? small, volume preserving perturbations of it.)

THEOREM D. Let I" be a uniform discrete subgroup &f.(n, R). For
A € SL(n,R), let Ly: M — M whereM = SL(n,R)/T and L is left
translation byA. Then the following four conditions are equivalent:

(@) A has an eigenvalue with modulus different frém

(b) L, is partially hyperbolic, dynamically coherent, and its hyperbolic
invariant foliations have the accessibility property.

(c) The Lie algebra generated by the hyperbolic subspacesd¢k 4) is
the whole Lie algebr&L(n, R).

(d) L, is stably ergodic among left translations 8t (n, R); i.e., every
left translation nearL 4 is ergodic.

Theorems A and B are fully explained in Sections 2 and 3. Theorems A, B,
and C are proved at the end of Section 4, while Theorem D is proved in Section
5. Together with Matt Grayson we proved a special case of Theorems A, B, and
C in 1994. There we perturb the time-one map of the geodesic flow for a surface
of constant negative curvature. This makes the manildldhree dimensional.

Theorem A may be interpreted as saying that even for systems that are not
totally hyperbolic, the same phenomenon that produces chaotic behavior, i.e.,
some hyperbolicity, leads to robust statistics in the form of ergodicity.
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In our proof of Theorem A we require a high degree dfltEr continuity:
the hyperbolic holonomy maps afeHolder and 1- 4 is quite small. We do
not know whether this requirement is really necessary, and we conjecture that
it is not. The hyperbolic holonomy maps always haoenepositive degree of
Holder continuity, and perhaps this is enough for stable ergodicity. Also we
feel it is quite likely that the accessibility hypotheses in Theorems A and B are
generic, so we make the following conjecture.

Conjecturel. Stable ergodicity is an open and dense property am@hg
volume preserving, partially hyperbolic diffeomorphisms. (Openness is clear.)

In particular this conjecture would imply that the gened® volume
preserving perturbation of an ergodic automorphism ofsthierus is ergodic.
See Graysoret al. (1994) for some discussion of this and for an example of
an automorphism of the 4-torus in which the conjecture is an open question.
Another case in which the conjecture is an open question occurs for a product
A xid: M x N —- M x N, whereA is a C? Anosov diffeomorphism. Is
the genericC? small, volume preserving perturbation df x id ergodic? See
Bonatti and Diaz (1994) for a striking result in this line if topological transitivity
replaces ergodicity.

It remains an open question whether the following fifth condition is equivalent
to the four in Theorem D.

(e) Ly is stably ergodic among? volume preserving diffeomorphisms
of SL(n, R)/T".

A second way to conjecturally extend Theorem D involves using groups other
than SL, R). Let G be a connected Lie group and létbe a uniform discrete
subgroup ofG. Forg € G let L,: G/T' — G/T be left translation byg.
Consider the conditions (a)—(e) above, whé&rereplaces Slf, R) and L,
replacesL 4.

Conjecture2. If L, is stably ergodic among left translations thép is
partially hyperbolic and hence dynamically coherent. (In the context of Theorem
D, this is included in the implication (& (b).)

Conjecture3. Assume thatG is semi-simple and has no compact factor.
Then the following are equivalent.

(b") The hyperbolic foliations of., have the accessibility property.

() The hyperbolic subspaces of Adf) generate the whole Lie algebra
of G.

(d) L, is stably ergodic among left translations.

(¢) L, is stably ergodic among? volume preserving diffeomorphisms
of G/I.

Since early versions of this paper were written, a good deal of progress
has been made on these algebraic conjectures. Brezin and Shub (1995) prove
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Conjecture 2 under the additional hypothesis thas admissible in the sense
of Brezin and Moore. Further they prove equivalence dj, (fc), (d) in
Conjecture 3.

We rely throughout this paper on the stable manifold theory that appears in
our articles with Hirsch (1977), Grayson (1994), and Wilkinson (1996). We
refer to these papers as HPS, GPS, and PSW respectively.

2. PARTIALLY HYPERBOLIC DYNAMICS

A diffeomorphism f: M — M of a compact, connected, boundaryless
manifold M is partially hyperbolicif 7f: TM — TM leaves invariant a
continuous splittingl’AMd = E* @ E° ¢ E*®, where E* # 0 # E° and, with
respect to some fixed Riemann structureltd, 7'f expandsE™, T'f contracts
E?®, and for allp € M,

sup ||T}; f|| <inf m(7}; f) and sup||T; fll <inf m(Z;f). (1)

TYf, T°f, T*°f are the restrictions df’f to E*, E<, E'*. If the center bundle
E* =0 thenf is totally hyperboli¢ or Anosov The notatiorm(7’) refers to the
conorm(or minimum norm of a linear transformatiofi’,

m(T) = inf{|Tv| : v| = 1}.

WhenT is invertible,m(T") = ||T~1||7L. (1) means thal’f contracts thestable
bundle £ more sharply than it contracts the center bunffeand it expands
the unstable bundle&=* more sharply than it expands®. According to HPS, if
f'C* approximatesf then f’ is also partially hyperbolic.

Standing AssumptiorThe diffeomorphisny is C? and partially hyperbolict

In HPS it is shown that there are unigyignvariant foliations, W* andW>?,
tangent toE'* and £#, and their leaves are dynamically characterized as follows.
Pointsp, ¢ belong to the samiy*-leaf if and only if for some (or any) constant
w |72 < o < m(Tef), d(frp, frq)/u™ — 0 asn — oo. Similarly, points
p, q belong to the sam&V*-leaf if and only if for some (or any) constant
|1T°FI] < A < m(T%f), d(f"p, f*¢)/I\* — 0 asn — —oo. The leaves of

1As defined in (1), partial hyperbolicity is an absolute concept. Most of what we prove, however,
remains valid whery is relatively partially hyperbolic, i.e., when (1) is replaced by the assumptions
that for allp € M, ||T; f|| < m(T¢f) and||T¢ fI| < m(Txf).
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W¥ and W# are C? and are thaunstable manifoldand thestable manifolds

respectively.

A continuous pathyp: [0, 1] — M is piecewiseC"? if there is a partition
0=ty <-..--<t, =1 such that the restriction af to each interval4;,_1, #;]
is aC' embedding, 1< i < n. If E, I’ are subbundles o' M then ¢ is an
(F, F)-path or is subordinateto (£, F) provided that

Pt)e EUF

whenever¢' (t) exists. The pair of subbundle&( F) has the (completeic-
cessibility propertyif every pair of points inA4 can be joined by a piecewise
C! path that is subordinate ta&( F), while it has theessential accessibility
property if this is true foralmostevery pair of points ind/. Accessibility is

discussed further in the next section.
the su bunm?eﬂs‘!/nu and £° areun(l)quely integrablen the following sense: if
: [0, 1] — M is aC* path everywhere tangent #6° or everywhere tangent to
“theng lies in a singleé/V?-leaf or in a singléV*-leaf. For if¢ is everywhere
tangent to£” then fora, b O [0, 1],

b
d(f"(¢(a)), [ ($(D))) S/ Tf™(¢' ()] dt < ||T°f"|length(¢),

a

which tends to zero so rapidly as— oo that¢(a) and¢(h) must lie in a com-
monW?-leaf. A similar analysis holds foE* whenn — —oo. Thus, the paths

subordinate to £, E£*) stay locally inW*-leaves and/V*-leaves.

Although W* and W? are uniquely integrable and had leaves they are
not in generalC" foliations. This leads us to say thétis dynamically coherent
if Bev, B¢, E°® do integrate tof-invariant foliationsiye, We, Wes, and

W and W* subfoliate W, while W and W?* subfoliate W, (2)

(One foliationsubfoliatesa second if each leaf of the second is a union of leaves
of the first.) The phrase “dynamically coherent” indicates that the unstable,
center unstable, center, center stable, and stable orbit classes fit together nicely.
See Fig. 1.

Together with Moe Hirsch, in HPS we investigated normally hyperbolic
invariant foliations and laminations. It is just a matter of unraveling the
definitions to show that if a partially hyperbolic diffeomorphism leaves invariant
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FiG. 1. (a) Coherent foliations. (b) Non-coherent foliations.

a foliation WW¢ tangent to£¢ then it is 1-normally hyperbolic a¥V¢, and
conversely, if a diffeomorphism is 1-normally hyperbolic at an invariant foliation
then it is partially hyperbolic.

It remains to explain the concepts of sufficientlgldér and spectral bunching.
The former condition is a weakening of the assumption in Theorem B that
the invariant bundles of are of classC!. Although the partially hyperbolic
diffeomorphisms having thi€’* bundle property form a non-open sktye can
find open conditions that guarantee sufficientigitter bundles. Open conditions
are needed to prove stable ergodicity. Set

V100m2 +1-1

ern = ;

10m

wherem = dim M. The partially hyperbolic, dynamically coherent diffeomor-
phism f hassufficiently Holder invariant bundles if

(@) The Holder exponents of the three bundIg¥, E¢, E* are greater
thané,,.

2This is true except in the special case of dimension two, where partial hyperbolicity implies
hyperbolicity and hyperbolicity implie€'* bundles.
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(b) The foliationW* is locally uniformly C* when restricted to each
center unstable ledf’ <%, and the foliation)V* is locally uniformly C* when
restricted to each center stable |&F*.

Not until Eq. (9) in Section 4 do we make explicit use of (a). It is easy to
see that (b) implies

(c) TheWw* holonomy maps between center leaves in a common center
unstable manifold# <* are locally uniformly Lipschitz, and the same is true
of the W* holonomy maps between center leaves in a common center stable
manifold Wes.,

By the spectrumof 7°f we mean the spectrum of the operatot— T'f o
o o f~1 defined on the space of bounded sectiong’8f. Spectral bunching
conditions are used to prove thahas sufficiently Hlder hyperbolic holonomy.
They say that the spectra@ff, 1 f, and7*f lie in thin, well separated annuli.
See Fig. 2.

More precisely, assume that

The spectrum of T7f lies in the annulus with radii a, b.
The spectrum of T°f lies in the annulus with radii ¢, d.

The spectrum of T"f lies in the annulus with radii e, g.

FiG. 2. Bunched spectral annuli.
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As we showed in HPS, these conditions are satisfied if and only if there is a
Riemann structure o’ A/ adaptedto T’f in the sense that

a<|T°f(v)] <b  forallve E°\O
e<|T°f(v)| <d  forall v e E\O
e<|T*f(v)] <g  forall ve E“\O.

f hasé@-bunchedspectrum if 0 <# < 1 and

(d) d <e and d < %
c c

(e) a=® <cEl and g’ < C%

f) o ? <% and  ¢% < %

(d) states that the width of the center annulus is thin in comparison to how close
to 1 the weakest expansion and weakest contraction are. (e) states that the sepa-
ration between the center annulus and the unstable anmilss large enough

to dominate the norm of’'f 1, raised to the powef. (f) states that the sepa-
ration between the center annulus and the stable anngfliisis large enough

to dominate the norm of’f, raised to the powef.

THEOREM 2.1. If the partially hyperbolic diffeomorphisnfi has 6-bunched
spectrum then so do all diffeomorphisfhthat C'* approximatef. Moreover,
EY E°, and E*® are #-Holder. If f is dynamically coherent then the restriction
of E* to each center unstable ledlf <* is C', and the restriction of£® to each
center stable leafV <* is C*.

Proof. The first assertion is proved in HPS and Shub (1987); the second is
proved in HPS, Shub (1987), and PSW, and the third is proved in PSW.
Q.E.D.

COROLLARY. If the partially hyperbolic diffeomorphisrfiis dynamically co-
herent and ha#,,.-bunched spectrum then its invariant bundles are sufficiently
Holder.

Proof. The bundles£*, E¢, E*® aref,,-Holder, and the restriction o to
a center unstable leaf &, while the same is true of the restriction Bf to a
center stable leaf. These center unstable and center stable leavés akeC*
integrable plane field on &2 manifold integrates to & foliation. Thus the
restrictions oflW* and)V* to center unstable and center stable leaves give
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foliations of those leavesC* foliations haveC* holonomy maps. Thus, inside
the center unstable leaves, the unstable holonontisind inside the center
stable leaves the stable holonomyds. Q.E.D.

The next result gives a sufficient condition for dynamical coherence. It is a
condition that we easily verify in all our examples.

THEOREM 2.2. If f leaves invariant a foliationV< tangent toE< and We is
of classC" then f is dynamically coherent.

Proof. The assumption thaty¢ is of classC* implies two things:

(@ e is plague expansivé.
(b) W¢ is uniquely integrable.

(i) is Theorem 7.2 of HPS. It is easy to check (ii). Letbe aC! curve,
everywhere tangent t&° = T)W¢. Expressp in a C* local chart in which the
plaques ofA¢ are contained in slices; x R® x 7. In the chartp remainsC?,
and¢’ € 0 x R® x 0, so¢ stays in a slice and does not travel from leaf to leaf:
W€ is uniquely integrable.

In Sections 6 and 7 of HPS it is shown that through the leaves of a
1-normally hyperbolic foliation there pass uniqyeinvariantC* leaf immersed
submanifoldsi’<* and W<, everywhere tangent t&<* and F<*, respectively.
Each W< is foliated by strong unstable manifolds and edgli® is foliated
by strong stable manifolds. Existence of these families of center unstable and
center stable leaf immersed submanifolds is true regardless of whgtheand
E<* integrate to foliations. In fact, it is a fundamental, open guestion whether
the W<* leaves andV <® leaves always do fit together to form foliations. We
will show that unique integrability o¥V¢ implies they do.

Forp € M, let W¢(p) be thew<-leaf throughp; let W<*(p) andW<*(p) be
the center unstable and center stable leaves thrdligtp). Let ¢ € W (p)
be given. Throughy there pass two manifolds of dimensienr—the center
manifold W¢(q) and the transverse intersectid¥i“*(p) N W (q). Both are
everywhere tangent t@&¢, and so by unique integrability they are equal.
Thus W<(q) c W<(p) and W< foliates W<*(p). Since W* and W¢
foliate eachiwe, the leavesiW<* do fit together to form a foliation. For if

3Plaque expansiveness is a natural, technical condition gfiamariant foliation’7. The concept
is developed in HPS and generalizes orbit expansiveness for hyperbolic dynamics. As in that case,
it is used to understand how a perturbationfoéffects 7. Here is the definition. Let be a fixed
metric onM. A é-pseudo-orbibf f is a sequencér,, ), cz such thatl(f(z,), z.11) < 6 for all
n €Z. If ,,41 and f(x,,) always lie in the same loc&-leaf (or plaqug then thes-pseudo-orbit
respectsF. An f-invariant foliationF is plaque expansivé there exists & > 0 such that if £,,)
and y,,) are 6-pseudo-orbits that respe® and if d(«.,, y,) < 6 for all n € Z thenu,,, y.,
belong always to the same plaquef Intuitively this means that separated plaguésandY” of
F eventually diverge to a distance é apart underf-iteration, even when small errors alofigare
permitted.



134 PUGH AND SHUB

g € We*(p)ynWe(p") thenW¢e(q) is contained in boti¥**(p) and W *(p’),
and so are all the strong unstable manifolds through pointe/6fg). That
is, Wet(p) = We(q) = We(p'), and the leaved¥V <" form an f-invariant
foliation We. Similarly, the center stable leaves form @xnvariant foliation
Wes, and f is dynamically coherent. See Fig. 3. Q.E.D.

The next result concerns the permanence of dynamical coherence under
perturbation.

THEOREM 2.3. If f is dynamically coherent and its center foliation is plaque
expansive then the same is true of each diffeomorplflsamd C'* approximates
f: f is dynamically coherent and its center foliation is plaque expansive.

COROLLARY. If the partially hyperbolic diffeomorphisryi leaves invariant a
C'* center foliation thery and all diffeomorphismg’ that C* approximatef are
dynamically coherent.

Proof. According to Theorem 2.2f is dynamically coherent. Its center
foliation is C' and hence plague expansive. According to Theorem 2.3, each
f' that C approximatesf is also dynamically coherent. Q.E.D.

Fic. 3. Dynamical coherence of the invariant foliationsjfof
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Proof of Theoren2.3 under the additional hypothesis:

not only is the foliation W€ plaque expansive

but also the foliations W and W** are plaque expansive.

The relevant result is Theorem 7.1 of HPS, which describes how perturbations af-
fect an f-invariant, normally hyperbolic, plaque expansive foliatibh Plaque
expansivity implies a kind of foliation—structural stability. ff C' approxi-
matesf thenT’f’ leaves invariant a unique bundle th@® approximatesl’F,

and the bundle integrates to a uniqggeinvariant foliation /. Applying this

to the three normally hyperbolic, plaque expansive foliatidts®*, W<, and
Wwes, we get f'invariant foliationsWe(f"), We(f’), and W< (f"). The leaf
intersection ofWWe“( ') andW<s( f') gives anj’-invariant foliation tangent to
the center bundle of” By uniqueness it isV°(f’). Thus, W<(f’) subfoli-
atesWe(f') andWe*(f"). As was explained in the proof of Theorem 2.2, the
union of the strong unstable leaves through points of a leaf of a normally hy-
perbolic foliation is aC* leaf immersed submanifold, and the family of these is
invariant. Thus, for each center leaf = W<(p, f’) we form theC* leaf im-
mersed submanifold

W(p7f/): U Wu((l? f/)'

qel’

The family {W(p, f)} is f’-invariant and tangent to the center unstable bun-
dle of f* along the center leaves. By uniquendd&p, /') = W< (p, ') and
WH(f') is seen to subfoliat®y<«( ). Similarly, W*(f') subfoliatesy<s(f),
completing the proof that’ is dynamically coherent. Q.E.D.

Proof of Theoren®2.3in general. Assume thatf’ C* approximatesf. Since
We is plaque expansive, Theorem 7.1 of HPS implies fifitleaves invariant
a unique bundle that® approximatesz<, and the bundle integrates to a unique
f/-invariant foliationW¢e( f"). Furthermore, there is a canonically defined leaf
conjugacyh from We(f) to We(f'). The leaf conjugacy is a homeomorphism
he: M — M that sends leaves d¥<( f) to leaves ofVe(f’), C° approximates
the identity map id:M — M, and commutes with the leaf dynamit¢s,

ho(L) = L',

4When F is the orbit foliation of an Anosov diffeomorphism or flow, the existencehofis
Anosov's structural stability theorem.
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whereL = W<(p, f) and L’ = W¢(h.(p), f’)). We claim that dynamical co-
herence off implies that the leaf conjugacy, carries the foliationgV<* and
Wes to correspondingf’-invariant foliations. This will imply thatf’ is dy-
namically coherent. To verify the claim we recall how the leaf conjugacy is
constructed.

By compactness ofA/ we can define a uniform tubular neighborhood
U = Uy of each center unstable le&f = W<*(p), and a uniform subtubular
neighborhoodV = V, of eachL = W¢(q) C W<(p). See Fig. 4.

Since the leaves afv* andW¢ are injectively immersed, but not in general
embedded, we fornt/ and V' in the tangent bundl&M. This prevents self-
intersection. Tacitly, we lifff and f’ to T'M using the smooth exponential of the
Riemann structure. Lét* be the disjoint union of these tubular neighborhoods
U,

U* =UUp,

taking onel/ for each center unstable leaf. The diffeomorphismf acts nat-
urally onU*, f: U* — U*. It sends the tubular neighborhood Bf= W (p)
to the tubular neighborhood ¢fF = W< (f(p)) = f(W**(p)),

f:Up — Uyp,

and it contractd/ toward W <. For W is f-invariant and normally attract-
ing. The diffeomorphismy’ also acts naturally otv*, f': U* — U*,

FIG. 4. The tubular neighborhood$r of FF = W<#(p) andVy of L = W<(p).
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' Up — Uyp,

and it contractd/*. According to Theorems 6.1, 6.7, and 6.8 of HPS, there is
a unigue overflowingf’-invariant family of cu-dimensional manifolds

F =W f, F)

with Wev(f/, F) O Uy, that C* approximateF. In M they are merely known
to be leaf immersed submanifolds. We will show that they form a foliation.
The same analysis applies to the disjoint union

Vi =uVy

of the tubular neighborhoodg of the center leave& of f. By dynamical co-
herence off, W¢ subfoliates)V°¥; i.e., the center leavek foliate the center
unstable leaved”. There is a unique overflowing’-invariant family of cu-
dimensional manifolds#<* in V* that C* approximate the restricted leaves
FnV. By uniqueness

H"=FnV.

On the other hand, since the leaf conjugagyC® approximates the identity,
it does not move the leal = W*e(f, p) far:

L' = ho(L) C V.

The union of the local unstable manifolds gf asq varies inL/,
w(Lh=J W e f)
qel’

gives a second overflowingf -invariant family ofcu-dimensional manifolds that
C! approximateF’ N V. By uniqueness
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H" = F'nV =W*(L).

This shows that” is subfoliated byWW*( ') and byW<(f), and thath. car-

ries I’ to F’. Sinceh,. is a homeomorphism angy<* is a foliation, the leaf
immersed submanifold8” are injectively immersed and form a foliation. It is
the center unstable foliation ¢f, and we just observed that it is subfoliated by
WH(f"y andWe(f’). The same reasoning applies to the center stable manifold
foliation and we see thaf’ is dynamically coherent. Q.E.D.

3. ACCESSIBILITY

Let £, I’ be continuous subbundles dff. In Section 2 we defined the
following concepts:

Accessibility of , F). Every pair of points inM can be joined by a
piecewiseC*! path¢ such thaty’(t) € E U F wheneverg/(t) exists.

Essential accessibility of{, F). AlImost every pair of points can be joined
by such a path.

Only connected manifolds can have these accessibility properties. We are
assuming throughout that/ is connected. Iff is a partially hyperbolic
diffeomorphism and £*, E*) has the accessibility or essential accessibility
property then we say also th#thas these properties.

Accessibility is a concept in control theory. The approach we follow here was
developed by Sussman, Lobry, and others; see Lobry (1973), Sussman (1976),
and also Gromov (1995).

Let E be a subbundle o' M. If E is C" then we writeV"(E) for the set
of C™ vector fieldsX subordinate ta?,

X(p)e E, forallpe M.

E is uniquely integrablgin the control theory sense) if the uniquely integrable
fields are dense ifV°(E). Unique integrability does not require th&tintegrate

to a foliation. Bundles of clas€™, » = 1, are of course uniquely integrable.
Also uniquely integrable are the bundlds*, E* of a partially hyperbolic
diffeomorphism. For any vector fieldl in £* can be approximated by a vector
field X in E* that is smooth on the unstable leaves, and, as we observed in
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Section 2, the trajectories &f can not migrate from one unstable leaf to another.
The same is true foF~.

THEOREM 3.1. If E, F are C" subbundles of’M, r = 1, and A,, is the set
of points accessible from by paths subordinate t&' U F' then A, is a C™ sub-
manifold of M.

Proof. We follow Lobry (1973). Choos€™ vector fieldsXy, ..., X; and
Xpt1, --., Xy that span’ and F'. They need not be linearly independent. Let
¢i,+(x) denote theX; flow. For eacht, ¢; . is aC" diffeomorphism ofM to
itself, and the map

O:R"xM—-M
(tlv ey trup) Hd)l;tl o -0 d)n;tn(p)

is C". When ¢4, ..., t,) is fixed, & defines a diffeomorphism

. M—-M
P dnt, © 0 0 b1y (p)

of M to itself. LetG be the set of all such diffeomorphisngs for all choices
of spanning vector fieldX;, all n-tuples ¢4, ..., t,), and alln € N. Clearly,
G is a group and) € G leavesA, invariant. If ¢ € A, then there is a diffeo-
morphismy = ¢, ;. o --- o ¢1,+, sendingp to g. Thus A4, is topologically
homogeneous under ambient diffeomorphismsg/bf

Thet-rank of @ at (1, ..., t,, p) is the rank of the map

G (t1, oy tn) = Py, © o000 P11 (D).

Let! be the maximat-rank of &, maximized over all choices of spanning vector

fields X; and over alln-tuples ¢, ..., t,). Let this maximal rank be attained
at (s1, ..., sn). According to the rank theorem, there is a neighborhbodf
(s1, - .., sp) such thatp(U) is anl-dimensionalC” submanifold ofM. Max-

imality of { implies that if X is subordinate ta U £ then the restriction of
X to ¢(U) is tangent tap(U). It follows thatp(U) is an injectively immersed
[-dimensionalC” submanifold of /. Homogeneity implies that the same is
true of A,,. Q.E.D.

THEOREM 3.2. Suppose thaE, F are C* and (F, F) has the accessibility
property. Then there exist vector fields, ..., X,, that span¥ and F', and, for
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each pair of pointg), ¢ € M there is a points = (sq, ..., s,) € R™ such that
®(s, p) = q and thet-rank of ¢ at (s, p) is m = dim M.

Proof. The ¢-rank can of course be no larger than The proof just given
shows that for eaclp € M there exist vector fields(y, ..., X, that span&
and F', and there exists a poist = (s1, ..., s,-) € R™ such that for some

q*

O(s*, p) =q"

and thet-rank of @ at (s*, p) is m. Since E, F) has the accessibility property,
we can increase the set of vector fields that spaand F' to X1, ..., X,,-,
Xnot1y - oo, Xpo+ such that for somesf 1, sp«),

d)n**,sn** O -0 ¢n*+1,5n*+1 (q*) =d.

Sets*™ = (s1, ..., Snry Sprdl, -+ -5 Sne ). Then®(s**, p) = ¢ and thet-rank

of ® at (s**, p) is m. Rank is lower semicontinuous. Hence, for all points
(p’, ¢') in some neighborhoodV of (p, q) in M x M, the same is true: for
somes’ nears**, ¢ = ®(s', p’) and® hast-rankm at (', p’). SinceM x M

is compact, it is covered by finitely many of these neighborhddds. .., Wy

and the set of all the vector fields for all the neighborhodids spans£ and

F, and has the property called for in the theorem. Q.E.D.

If £, F are smooth subbundles @A/ we write L(E, F') for the smallest
vector space of smooth vector fields that contaiffS (E) U V°°(F) and is
closed under Lie bracket. In other words, we start with all smooth vector fields
in E and F, form Lie brackets of them, Lie brackets of the resulting fields, etc.,
until we stabilize atC(F, F'). The evaluation ofZ(E, F') at the pointp is the
set

L,(E, F)={X(p): X € L(E, I)}.

THEOREM 3.3 (Chow’s Theorem). Let (F, F') be a pair of smooth subbun-
dles ofT’M such that for eacly € M, L,(E, F) =T,M. Then g, F) has the
accessibility property.

Proof. According to Theorem 3.14, is a smooth submanifold at/. Its
tangent bundle includeg and F' restricted toA,. The Lie bracket of vector
fields tangent to a submanifold is also tangent to the submanifold. Hence
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Lo(E, F) CT,(Ap).

It is clear that the setsl,, partition A/ into disjoint subsets since accessibility
is an equivalence relation.

SinceL,(E, F') = T,M, every A, is anm-dimensional submanifold a#/,
i.e., an open subset a¥f. Fix po O M. If A, # M then there is a point
p € 9(Ay,). Openness ofd, implies thatA, intersects4,,, so 4, = A,
contrary to the supposition thatis a boundary point of,,,. Hence all points
of M are accessible fromg, A,, = M. Q.E.D.

Let P" denote the space of all pairs 6f", uniquely integrable subbundles
of T'M; equipP” with the C” topology. If » = 1, integrability implies unique
integrability.

THEOREM 3.4. Suppose thatf, F) O P! has the accessibility property.
Then everyE’, F') near (£, F) in P° also has the accessibility property. (See
Grasse, 1984.)

Proof. Let Xy, ..., X, beasin Theorem 3.2. Fixe M. Foreachy € M,
Theorem 3.2 provides a poist= (s, ..., s,) € R™ such that the smooth map

(/)I (tlv ey tn) = d)l,tl © -0 d)n:tn(p)

sendss to ¢ and has rankn ats. Therefore there exists iR* anm-dimensional
disc D = D™ throughs such that the restriction af to D is a C* diffeomor-
phismg of D onto a neighborhood’ of ¢ = ¢(s), g: D — U. See Fig. 5.

IR"

FiG. 5. g sendsD™ diffeomorphically ontoU .
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Let (E’, F') approximate £, F) in P° and choose continuous, uniquely
integrable vector fieldX{, ..., X/, that spanE’ and F’, and that approximate
Xi, ..., X,,. Denote byg; , the X; flow. Unique integrability implies that the
map

¢ R*"xM—M
(tlv L) trhp) g (bll,tl © -0 d);L,tn(p)

C° approximatesp. Hence, the restriction of’ to D defines a continuous map
¢ that C° approximatesy,

g:D— M.

The topological index ofy|sp with respect tog is non-zero and the same is
true for the approximation’. It follows that there exist a neighborhodf of
(E, F), in P° and a neighborhood’, of ¢ in M such that if &', F') O U,
then ¢'(D) > U,. Covering M by finitely many of these neighborhoods
Ug» -5 Ugy, and takingd = U, N---NU,,, we see that if £/, F') O U
then all points ofM are accessible fromp by paths subordinate tat{, F”).
HenceA), = M and &', ) has the accessibility property. Q.E.D.

We do not use the next theorem and corollary in what follows, but we state
them anyway since they serve as motivation for Conjecture 4.

THEOREM 3.5. The generic £, F) 00 P" has the accessibility property,
r> 1.

COROLLARY. The generic £, F') 0 P° has the accessibility property.

Conjecture4. The bundle pair £*, E°) of the generic partially hyperbolic
diffeomorphism, volume preserving or not, has the accessibility property.

The proof of Theorem 3.5 is a slight modification of results of Lobry and
Sussman that show that the generic pair of smooth tangent vector fieldls on
has the accessibility property. The proof of the corollary uses Theorem 3.4.

It is worth remarking that the generic continuous vector field is uniquely
integrable. Thus, the spa@ has the Baire property and genericity in it makes
sense.
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4. JULIENNE GEOMETRY

In GPS we presented two short false proofs of stable ergodicity, and of course
we also presented a long correct proof. Here we show how to rescue the
second false proof, which was based on the false principle that albieH"”
homeomorphism sends each density point of a measurable set to a density point
of its image. Below, we show that this density point preservation principle
becomes true if we restrict it to measurable sets that ares)¢saturated” and to
bi-H6lder homeomorphisms that are stable or unstable holonomy maps. Besides
establishing stable ergodicity in higher dimensions, this will give a shorter,
somewhat new proof of the main result in GPS, stable ergodicity of the time
one mapy; of the geodesic flow for a surface of constant negative curvature.
By the way, the first false proof was based on the unproved (and we believe
generally incorrect) assumption that the center foliation of a perturbatign of
is absolutely continuous.

We begin with a general estimate responsible for part of the julienne nesting
lemma in GPS, and one we use repeatedly. The variablgsare vectors, and
Fis a matrix.

LEMMA 1. Suppose thay(z) solves the differential equatiody/dx =
F(z, y), whereF is defined on the sei(x, y) : |z| < &, |y| < h} and y(z)
is defined on the sefx : |z| £ h}. If F satisfies the Elder-like condition
F(z, y)| < Kh? thenly(z) — y(0)] < K|z|h.

Proof. y(x) — y(0) is the average of its derivative with respect 19
the average being taken over the segment 4D, Thus y(z) — y(0) =
fol F(sz, y(sx)) ds(x) and the assertion is clear. Q.E.D.

We will use this lemma to analyze the holonomy of the invariant foliations
wer, we o we wWe wWes of a partially hyperbolic diffeomorphism. These
foliations, and all the foliation3V we consider in this paper, have at least
the following regularity:WW hasC* leavesW (p) and the map — 7,(W(p))
is a continuous section of the Grassmann bundle. That is, the tangent field
T™W ={T,(W(p)) : p € M} is a continuous subbundle @fM.

Let W be such a foliation. Atp € M, split T,M as X & Y where
X =T,W =1T,W(p). Relative to a fixed, smooth Riemann structureZai/,
choose linear orthonormal coordinate framgs ..., z; in X andy, ..., y»
in Y, k+n =m. The holonomy oW nearp defines a local function

w1 Y =Y for z € X,

according toexp, (=, w.(y))) = W(exp,((0, y))) Nexp,(z x Y). See Fig. 6.
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Equivalently, W lifts to a foliation W of a neighborhood of in 7,,M and
the leaf of W through (0,y) is the graph of the functiom — w.(y). Since
TW is continuousgw/dz exists and is continuous. That is.(y) solves the
continuous partial differential equation

dws (y)
dx

= F(x,02(y)),

where F'(z, y): X — Y is the linear transformation whose graph is the plane
tangenttaV at (z, y), graphF(z, y) = {(§, F(z, y)(§)) : £ € X} = T(a, ) V.

At the origin of T,,M, dw/0z = F(0, 0) = 0 sincel,W = X. By continuity

of F, ||F|| <1 on a small neighborhood of (0, 0), and hence

if |2| £ b, |ly| £ h, and A is small
then w,(y) is defined and |w,(y)| < 2h.

LEMMA 2. If TW is 6-Holder,0 < 6 < 1, then for all smallh and all z, y
with |z|, |y| £ h, w.(y) is well defined and for a constadt independent of
z, y, h,

lwa(y) — y| < K|z|h® < Kh'te, (1)

Proof. Since graphf(z, y) = T(wjy)W is 6-Holder, so isF, and since
F(0,0) = 0, this implies

Y @ :< Y expY exp (x X Y)
y (%, 0x(y)) expy Wi(expy)
-y ———
/_\
€XPp p W(p)
\\\
TpM M

FiGc. 6. TheW-holonomy defines,,.
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| F(x, )| < KR

when |z|, |y| < 2h. Thus, if |z| < A then the holonomy map — w.(y) is a
well-defined embeddind (k) — Y (2h), and (1) follows from Lemma 1.
Q.E.D.

(1) is a weak form of ldlderness of the holonomy maps. As shown
in Wilkinson (1995), the strong form of élderness of holonomy maps,
lwz(y) — we(v)| < K|y —|%, is not a consequence ofoltierness of the
tangent field to the foliation.

Next we discuss some box packing geometry. tet (ri, ..., r,) be an
n-vector with positive components. The rectangutax with centerv € R™
and multi-radiusr is

R(v, r)={y € R" : for each ¢, |y; —vi| <7}

For 7 > 0, ther-dilation of this box istR(v, r) = R(v, 7r). See Fig. 7.

If each component; of r satisfiesa < r; < b then we writea < r < b,
and refer tob/a as theeccentricityof the box. If all the components efequal
h then R is ann-cube, Q(v, h). Using orthonormal coordinate frames, we
identify R™ with 7M. Forn < m we includeR™ in R™ and think of boxes
and cubes ¥, M.

LEMMA 3. Fix 4, 1/2< 6§ < 1and K > 0. Givene > 0, there exist® > 0
such that ifh < 6 and the continuous map: Q(0, h) — R™ satisfies

w(y) —y| < KpT? forall y € Q(0,h) (2)

Fic. 7. A box and itsr-dilation.
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then each box® = R(v, r) C Q(0, h) with k¥2 < r < h has ane-squeeze
property underw,

(1-e)RCcw(R)C(14+¢)R. (3)

Proof. Choosefy, 1/2 <68y < 8 and define

e = hfot/2, (4)

Note thate — 0 ash — 0. Also, whenh is small, Kt +¢ < pt+% . Thus (4)
implies

Khl+0 < h1+00 _ Eh3/2 (5)
for small A. Now suppose thag € R. Then by (2), (5)

lwiy — vi| = |wiy — vi + v — vil < RO 4y — vy
<eh®? 4, <eri+r = (1+e)ri,

which implies thatvy € (1 +¢)R. Thus,w(R) C (1 +¢)R.
The proof thate(R) contains(1 — )R is of a different character. Under the
continuous, linear homotopy

wi(y) =ty + (1 = thwy,

the pointw;(y) stays in the cub&)(y, h**%), which implies thatw;(OR) is
always disjoint from the interior of1 — £)R. For if y* € R then for some
i, lyf — il =7, and ify € Q(y*, h1T%) then

lyi =il 2 lyf — il = lyi = yf| 2 v = BHH

=1 —eh®? > —er; = (1—e)ri.
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Thus,y € int ((1 — ¢)R), and thusw,(OR) does stay disjoint from the interior
of (1—¢)R, 0<¢ < 1. Therefore, the index of any poigt interior to (1 —¢)R
relative to the restriction of, to dR is independent of. Under the identity
map the index is 1, so the index gf relative to the restriction of to R is 1.
Thereforey’ € w(R); i.e., w(R) contains the interior of1 — ¢)R. Sincew(R)

is closed andv is continuous, it also containd — ¢)R. Q.E.D.

Combining Lemmas 2 and 3, we see that the local holonomy map of a foliation
with Holder tangent field has nice packing properties. Ideally, a holonomy
map would be trivial. It would send a bok to its horizontal translate?’.
Actually, R is sent to a non-linear box packed between slight dilation£of
provided thatR is small, not too small, has goodoldier proportions, and that
the horizontal distance between the transversals is appropriately small. (“Good
Holder proportions” means that the width and height satish? < w < h,
while “appropriately small” can be considerably larger than the size of the box
R.) Formalizing this we say that a family of local embeddings ¥ — Y
indexed byz € X is translation-likeif they satisfy the followingbox packing
condition

Given € > 0 there is a § > 0 such that
if R= R(v,r) C Y (h) with h*? <7 < h < 6 and |z| < h then
(1-e)R Cuwy(R)C(1l4+¢)R. (6)

See Fig. 8. Summarizing what we have shown, we state

THEOREM 4.1. The family of local holonomy maps of a foliation wigh
Holder tangent field1/2 < 6 < 1, is translation-like.

Next, we turn to the measure theoretic properties of saturated and essentially
saturated sets. We recall some of the definitions. l.eY — M be a partially
hyperbolic diffeomorphism with invariant splitting

TM = E" © E* @ E°,

where u, s, ¢ also denote the fiber dimension of the bundles+ s + ¢ =

m = dim M. We always assume that s, ¢ > 1. By E<%, E°*, E** we de-

note the sum&* ¢ £¢, E* ¢ E°, E° & E*. The invariant foliations tangent to
E* E®, E°¢, E°*, E° are denotedV*, W*2, We, W Wes. In general there

is no foliation tangent t@&Z*#. The foliationsWW*, etc., have smooth leaves and
the plane field tangent to the leaves is continuous. They are foliations. The
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(1+e)R

FIG. 8. w.(R) nests between slight dilations &F.

proof of stable ergodicity of relies on the measure theoretic andlé€r prop-
erties of its invariant foliations.

A key property possessed by*, W? is absolute continuity each local
holonomy map sends the sets of measure zero to sets of measure zero.
(The measure in question is the natural Riemann measure on the transversal.)
Moreover, the Radon—Nikodym derivative of the holonomy map is positive and
continuous. See Pugh and Shub (1972). As mentioned above, it is not known
whetherwe, Wet Wes are absolutely continuous.

Each leafiW of a foliation W carries a natural measure, leaf measure If

W has dimensiork, its leaf measure is a smoothdimensional volume form
on W. A set A is completelyV-saturatedif it consists of whole leaves: if
p € AwhenW(p) C A. An almost whole leafs a setL(p) C W(p) such
that W(p)\L(p) has leaf measure zero. A measurable 4é$ essentiallyVV-
saturatedif it almost consists of almost whole leaves Wf. More precisely,
there is another measurable sif such that the symmetric differencéA A
is an m-dimensional zero set, and, consists of almost whole leaves &¥.
If Ais essentiallyV*-saturated and essentially?-saturated then we say it is
essentially(u, s)-saturated If A is completelyW* saturated and completely
W* saturated, it iscompletely(u, s)-saturated The following was shown in
GPS, pp. 297-298.
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THEOREM 4.2. If the measure preserving, partially hyperbolic diffeomor-
phismf: M — M is not ergodic then there exists a measurable 4et M
such that

(@) A isinvariant undery.
(b) 0 <measured < measureM.
(c) A is essentially(u, s)-saturated

(@ and (b) merely express the non-ergodicity £f while the standard
argument of Hopf shows that (a) and (b) imply (c).

Recall that Lebesgue’s Density Theorem states that almost every point of a
measurable sed is a density point ofdA. We will express this in terms of cubes
in the tangent bundle as follows. [f,M we choose orthonormal coordinates
L1y eve, Ty INEY 4y oo ys in B 21, ..., 2. in B¢ and refer to points
v € T,M asv = (z, y, z). Relative to the maximum coordinate norm | | we have
cubesQ@(v, r) as above. The exponential image of the cdbe= Q(0, h) is a
neighborhood exg) of p having uniformly bounded eccentricity, angp Q | p
ash — 0. That the poinp is a density point of4 means that theoncentratior?
of Ainexp Q,

m(A : exp Q)I%,

tends to 1 as ex@ | p. As in GPS we abuse notation and refer to all measures
and concentrations of measuressas Sinceexp,, is a local diffeomorphism
and its derivative ap is the identity transformatioy (7, M) — 1,M, the
concentration okxp~! A in Q(0, h) approximates the concentration df in

exp @,
m(A:exp Q) —mlexp 1 A:Q) =30 as h — 0.

The symbol= denotes uniform convergence. In particularpifs a density
point of A thenm(exp™ A: Q) also tends to 1 a& — 0. (In M we use the
smooth Riemann measure, while Tn A/ we use the linear Lebesgue measure
of the (z, y, z)-coordinates. They are equivalent undep,,.)

We call Z = E}°, the planez = 0. Let WU be the foliationW* lifted
by exp;l to 7, M. lts local holonomy is expressed by map$,: E;°D

5The concentration off in A in exp @ is the same as the conditional measureiptonditioned
onexp . In GPS we referred to it as the density 4fin exp Q.
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Ep

FiG. 9. The local holonomy.* of W*.

wherer, ' € Ej. See Fig. 9. Thus, ifa, y, 2) and &', ¢/, 2’) lie on a
commonW"-leaf thenw",,(y, z) = (v, #'). We will consider a box

R = R(v, w, h) = Q" (v, w) x Q°(0, h),

whereQ*?(v, w) is the cube inZ centered at having radiusw andQ°(0, h)
is the cube centered at the origin &£, having radiush. We say that® has
centerw, width w, andheighth. 6

THEOREM 4.3. Assume thatt™, E°, E°, are §-Holder, 1/2 < 6 < 1. |If
A C M is essentially{u, s)-saturated and the bok = R(v, w, h) is contained
in the cube = Q(0, k), with h*/2 < w < h, then the concentration od in
exp R approximates its concentration #xp Q. That is, ash — 0,

m(A:exp R) —m(A:exp Q) =2 0. (7)

If p is density point ofd then for every such bak, the concentration obxp—* A
in R tends tol ash — 0, and conversely, if for one such bé& the concentra-
tion ofexp~! Ain R tends tol ash — 0, thenp is a density point ofA.

6Note that these quantities, 1 are numbers, not vectors, and that our usage of the words “width”
and “height” differs from the common meanings by a factor of 2. Also, in the previous multi-radius

notation we could write? = R(v, r) wherer = (w, ..., w, h, ..., h) has ¢ + s) repetitions
of w andc repetitions ofh.
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Proof. The neighborhoodxp R may become arbitrarily eccentric As— 0,
so the boxed? are unsatisfactory for ordinary density point analysis. They are
just the sort of highly eccentric neighborhoods usually excluded in Lebesgue’s
Density Theorem. Although eccentric when judged at linear scale, the ioxes
do have boundeHidlder eccentricityin the sense that®/2 < w < h. According
to Theorem 1 the local holonomy may’,, satisfies

(1—¢e)S cwl.(S)C(l+e)S, (8)

wheree — 0 ash — 0, andS = S(y) is the center stable box

5 =Q(y,w) x Q°(0, h),

provided that|z|, |2’|, |y|, |2] < h and h is small. The center stable measure
of therim of S, (1 4+ ¢)S\(1 — )5, is much less than the measure&f See
Fig. 10.

The unstable saturateSat“(A4), is the union of the unstable leavéig* that
are essentially contained iA. That is, W"\ A has leaf measure zero. We then
set

A" = exp(Sat*(A)).

(l - g).___s

FIG. 10. The rim ofS is much thinner thars'.
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A" consists of wholé/V-leaves and differs fromexp=!(A) by a zero set. The
z-slice of A* is

Az ={(y,2) € Er: (z,y,2) € A“}.

By constructionA® is invariant under th@V* holonomy,w®, ,(A%) = AY,. Let

us compare the concentration df; and A, in the center stable bo%. We

know that the Radon—Nikodym derivative of th* holonomy exists and is
continuous. See Pugh and Shub (1972). The local holonomy from a transversal
to itself is the identity map. Thus, #as— 0, the Radon—Nikodym derivative of
we . exists and converges uniformly to 1. According to (8),

m(A% N1 —¢)8) < m(wi, (A2NS)) <sup RNm(ALNS),

where supRN <1 + 6, andé — 0 ash — 0. Hence

v o m(ALNS)

<1+ 6m(Az:S)+ 6.

m(A%L N(1—¢)S)+m(S\(1-¢)S)
m(S)

Similarly, (1 — §)m(Ay @ S) — 6 < m(AY : S). This is valid for all
x, ' € @Q*(0, h). Therefore, for each fixed, the function

as: ¢ — m(A% : S)

is approximately constant.

Since the linear foliation ofI,A/ by center stable planes parallel to
E7° is smooth we can apply Fubini's theorem to find the concentration
of A* in a box Ry = R(xo,y,w,h). Since m(Ry) is the product
m(Q"(xo, w))m(Q*(y, w))m(Q°(0, h)) = 2mw"+h°, the concentration is

1
A" =— Ay
m( Ro) m(Eo) /|ac—ac0|§w m(Ay)dx
1

= m(Qv(zo, w)) /Iw—a:o|§w m(A% : S)dx,
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/

c
EP
FIG. 11. An unstable slab of boxes.

which is the average ovap*(zq, w) of the approximately constant function
as. Thus, if Ry is a second box with the same width and height, and whose
center has the samecoordinateR; = R(z1, y, w, h), then

m(A“ : Ro) = m(A“ : Rl)

This shows thatd* has approximately the same concentration in all boxes
of width w and heighth in any givenunstable slabQ“(0, ) x Q*(y, w) x
Q°(0, h). See Fig. 11. Sincel* differs fromexp; *(A) by a zero setexp™ A

also has approximately the same concentration in all the boxes of widithd
heighth in a given unstable slab. The same analysis applies to the stable saturate
A®, and we see thatxp~! A has approximately the same concentration in any
two boxes of widthw and height: that lie in a common stable slab. A stable slab
meets an unstable slab in a box of widttand height.. See Fig. 12. Therefore,
exp~! A has approximately the same concentration in all bakes @ with
width w and height:. It remains to show that these common box concentrations
approximate the cube concentration.

Casel. h%/? < w < h*3. Fix a box R* C Q of width w and heighth.
Cover @ by finitely many translates oR*, say {R;}, that meet one another
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FIG. 12. The intersection of an unstable and stable slab is a box.

only along common faces. Discard afy that misses? and calllU = |J R;.
Then

QCcUcCQO,h+w)

andm(U) = >~ m(R;). See Fig. 13 and recall th& = Q(0, h).
Sincew < h¥/3 < h,

m(U\ Q)
m(Q)

m(Q0, h+w)\ Q)
m(Q)

< =0

ash — 0. The concentration ofxp~! A in all the boxesR; is approximately
the same as it is in the bak*, and som(exp™t A : R*) = m(exp™t A : U).
Thus the concentration efkp—! A in U approximates its concentration @,
and, applying exp, we conclude that (7) holds i,

m(A:exp R*)—m(A:exp Q) 30

ash — 0.
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Fic. 13. The cubg) is contained in a unio®/ of boxesR;.

Case2. h*3® < w < h. Fix a box R ¢ Q of width w and heighth.
Cover R, rather than@, with finitely many boxes, sayR;}, that meet only
along common faces and have width exadify? and heighth. These boxes
are much thinner thaik. Let U be the union of theR; that meetR. Since
hY3 < w, h32Jw — 0 ash — 0 and

m(U\ R)
m(R)

In Case 1 we showed that the concentratior:gi—! A in all the boxesR; is
nearly the same and is nearly the same as its concentration Hence,

mexp P A: Q) = mlexp P A: Rj) = mfexp P A: U) =m(exp ' A: R),

which verifies (7) forR, m(A : exp Q) — m(A : exp R) =3 0 ash — 0. Fi-
nally, p is a density point ofd if and only if m(A : exp Q) — 1 ash — 0.
By (7) this is equivalent to one, hence all, box concentratiaiexp=: A : R)
tending to 1. Q.E.D.

Addendum. As h — 0, not only does the box concentratiof(exp™* A : R)
uniformly approximate the cube concentratiot{exp=* A : @), but also the
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slice concentrations (A" : RS®) andm(A® : Rj*) uniformly approximate the
cube concentratiom(exp™ A : Q).

Proof. The center stable slice?$® of R at z is the intersection o2 with
the planexz x E;*, and clearly it equals: x S, where S is the center stable
box in the proof of the theorem. Thus(A* : RZ®) = m(AY : S). It was
shown thatm(AY : S) is approximately constant, and its average value gives
the concentration ofxp~! A in R. The latter approximates:(exp=* A : Q),
and therefore so does(A“: R¢*). The situation withA® is symmetric.
Q.E.D.

The addendum to Theorem 4.3 describes how an essentialy)-6aturated
set behaves under theoldér germ of local holonomy. (All the geometric objects
have arbitrarily small size, and their proportions areld¢i controlled, hence
the phrase “ldlder germ.”) The next result, our main goal in this section, is a
bridge between germ behavior and global behavior.

Let f be a partially hyperbolic diffeomorphism @/, and letE* & E< ¢ E*
be its invariant splitting. Henceforth, we work under the standing assumption
that £+, E<, E* are sufficientlyg-Holder, i.e.,

V100m2 +1-1

0 ern =
> 10m

Note thaté,, solves the equation

1 4
1-m(——6,)=2
m(em ) 5

If 0 <n<mandf,, < <1then, since /- & decreases to 0 dsincreases

to 1,
1 1 1 4
1—n<§—9>>1—m<§—9>>1—m<9—m—9m>—3.

In particular, (9) implies tha# > (+/101 — 1)/10 > 9/10and forn = the fiber
dimension of the unstable or stable bundle,

1416 —n/0 > 4/5. (10)

THEOREM 4.4. The set of density points of an essentially §)-saturated set
is completely 4, s)-saturated. That is, ifg is a density point of an essentially
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(u, s)-saturated setd and if p; € W*(po) or p; € W?(po) thenp, is also a
density point of4.

The following covering lemma is the key. It is based on the standard
observation that the number of squares in a fine grid which meet the boundary
of a unit square is much less than the number needed to cover its interior. The
boundary ratioat scaler of a compact sef2 C R™ is

BR(Q,v) = %,

where N is the number of cubes in thegrid in R™ that meetdS2, and V is
the number of cubes in the-grid in R™ that meet.

We will show that the boundary ratio can be made small for embedded cubes
that are bi-Hlder or nearly bi-Hblder at appropriate scales. A homeomorphism
w: Qo — Q C R™ satisfies thed-Holder cube packing propert{at scale 5/4
with Holder constantd) provided that@), = Q(0, w) is ann-cube, and if
Q = Q(v, 1) C Qo with w?/* < i < w then

Qwv, 1it*/H) C w(Q) C Q(wr, Hp), (11)

Note that ifw is a8-bi-Holder embedding then it satisfies this packing property
for all small », not merely fory in some fixed range such as’/* < ;i < w,

and conversely, ifv satisfies this packing property for all smallthen it is 6-
bi-Holder. Thus it is reasonable to say thatifsatisfies the-Holder packing
condition then it isnearly 6-bi-Holder. Also note that (10) differs considerably
from the box packing condition (6). The latter concerns boxes, not cubes, and it
is quite stringent—the rim, which is the outer box minus the inner box, is much
thinner than the inner box. In contrast, the rim in (11) can be much thicker then
the inner cube. In (6) the rim is controlled at a linear scale while in (11) it is
merely controlled at a blder scale.

LEMMA 4. Assume tha# < 1is large enough that10) holds,1 + nf —n /6
> 4/5. If w: Qo — §& C R™ satisfies the&d-Holder cube packing conditiofl1)
andw is small then the boundary ratiBR(Q2, » = w?/4) is small. See Figl4.

Proof. Precisely, givere > 0 we assert there is &= é(e, n, ) > 0 such
that if w < 6 then BRE, v = w®/%) <e. We assumev < 1, sor < w. Consider
the covering ofg = (0, w) by the 2-grid. Its cubes have width, there are
Ny of them that meet)y, and N, of them that meeb()y. Note that this grid
covering is done on the domain efnot on its rangd?. Clearly,
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N1(2v)" > volume of Qg = (2w)"
N3(2v)™ < volume of the (4v)-neighborhood of 3@
< K1 (2w)"1(8v),

where K7 is a geometric constant. Thus,

N, > (9)" and Ny < K (E)"_l. (12)

174 1%

If Q is a 2/-grid cube that toucheg, but is not contained in it, translat@
to a cube®’ so thatQ’ C @, and @’ still contains@ n @Qy. Let Q be the
resulting covering of),. See Fig. 15.

All the cubes ofQ are insidel)y. Thus, ifQ € Q and@ touches?Q then by
(11), wQ is contained inside a cube of wid#fi®. A cube of widthH meets
at mostK3(H1? /v)™ cubes in thes-grid, where K3 is a geometric constant.
Thus

0 n
Ny < K, <i> No.

124

Fic. 14. Despite pathological behavior ©f the boundary ratio is small.
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el

Fic. 15. The covering o), by v-grid cubes and two cubes in the translated coveéhg

There areN; — N, cubes(@ € Q strictly interior to Oy, and by (11), theuv-
image of each contains a cube of widith'? /H. These cubes of width*/¢ /H
are disjoint and hence

(N1 — N2)(20M8 JH)™ < volume of Q < Nv™,
Making use of (12) we get

Ny _ K™= N, N
BR(Lv) = < — 5, N N — N,

N
N 3 N
<K né—n/o —1 1 — K, (5/4)(14nb8—n/6)—1 1 .
= eV YN TN, 6w N, — N,

By (10) the exponent ok is positive. Also, the fractionv, /(N — N») tends
to 1 asw — 0 since the cubes of width become much smaller than = width
Qp. It follows that if w < 6 then BR <e. Q.E.D.

As in GPS, a key concept in the analysis of concentrations is that of a
“julienne,” a tall, thin, non-linear figure (it resembles a slivered vegetable in
a fancy restaurant, or less elegantly a shoestring style french fry) that is fibered
by local center manifolds. In this paper the definition of julienne will be slightly
different. We take the figures called juliennes in GPS and intersect them with
a center stable plane. Such intersections will be the juliennes of this paper.
Accordingly, we define a local foliatiod of E* by £ = E7° NWe. Because
We meetsE}® transversally, the leaves gf have dimensior, and the tangent
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field 7L is #-Holder, since that o¥V°* is. See Fig. 16. At the originfl’L is
EZ. Given a setS C E;, we define the (center stablgjienneover S as

J=J(S, h) =] Ly, ),
yeS

where L(y, h) is the intersection of thel-leaf through y and the set
B> x Q°(0, k). ThusJ has height: and is fibered by leaves of. Usually
S is a stable cub&)®. See Fig. 17.

The next lemma compares the juliennt = J(Q°, h) and the box
R =@Q® x Q°(0, h) whose common base is the stable cdpe= Q°(v, w).

LEMMA 5 (Julienne Nesting; see p. 318 of GPSEivene > Othere isé > 0
such that ifQ* 0 Q*(0, h) andh?/2 < w < h < § then

(I1-e)RCJC(1+¢)R. (13)

See Fig.18.

FiG. 16. The foliations = Ecs N W=,
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FiG. 17. The julienne/ is a slice of what we called a julienne in GPS.

G +oR

FiG. 18. J nests between slight dilations &F.
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Proof. The foliation £ has local holonomy maps

A E;(h) X0— Ep Xz

According to Theorem 4.1, the family of holonomy maps, } is translation-
like. If his small then

(1-9)Q° C A (Q%) C(1+e)Q°. (14)

The map). is the effect of sliding along th€-leaves, and’ is fibered by these
leaves, so (14) means that theslice of J, A.(Q?), is packed between the
slice of (1 — ¢)R and of(1 + ¢)R, which verifies (13). Q.E.D.

So far the analysis has been entirely local. We now turn to holonomy at
unit distance. Suppose that € W*(pg, 1), the unit unstable manifold af;.
Rescaling the Riemann structure, we may assume that all the leav®¥ off
size< 2 lie in foliation boxes, so their holonomy is unique and purely local.
The exponential images @, and £ are transverse té)* atpo andp;. Call
themr, andr, and lift theW*-holonomy maph* to 7'M by commutativity of
the diagram.

According to PSWw* is a#-bi-Holder homeomorphism onto a neighborhood
of the origin in E77. Near their origins, both center stable planes are foliated
by £, their intersection witAA°*. We write Ly and L; to distinguish£-leaves
in E7> from L-leaves inE7’. Dynamical coherence implies that the strong
unstable foliation and center foliation are subordinate to the center unstable
foliation. Each center unstable leaf is fibered by unstable leaves and center
leaves. Thusw* sends theC-foliation of £}’ to the £-foliation of 77,

w*: Lo(v) — Li(w“v).
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In particular, this lets us express the center unstable holonothyE; (p) —
E; as a compositiony® = A o w* whereA is projection along the foliation
Lin EZ®. Thus,w" sendsL(y) to L(y;) wherey; = w®(y). Note thaty; need
not belong tolW*(y), sow"(y) need not equay;. See Fig. 19.

LEMMA 6. w"“: Lo(y) — Li(y1) is a C! diffeomorphism to its image and it
has locally uniformly bounded" size.

Proof. This is Theorem B in PSW. Q.E.D.

We fix a constaniA = 1 that dominates the Lipschitz behavior of all these unit
holonomy mapsv*, restricted to the-leaves. Undew", points of a common
L-leaf can neither spread apart by a factor more thamor contract together
by a factor less than A/

Proof of Theoren#.4. Let A be an essentiallyw( s)-saturated set and let
DP(A) be its set of density points. We must show thafpif O DP(4) and
p1 € W¥(po) or p1 € W3(po) thenp; O DP(4). Since all hypotheses and

exp(vy)

exp(y,)

FiG. 19. The unit unstable and center-unstable holonestyy) = vy, w*(y) = y;.
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lemmas are symmetric in the stable and unstable modes, we may assume that
p1 € WH*(pg). It is also no loss of generality to assume thatlies in the unit
unstable manifold ofy. For we can form a finite chain of points fropy to
p1, each in the unit unstable manifold of its predecessor, and argue inductively
that each point in the chain lies in DR,

As discussed in Lemma 6, the holonomy along' is expressed as &bi-
Holder embedding.*: E;°(p) — E,7. By Theorem 4.3 and its addendum,
to show thatp; is a density point of4 it suffices to show thatd* has high
concentration in some small, well-shaped center stable bdx;in Recall that
A" is the unstable saturate ef lifted to 7°A/. It is invariant underw®.

Specifically, we setv = h/> v = w4, andh; = h/2A. We claim that
m(A*: S1) — 1 ash; — 0, where$S; is the center stable box

S1= Qi(ov V) X Q(lj(ovhl) = R(I:S(Ovl/v hl) - Q(I:S(Ovhl) C E;f

We continue to write the subscript 0 or 1 to distinguish object$;jn}/ from
those inT,, M. Note thath®? = v andh, is on the same order ds The box
S1 has good élder proportions since, whem, is small,

W32 < 32 =y < hy.

According to Theorem 4.3 and its addendum, high concentratiaAt“oin S;
then implies high concentration ekp= A in Q1(0, k1), sop; is a density
point of A.

Let.Jo = Jo(Qo, h) = Jo(0, w, h) be the julienne inE;*, based on the stable
cube g = Q§(0, w) of width w. We know thatA* has high concentration
in Jy ash — 0. Since the Radon—Nikodym derivative of* is bounded and
bounded away from zero, antl* is invariant,A* has high concentration in the
image julienneJ; = w*(Jp). The proof of Theorem 4.4 would be complete
(and trivial) if the image julienne were a julienne, but there is no reason to
expect this. Instead, using the-grid, we will julienne the image juliennewe
will sliver J; thinner.

The base of/; is the embedded-cube{2 = w**(Qo) C E, . Eventually we
will show thatw<* satisfies the&d-Holder cube packing condition, and so small
stable cubes i, cover{2 nicely. First we check thaf; is reasonably small,

J1 C J1(Q, 2Ah) C Q5°(0, 2AR). (15)

If v e Jothenv € Lo(y, h) for somey € Qo. Sincew" is 6-Holder,
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W ()| < Kly|* < Kuw’.
Now Kw? < h, since (9) implies that@5 > 54/50 > 1, and thus
w? = K%/ « .

This means we can apply Lemma 2 ¢&(y) and conclude that it *(y) €
L1(y1) with y; = w®(y) then for smallh,

ly1| < Kw® + K'(Kuw®)(Kuw®)? = Kuw® + K"wf < 2Kw?, (16)

See Fig. 20. Thus (16) implies

L,(y;, 2Ah)

Q7(0, 2Ah)

FiG. 20. Julienne inclusions.
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Q C Q3(0,2Kw?) € Q3(0,hy) C Q3(0,2Ah), (17)

and therefore the second inclusion of (15) follows from Lemma 2. Sirfcdi-
lates theL-leaves by at most the factdr and |w“(y) — y1| < 2Kw? < h for
small h, we see that

w"“(Lo(y,h)) C Li(w"(y), AR) C L1(y1, 2Ah). (18)

Because/; is the union of the leavekq(y, i) for y € Qp, (17) completes the
proof of (15). The same reasoning implies that

Ly, ) Cw¥(Lo(y, 1)), (19)

whereh; = h/2A. Forw® shrinks Lo(y) by a factor no less than A/ and the
centerpointw®(y) of w*(Lo(y, h)) satisfies|w(y) — y1| < 2Kw® < h. Let-
ting » vary in Qq, (19) becomes

Jl(Q,hl) C Ji. (20)

Formulas (15) and (20) express the “relative smallness of the ragged top and
bottom” of the image julienne, the crucial estimate in GPS. See Fig. 21.

Next, we show thatw* has the#-Holder cube packing property (11).
Consider a cub&@3(y, 1) C Qo = Q3(0, w) in E3, with w®* < 4 < w.
Sincew" is #-Holder,

w"(Q4(y, 1)) C Q7 (w*(y,0), Kpi®).

According to Theorem 4.1, the projection alodgn E,” is translation-like, and
so forw small, w® = X\ o w" implies

w(Q5(y: 1) C MQF (W (y,0), Kp?)) C Q1w (), K’ + (Kw’)u®).

For the distance we slide along is at mostKw?, and 7L is #-Holder. As
we observed above, (9) implies that 2 9/5 > 5/4, and so whew is small,
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(1+¢) Ry(Qq, 2Ah) | .

(1—¢€) Ry(Qy, hy)

FiG. 21. The image julienndy, its ragged top, and the image of the stable cGhe

w?® < w/* < p, which implies that the last set is contained @ (w<*(y),
2K %), That is,

W (Q5(y, 1) C Q5 (w™ (1), 2K 1),

which is half of thef-Holder cube packing property. The other half is proved the
same way(w*) ! is §-Holder and projection along in E7: is also translation-
like. The Holder constant in (11) i$/ = 2K.

Now we can apply Lemma 4 to“*. As h; — 0, most of the cubeg); in
the 2/-grid on £ that meetQ2 = w**(Qo) are interior to it. These cubed,
have widthy = w°/* < w. Set

Q ={Q1 : Q1 meets Q},
Q* ={Q; : @ is interior to 2}.

There areN cubes inQ and N* = N — N3 cubes in@Q* As h; — 0, Lemma
6 states thatV* /N — 1. From (15) and (20), we infer that for smai|
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U A@uh)ychc | A(Qn24n). (21)

Q1eQ* Qe

According to Lemma 5, a julienne nests between two boxes, a large one and a
small one, the large one being just a slight dilation of the small one. Under the
mapw", a julienne becomes geometrically much messier, but it has a remnant of
the nesting property: an image julienne nests between a unidhlafge boxes
and a union ofN* = N — Ny small boxes, the large ones being uniformly
bounded dilations of the small ones. See Fig. 22. For by Lemma 5, (21)
becomes

U (1 d E)Rl(Ql, hl) C Jl C U (1 +5)R1(Q17 2Ah)7 (22)

Q1€Q" Q1€Q

where the notatioR®, ()1, k1) stands for the center stable b@x x Q<(0, hy).
Thus, J; is covered byN big boxes(1 + ¢)R;(Q1, 2Ah), Q1 € Q, and it
containsNV* small boxes(1 — €)R,(Q1, h1), @1 € Q*. The small boxes are
disjoint. Each big box has volum@(1l + £)r)*(2(1 + €)2Ah)° and each small
one has volumé2(1 — £)»)*(2(1 — e)h/2A)¢. The measure ratio of the small

FiG. 22. The image julienne nests between small boxes and big ones.
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boxes to the big ones is bounded away from Ohas— 0. (Its lim inf is
(1/2A)%¢.) Thus, a major portion of; is filled with the unionU of these small
boxes(1 — e)R1(Q1, h1).

The setA* is highly concentrated in/y, and as remarked above, it is also
highly concentrated in/; = w*(Jy). Sincel/ occupies a major portion of,
this forcesA" to also be highly concentrated U,

m(A*: w*(Jp)) =1=>m(A*: U) =1L

It follows that A* is highly concentrated in at least one of the small boxes

(1—€)R1(Q1, h1). Sincee — 0 ash; — 0, A* becomes highly concentrated

in the undilated boxR; = R1(Q1, h1). This box R; has the same proportion

as the boxS;—it has widthz and height:;—and these proportions were al-

ready shown to be good. By (17R; is contained in the center stable cube
°(0, hy). According to the addendum to Theorem 4.3, high concentration of

A" in a single center stable bak; C Q$°(0, k1) of the right proportion im-

plies high concentration in all other well-shaped center stable boxes (such as

S1), and this implies thatxp~! A has high concentration in the corresponding

m-dimensional cube. Therefoyg is a density point of4. Q.E.D.

Remark. The actual shapes of the julienoig and its image/; = w*(Jp)
underW*-holonomy can be quite messy. The boundary/g@fconsists of two
parts: its vertical boundary is the union of the leavggy, h) in £ that pass
through pointsy € 9Qq while its horizontal boundary is the union of the
leaf boundaries)Lq(y, h) asy varies inQy. Thus Jy has a square base, a
flat horizontal boundary, and a gnarly, wrinkled, striated vertical boundary. Its
image is worse,J; has a bases®*(Q) that is homeomorphic (but probably
not bi-Hélder homeomorphic) to a cube, an equally awful vertical boundary
foliated by the leaves of throughdf?, and a ragged (no longer flat) horizontal
boundary. See Figs. 23 and 24.

In GPS the unstable, center, and stable dimensions were all equal to 1, so the
center stable plane had dimension 2. The ragged pa¥t/of its horizontal or
“top and bottom” part, was treated in the same way we do here: by construction,
it is much smaller than the height di. In GPS the base af, was a segment,
for the only homeomorph of a 1-cube in a line is a 1-cube. Thus, the base of
presented no pathology. Similarly the vertical boundaryptonsisted of two
L-leaves, and clearly, individual leaves £fgive no difficulties. The novel part
of the proof presented above is Lemma 4—despite the messy vertical boundary
of J1, a major portion of its interior consists of linear boxes.

COROLLARY 1 = THEOREM A. The diffeomorphisnf: M — M of the com-
pact manifold} is ergodic if it satisfies the following hypotheses:
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FiG. 23. A julienne and its image when= 2 andc = 1.

()  fis C? and preserves volume.

(iiy  f is partially hyperbolic with splittingt™ & E¢ & E°.

(i) E“, E°, E* are sufficientlyp-Holder.

(iv) FE“, E°, E° integrate to invariant, dynamically coherent foliations
W, We, we,

(v) (FE™, E®) has the essential accessibility property.

Proof. By Theorem 4.2, iff is not ergodic then there exists a measurable set
A C M with intermediate measure that is essentiglly s)-saturated. Essential
accessibility of(E*, E*) means that almost every pair of points id x M
is joined by a finite(E“, E*)-path. The set DRA) x DP(M\A) has positive
measure ind/ x M. (Except for a zero set it isl x (M\A).) Hence there
is a(£*, £°)-path from some point of DRL) to some point of DPM\ A), in
obvious contradiction to Theorem 4.4, Q.E.D.

COROLLARY 2 = THEOREM B. Assume that the diffeomorphisfnM — M
of the compact manifold/ satisfies
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FiG. 24. A julienne and its image when= 1 andc = 2.

(i) fis C? and preserves volume.
(iiy [ is partially hyperbolic with splittingts® & E°€ & E*.
(i"y E“, E°, E* are C* and the spectral bunching conditions of Section
are valid.
(v) FE“, E°, E* integrate to invariant, dynamically coherent foliations
W, We, we.
(v') (F", E®) has the (complete) accessibility property.

Thenf is stably ergodic.

Proof. Let f/ be a volume preserving diffeomorphism ti@zt approximates
f. We claim thatf’ is ergodic. It suffices to check conditions (i)—(v) in the
preceding corollary forf’. (i) is true by assumption. (ii) is true by HPS. (iii)
is true by the corollary to Theorem 2.1. (iv) is true by Theorem 2.3. (v) is true
by Theorem 3.4. Q.E.D.

COROLLARY 3 = THEOREM C. The time one map of the geodesic flow on a
manifold of constant negative curvature is stably ergodic.

Proof. It suffices to check conditions (i)—(vin the preceding corollary. (i)
is true because every geodesic flow is smooth and preserves volume. (ii) is true
by the Lobachevsky—Hadamard Theorem.)(is true becausé/ hasconstant
negative curvature. (iv) is true because partially hyperbibdies always have
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dynamically coherent foliations. '(Ms true becaus&™ @ E* is a contact bundle.
See Katok and Kononenko (1996). Q.E.D.

5. ALGEBRAIC STABLE ERGODICITY

In this section we recall some basic facts about translations on homogeneous
spaces of Lie groups and prove Theorem D.

Let G be a Lie group, with identity: and right invariant Riemannian metric
<, > defined on the tangent bundled LetI" C G be a discrete subgroup so
G/T is a differentiable manifold of the same dimensionCasvhich inherits a
Riemannian metric frond.

Givenh € G we denote byl;,, R;,, andC}, the maps defined by, (g) = hg,
Riu(g) = gh and Cy(g) = hgh™! for g € G, i.e., left translation, right
translation, and conjugation by, respectively.

Let £ C T.G be a vector subspace @f.G. Then define£ ¢ TG to be
the right invariant vector subbundle @G defined byE, = DR, (¢)(E). E,
defines a vector subbundle @f(G/1') as well since it is right invariant; we
continue to denote this bundle Wy, using £r- if confusion is possible.

ProPOSITIONS.1. FE C T.G is an invariant subspace fabCj(e): T.G —
T.G iff E ¢ T(G/T) is an invariant subbundle fobLy,: T(G/T) — T(G/T).
Moreover, contracting subspaces Bfcorrespond to contracting subbundles
E, expanding correspond to expanding, and in fact any direct sum decomposi-
tions filtered by exponential rates of contraction or expansions correspond.

Proof.

DLh(g)Eg = DLh(g)DRQ(G)E
=DR,(h)DLy(e)E

sinceRyLy = Ly Ry.
Ejg = DRyy(e)E = DR,(h)DRy,(c)E.
Thus DLy (9)E, = B, iff
DLy (¢)E = DRy, (e)E,

DR;'(h)DLy(c)E =E,

or
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DC}L(C)E =F.

That contracting subspaces correspond to contracting subbundles, etc., follows
from the same computation using the right invariance of the Riemannian
structure

DR 05)DL )R ) DI 93

Henceforth we denot®C),(e) by Ad(k). If we identify 7.G with the Lie
Algebra g of right invariant vector fields orz, then it is a standard fact that
Ad(h) is an automorphism of the algebga Since Ad#h) is linear the main
content of this assertion is the following standard proposition.

PrROPOSITIONS.2. For X, Y € g,
[Ad(h)X,Ad(R)Y] = Ad(h)[X,Y].

Here[, ] is the Lie bracket of the vector fields.

Recall that a subalgebaC g is an ideal if[g, h] C . Lete; andej be the
contracting and expanding linear subspaces offAdn g and ¢, the central
subspace.

PrOPOSITIONS.3. Let[;, C g be the Lie subalgebra of generated by
andey. Thenl,, is an ideal ing.

Proof. First note that if

Ad(h)(X) =AX with [A\| =1
and
Ad(W)(Y) =pY with |u| <1
then
Ad(R)[X,Y] =pA[X, Y] and |pA| < 1.

It follows that [e},, e5] C e; and kg, eit] C ¢;;. Now from the Jacobi identity
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and induction it follows thatdj,, [;,] C [,. Sincele}, ] C I, and[e;, ] C 1,
by definition(;, is an ideal. Q.E.D.

CoOROLLARY 5.1. If (7 is a simple group and; & ¢ # 0 then the Lie Alge-
bra generated by; ande} is all of g.

Proof. Since is simpleg has no non-trivial ideals. Q.E.D.

PrROPOSITIONS.4. If GG is simple and foh € G, ej ande} # 0, thenLy, is
a partially hyperbolic dynamically coherent diffeomorphism.

Proof. It follows from Proposition 5.2 as in Proposition 5.3 thgt ¢f, ¢},
e® @ e, ande* @ e are all subalgebras of and hence tangent to smooth
foliations of G. Proposition 5.1 gives the rate conditions. Q.E.D.

We sayg € G has finite order if there is a non-zero integersuch that
gt =e.

PrROPOSITIONS.5. If GG is compact, then the elements of finite order are dense
in G.

Proof. Letg € G. Then{g"},.cz is a compact abelian group, hence a torus
product a finite abelian group. As the elements of finite order in the torus are
dense we are done. Q.E.D.

COROLLARY 5.2. If G is a simple group ther; ¢ c; # 0 iff Ly, is partially
hyperbolic, dynamically coherent arit, E* have the accessibility property.

Proof. By Proposition 5.4¢° & ¢* # 0 iff Ly is partially hyperbolic and
dynamically coherent, moreovek®, E* are spanned by the right invariant
vector fields. Now Chow’'s Theorem 3.3 and Corollary 5.1 finish the proof.

Q.E.D.

We proceed to the proof of Theorem D. First we need two propositions.

PrOPOSITION5.6. Let A € SL(n, R) have eigenvalues;, ..., A, written
with multiplicity. Then the eigenvalues Afl(A) are )\i)\jfl forj #¢and(n—1)
ones.

Proof. If A is diagonal thenk;; the matrix with 1 in thejjth place and zero
elsewhere is an eigenvector with eigenvamej_l. Ey —Fy fork>1is an
eigenvector with eigenvalue 1. i is semi-simple, it is conjugate to a diagonal
matrix D and Ad A) is conjugate to A@D). So the proposition holds for all
semi-simple matricest. As the semi-simples are open and dense ir:SIR)
it holds for all of SL{n, R) by continuity. Q.E.D.

PROPOSITIONS.7. Let M € SL(n, R) have all its eigenvalues on the unit
circle. Then there are orthogonal matricés; € SL(n, R) and N; € SL(n, R)
such thathOij_1 converges tal/ asj — oo.
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Before proving Proposition 5.7 we prove Theorem D.

Proof of TheorenD. (a) is equivalent to (b) and (c) by Propositions 5.1 and
5.6 and Corollaries 5.1 and 5.2 since(8LR) is simple. (b) implies thaL 4 is
ergodic by Theorem 1. As matrices with eigenvalues off the unit circle are open
in SL(n, R), (a) and (b) imply (d). To prove that (d) implies (a), we proceed
by contradiction. Suppose that all the eigenvaluesdofre of unit modulus
and thatl/ is a neighborhood ofi. Then there is a conjugate of an orthogonal
matrix in U by and hence a finite order matriX in /. But Lp is not ergodic
for finite order B and hencel. 4 is not stably ergodic. Q.E.D.

Remark. The hypothesis thal’ is uniform discrete may be weakened to
I’ discrete and S{n, R)/I' of finite volume. Then (a) through (d) remain
equivalent. By a theorem of Moore (1968), is ergodic iff {A™},,cz is not
compact. The rest of the proof is the same. We don't know if stable ergodicity
amongC? volume preserving diffeomorphisms remains true.

We now turn to the proof of Proposition 5.7. First we prove some lemmas.
Let R=R. ,=(5,2). Let Ry . s = Ry be them x m matrix

I 0O 0
0 R 0 ,
0 0 Irn—k—?

wherem — 2>k = 0. Let ’Rc’ s=R=Ry_2Rm_3 R Rp.

LEMMA. R has the following form. Each entry is a monomias’c! where
7+ 1< m—1. Above the first super diagonal all entries @eOn the first su-
per diagonal all entries equal. The diagonal is: then(m — 2) ¢? ’sthenc. The
jth subdiagonal is divisible by’.

Proof. The proof is a simple induction om. Q.E.D.

Remark. Henceforth we assume that + s> = 1 so thatR; and henceR
are in the special orthogonal group.

LEMMA. Lets; — 0,¢; — 1asj — oo anda # 0. Let

i.e., D; is them x m diagonal matrix withith entrya’s’. Then
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Dj’ch,Sij_l — 1

Proof. The (i, k)th entry of R, ., is multiplied by a*~s*~, so the first
superdiagonal oDchjjstj_l is e~ while the kth subdiagonal is multiplied
by (as;)*. Thus ass; — 0 each subdiagonal entry tends to zero.

A

LetR. s = R be obtained fromR., ; by replacing thei, k)th entryR; ; by

Rip O
O Rig

SOR is @ 2n x 2m matrix. Otherwise saidRR @ I wherel = (}9) or R

is the matrix obtained by considerirfg as a complexn x m matrix and then
expressingR as a real 2 x 2m matrix. This last interpretation oR makes

the following lemma clear using complex arithmetic instead of real arithmetic

in the lemmas above.

LEMMA. Lets; —0,¢; — landA = (% ), I=(Y). Let

—So0 €0

S;A
R S7A? O
D; =
O
S}’lAnl
Then
I A1
I A7l O
DRe, o, D7 —
O A~

Note. R.,,s, is an orthogonal matrix.
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LEMMA. Let

A T O

<
I

O A T
where A is either4+1 or a2 x 2 matrix which is a rotation and thel x 1 or

2 x 2identity, respectively. Then there exist orthogonal matriggsnd invert-
ible matrices/V; of determinant one such thﬂijij_l — M.

Proof. M = SU =US, where

A—l
A

S = and U= O
A oA
1% I

Note thatD; and D; of the lemmas commute withi. Let DjRij_l - U

or D;R;D7' — U as the case may be. ThéSR;D;' — SD;R;D;* =

SU = M and D;SR;D;* — SD;R;D;* = SU = M, respectively. Note

that SR; and SR; are orthogonal so we are done. Q.E.D.
Proof of Proposition5.7. It suffices to prove that for somd O SL(n, R)

that there existV;, O; as above WitthOij_l — M and M’ = AMA™

So we may assume that

M o
M: s
o M

where eachV; is a Jordan block,

4 1 0

M; =
I
0 A

and A; is either+1 or a two by two rotation matrix and is the one by one or
two by two identity. The last lemma now finishes the proof. Q.E.D.
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Proposition 5.7 can be rephrased to say that il SL(n, &) and Ad A) has
all eigenvalues on the unit circle theti is in the closure of the union of the
compact subgroups of $h, R).

We turn our attention to general Lie groups. We make a conjecture in this
context which amounts to characterizing stable ergodicity as partial hyperbolicity
and essential accessibility.

If A is an automorphism o7 such thatA(I') = I" and g € G then we
call the induced diffeomorphisnig4: G/T" — G/T" affine. Given an affine
diffeomorphism Adyg) - DA(e) is an automorphism of the Lie algebgeof G.

The contracting and expanding subspaces of this automorphism generate an ideal
hin g. Let H C GG be the connected normal subgroup(®fwvhose Lie algebra
is . Let G be a connected Lie group ahda uniform discrete subgroup &f.

Conjectures. Lg- A is stably ergodic among affine diffeomorphisma®fl’
iff L, - A is partially hyperbolic and

Thus in the Lie group setting stable ergodicity would coincide with partial
hyperbolicity and essential accessibility. We don’t know h6W perturbations
affect the ergodicity in the casé#’ = G but H # G. This is the situation of
the ergodic automorphism of tori for example. They may be stably ergodic and
we have conjectured that at least the genéficperturbation is. Conjecture 5
is proven in one direction in Brezin and Shub (1996) with the added hypothesis
that the pairG, B is admissiblein a certain technical sense. It is true for tori
and nilmanifolds (see Parry (1970)) and for lattices in semi-simple Lie groups
Brezin and Shub (1996).
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