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HOLDER FOLIATIONS

CHARLES PUGH, MICHAEL SHUB, aND AMIE WILKINSON

1. Introduction. Tt is the goal of this paper to estimate the regularity of the
holonomy maps of certain dynamically invariant foliations. They arc 6-Hoélder.
This Holder regularity is a crucial component of the analysis appearing in our
papers, Pugh and Shub [12] and Wilkinson [16], where we establish stable
ergodicity for a wide class of dynamical systems, a class which includes Anosov
diffeomorphisms, the time r-maps of many Anosov flows, and many examples
defined on homogeneous spaces of Lie groups. We state here our main results,
place them in context, and then go on to explain them more fully in §2. The
notation m(T) stands for the conorm (or minimum norm) of a linear transforma-
tion, m(T) = |T"| 7.

THEOREM A.  Suppose that f: M — M is a C? diffeomorphism, partially hyper-
bolic with respect to the splitting TM = E* @ E° @ E°. Then, for some 6 € (0, 1) and
all p e M, its expansion and contraction rates satisfy a 6-pinching condition

ITINTI <m(T3f)  and VTS| < m(T2)m(TZf).

For any such 0, the local unstable and stable holonomy maps are uniformly
0-Holder.

THEOREM B. Suppose that f: M — M is a partially hyperbolic C? diffeomor-
phism and [ leaves invariant a foliation %™ tangent to the center direction E-. (The
tangent plane to the W*-leaf at p is E;.) If the expansion and contraction rates
satisfy the center bunching conditions

ITITA <m(T;f)  and 1T < m(T2f)m(TSS),

then the local unstable and local stable holonomy maps are uniformly C' when
restricted to each center unstable and each center stable leaf, respectively.

A C? volume-preserving diffcomorphism of a compact, connected manifold
M — M is stably ergodic if it and all its C? small volume-preserving perturbations
are ergodic. In 1962 Anosov [2] proved that totally hyperbolic diffeomorphisms
are stably ergodic. By contrast, the theory of Kolmogorov, Arnold, and Moser
produces open sets of nonergodic diffeomorphisms that have no hyperbolicity at
all. In a series of recent papers, we have been studying the mixed situation, in
which the dynamical system is partially, but not totally, hyperbolic. Our main
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518 PUGH, SHUB, AND WILKINSON

theme is that a little hyperbolicity goes a long way toward guaranteeing stably
ergodic behavior, and that such behavior is more prevalent than one might have
thought. Our analysis proceeds by examining the stable and unstable manifold
structure of a partially hyperbolic dynamical system, especially the holonomy
along the stable and unstable leaves. In the Anosov case (totally hyperbolic), the
stable and unstable leaves have complementary dimensions and are transverse to
each other, while in the partially hyperbolic case there is also a center (fairly
neutral) direction, so transversality between stable and unstable leaves is lost. The
regularity results we prove in this paper are used to overcome the technical diffi-
culties caused by this lack of transversality.

J. Schmeling and Ra. Siegmund-Schultze [13] have proved Holder holonomy
results like Theorem A when the diffeomorphism f is totally hyperbolic. Even
in this restricted case, our proofs are simpler. Hélder regularity results that are
analogous to Theorem A, but stated in terms of the splitting TM < E*@ E° @ E*
instead of the holonomy maps of the foliations, have been proved by Boris
Hasselblatt [9]. As Hasselblatt points out, they neither imply nor are implied by
holonomy results such as Theorem A.

The organization of the rest of the paper is as follows. In §2 we define the
concepts relevant to Theorems A and B and discuss some examples. In §3 we
show how to dynamically trivialize a vector bundle. It is a result of independent.
interest, especially useful in simplifying proofs that involve the invariant section
technique. Also in §3 we discuss a Hélder invariant section theorem. In 8 we
prove Theorem A, and in §5 we prove Theorem B. In §6 we discuss the general
issue of regularity of foliations.

2. Partially hyperbolic dynamics., Recall that the norm, conorm, and bolicity
(or condition number) of a linear transformation T from one normed linear space
to another are

ITH = sup {|Tvl: |v| = 1},
m(T) = inf {| To|: |v| = 1}, and

_Iim
m(T)"

If |[T| <1, then T contracts the length of cach vector by a factor < 1, while if
m(T) > 1, then T expands the length of each vector by a factor > 1. When Tis
invertible, m(T) = | T~ and bol(T) = T | T7*|. Bolicity measures the extent
to which a linear transformation distorts the shape of the unit ball. If E is a
vector bundle over a base space X, and the fibers of E are normed linear spaces,
and if F: E - E is a vector bundle morphism, then we write |F|| = sup | F, || and
m(F) = inf m(F,), where F,_ is the restriction of F to the fiber E_, and x varies over
the base space X. If |F| < 1, then F contracts the bundle E, while if m(F) > 1,
then F expands it.

bol(
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Let f:M — M be a diffeomorphism of a compact, connected, boundaryless
manifold M, and assume that TM splits as the sum of three continuous vector
subbundles,

TM=E"@E®E,

each of which is invariant under 7, and E* # 0 # E*. We say that f is partially
hyperbolic if, with respect to some Riemann structure on TM, Tf expands E*, Tf
contracts E*, and forall pe M

(1) I <m(T;f) and TS| < m(TEf),

where T*f, T*f, T*f refer to the restrictions of Tf to E¥, E; E*. Equation (1) means
that T°f contracts more sharply than T%f does, while T"f expands more sharply
than T*f does. Since M is compact, (1) can be rewritten as

(') swpILSIT <1 and  sup T3/ IITESf <1,

the suprema being taken as p varies in M. The bundles E%, E, E* are called
unstable (or strong unstable), center, and stable (or strong stable), while the bun-
dles E¥ = E*@® E° and E= = E°@® E* are called center unstable and center stable.
The diffeomorphism f is uniformly partially hyperbolic if it is partially hyperbolic
and if (1) can be strengthened to

[P ITfl <m(Tf) and [T <m(T*).

If E° is the zero bundle, E° = 0, then (1) is vacuously true, and a partially hyper-
bolic diffeomorphism f is totally hyperbolic, or Anosov. Note that the 6-pinching
condition

3) IT/NT <m(Tyf) and |Tif) < m(T;)m(T;f)°

in Theorem A is merely (1) with factors | T;f1* and m(T3f) inserted. Thus every
partially hyperbolic difftomorphism satisfies the 6-pinching condition for some
B €(0, 1); (3) is not an additional assumption, it merely expresses the extent to
which (1) can be relaxed. In contrast, consider the center bunching condition in
Theorem B

(4 ITMT <m(Tif) and TSl < m(Tf)m(T; f).

It is (1) with factors | T /| and m(T;f) inserted, and it does present an additional
assumption. One can rewrite (4) in terms of the center bolicity b, = | T /m(TS)
as

1
@) ITAI<,  and b, <m(T}f).

(4
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This concludes our discussion of the hypotheses in Theorems A and B, and we
pass to the conclusions. According to Hirsch, Pugh, and Shub [10], there are
unique f-invariant foliations, %™ and ¥ tangent to E* and E*. Although the
foliations #™ and #°* have leaves of class C*, this does not make them C! folia-
tions. (See §6 for a more wide-ranging discussion of these regularity issues.) What
are the holonomy maps of such foliations and what does it mean that they are
Hélder? In the present section, we will analyze the holonomy of a general folia-
tion & of M, such that each leaf ¥, is tangent at p to a plane F, c T.M, and
P — F, is a continuous scction of the Grassmannian of TM.

At two nearby points P, g€ M, we draw local transversals T, T, to F and
examine the effect of sending ye 1, to h(y) e 7, by sliding along the leaves of #.
The map h: 7, - ¢_ is the holonomy of &. ‘

The foliation & has locally 6-Holder holonomy if

dy(h(y), h(y)) < Hd,(y, y' ).

where y, y’ € 1,, and d,, d, refer to natural metrics on T,s Tqs SAY, path metrics with
respect to a fixed Riemann structure on TM. The constant H is the Holder con-
stant, and it should be independent of the chojce of “reasonable” transversals, We
now spell out just which transversals to a foliation & are reasonable. -
Fix a smooth Riemann structure on T™M, and let exp be its exponential map.
Fix a positive number L. Let F* be the orthogonal complement to F = T#,

/ 7

T
» T

‘\ y 7, B 3 i
¥ i

.

FIGURE 1. The holonomy map h of
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TM = F @ F*. Consider a C! function
t: F(3)—~F,

such that ¢(0) = 0 and the derivative of 7 has norm <L everywhere in F;'(8). If &
is small, then the disc

exp({v + t(v)e ,M:ve @)} =1

is well defined and transverse to &. In fact, by compactness of M and continuity
ofo,thercisaé>0suchthatal]suchdiscsr=r,ofsizc63tallpointspeM
. are uniformly transverse to &, Let T,, T, be two transversals of size 6. Assume
that p, g lie on a common leaf of & and that they can be joined by a path y of
length <1 in the leaf. Because & is a foliation, y lifts continuously to nearby
leaves. Thus the holonomy map h: 7,(p) - 7, is well defined at all points y with
dy(y, p) < p. Compactness implies that we can choose a uniform p > 0 for all
such transversals 7, 7,. Here then is the conclusion of Theorem A relative to the
foliation w™:

There are constants p, H such that for all points p, g which can be joined by
a path of length <1 in a common leaf of %™ and for all transversals 1, 7, as
above, the holonomy map h: 7,(p) = 7, is well defined and, relative to the
Riemann path metrics on 1,, 7,, it satisfies the Holder estimate

(%) d,(h(y), W(y) < Hd (y,y)*  forally,y e1,(p).

Theorem A also makes the same assertions for the stable foliation #7. Note that
reversing p and g shows that the inverse of h is also Holder, so Theorem A
actually asserts that the holonomy maps are uniformly 6-biHaolder.

In Theorem B we assume that f leaves invariant a foliation ¥ integrating the
center direction E. The fact that the partially hyperbolic diffeomorphism f leaves
#* invariant is equivalent to f being 1-normally hyperbolic at #~. Normal
hyperbolicity is investigated at length in [10], and it is shown that through each
leaf L of an invariant 1-normally hyperbolic foliation there pass a weak unstable
leaf and a weak stable leaf. They are C* leaf immersed and meet transversally at
L; they are composed of strong unstable and strong stable leaves, respectively. In
our case, L = W* and the two leaves are W™ and W<. Thus %™ foliates W™ and
#~ foliates W*. Theorem B asserts that the foliations of each W™ by #™ and
cach W* by #™ are of class C. To a large extent, the proof appears in [10].

A priori, # foliates neither W™ nor W< Also, the leaves W™ need not fit
together to form a foliation %%, nor need the leaves W* form a foliation %™, for
a leaf immersion can have nontrivial tangential self-intersection. This leads us to
say that the partially hyperbolic diffeomorphism f is dynamically coherent if, tan-
gent to ET, E, E® there are f-invariant foliations W, #”, W such that #™
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and #°° subfoliate ¥**, while ¥ and ¥ subfoliate %= (One foliation sub-
Joliates a second if the leaves of the second are unions of leaves of the first.) The
phrase “dynamically coherent” indicates that the unstable, center unstable, center,
center stable, and stable orbit-classes fit together nicely. A restatement of Theo-
rem B in this context is the following.

COROLLARY 2.1. If the partially hyperbolic, C? diffeomorphism £ is dynamically
coherent and center bunched, then #* C* subfoliates W™ and w* C* subfoliates
y Aot

Theorems A and B have generalizations to the case where [ is partially hyper-
bolic on a subset of M, rather than on all of M. The natural definition of this
concept is that A c M is an f-invariant, compact-subset of M, and Tf leaves
invariant a continuous splitting

TIM=E®E®EF,
where E* # 0 £ E*, Tf expands E¥, Tf contracts E*, and the inequalities
IT/ <m(Tf) and T3] < m(T;f)

hold for all p € A. Clearly, if [ is partially hyperbolic at A = M, then f is partially
hyperbolic in the sense discussed above. Also, if E° = 0, then A is a hyperbolic set
for f. It is shown in [10] that tangent to E* and E* there are laminations through
A, invariant under f. (A lamination is a partial foliation. Its leaves, or lamina, do
not necessarily foliate a full neighborhood of A)

THEOREM A'.  Suppose that f: M — M is a C2 diffeomorphism that is partially
hyperbolic at a compact f-invariant subset A = M. For some 0¢(0, 1), it satisfies a
O-pinching condition at the invariant set A. The local holonomy maps along its
stable and unstable laminations through A are uniformly 6-Hélder.

THEOREM B'.  Suppose that f: M — M is a C? diffeomorphism that is partially
hyperbolic at a compact J-invariant subset A M, and the center direction E° inte-
grates to an f-invariant lamination ¥ of A. If [ satisfies the center bunching
condition in Theorem B, then the local unstable and local stable holonomy maps are
uniformly C* when restricted to each center unstable leaf and center stable leaf,
respectively.

Dynamic coherence is defined as before: all five bundles E*, E®, K, B E*
integrate to laminations through A, the center and unstable laminations sub-
foliate the center unstable lamination, while the center and stable laminations
subfoliate the center stable lamination. Then Theorem B’ implies the following.

COROLLARY 2.2. If f is as in Theorem B’ and is dynamically coherent, then W™
and %™ C' subfoliate % and W™, respectively.
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See §4 and §S for the proofs of Theorem A’ and B'.

Here are some examples of partially hyperbolic difftomorphisms. All are uni-
formly partially hyperbolic. First, of course, there are the totally hyperbolic
Anosov diffeomorphisms. Second, there are time t-maps of Anosov flows. Recall
that under an Anosov flow @ on M, the tangent bundle splits as

TAM=E'®E'e£‘,

and for some Riemann structure on TM and for all t > 0, Tg, expands E* while it
contracts E°, The Anosov vector field X that generates ¢ is nonvanishing, so E® is
a line field, and the Riemann structure can be chosen so that | X| = 1. As for any
smooth flow, T,¢,: X(p) — X(¢,p). Thus T, sends T7M isometrically to '1",",M,
and g, is partially hyperbolic with respect to the Anosov splitting.

Third, there are the algebraic examples analyzed by Brezin and Shub [4]. Let
G be a connected Lie group, and let I' = G be a lattice. Fix any g € G that leaves
I' invariant and any automorphism A4: G — G. Set M = G/T" and consider the
affine diffeomorphism f of M to itself induced by projecting L, A: G- G down
to M. This gives an automorphism ad(g)DA(e) of the Lie algebra of G and splits
I.G into the sum of generalized eigenspaces corresponding to eigenvalues with
- magnitude >1, =1, and <1. Translate the splitting to the other tangent spaces
T,G, and project it down to TM. When the first and third subspaces are¢ non-
zero, this gives a partially hyperbolic splitting for f. Other partially hyperbolic
- splittings arise by starting with generalized cigenspaces corresponding to cigen-
values with magnitude < p, between p and 1/p, and >1/p, where 0 <p<lisa
constant.

Fourth, there are hyperbolic basic sets for Axiom A diffeomorphisms and flows.
They are partially hyperbolic, not on the whole manifold M, but only at a com-
pact f-invariant subset A = M. Fifth, there are perturbations of the first four
types of examples. For, as is shown in [10], a diffeomorphism remains partially
hyperbolic under C* small perturbations. Sixth, there are iterates of the preceding
examples.

3. Bundle dynamics. In this section we discuss two topics: trivialization of a
vector bundle with prescribed dynamics in the base space, and dynamically in-
variant sections of a Banach bundle.

In differential topology, it is well known that a vector bundle E over a compact
base X has an inverse bundle, a vector bundle E' over X for which there is a
vector bundle automorphism

T

E@E — ¢

id
X — X,
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where & is a trivial bundle: ¢ = X x RY for some N. One says that E’ trivializes E.
Less well known and underappreciated is the following elementary result from
K-theory, which was explained to us by Jeremy Kahn.

LemMa 3.1 (Dynamic trivialization). Given a vector bundle E over the compact
base X, there exists an inverse bundle E* over X such that each vector bundle
isomorphism covering a base homeomorphism

E J—o E

[

x“f_,x

extends to a vector bundle isomorphism
EoE T, ror
J p )
X — Xx.

When E and T are smooth, so are E* and T°.
Proof #1. Let E' trivialize E and let :EQE —¢ be a trivialization. Set

E"=E ®@E®E' Clearly, E” trivializes E since EQE <EQFQ®E®E =c®¢
is trivial. Using the pullback notation, we have
JE"=[{E®E®E)

=ZfMEDE)®f*E

Zf'OOSE =cof*E

SE®@E®S*E

SESIE®fE

SESSEDE)

ZEDf*)=F ¢

=E®E®E =E". o

For the reader who wants to keep track of what happens at the vector level
under these bundle maps, we offer a second proof.
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Proof #2. Define E" = E'® E® E’ as above. We construct a bundle iso-
morphism T7: E” — E” covering f. We have bundle isomorphisms S, S’ defined by
the commutative diagrams

EOE — > & —ms § T, FoK
s
s

E®E —— EQF —— EQFE —— FQE

[ |

- where sw switches the order of E and E'. This gives isomorphisms of the fibers

Sl “x
E;= (E.®E)®E, ———— (E,,®E,)®E,
I
ity o1 M, )
E}erxQE; e E[erfer;
I
v "y f‘]xesx v
E;,®(E.®E) E.©E,®E; =Ej,.

The composition is T': E; - Ej,, and T is a continuous function of x since all
the maps S,, S;, T, are. If T is smooth, we can choose t smooth. Then 7 and E”
are smooth. o

The proof that the local unstable manifold at p of a partially hyperbolic diffeo-
morphism is a Holder function of p relies on the invariant section theorem in
[10], improved to the Holder world in Shub [14] and Wilkinson [16]. The in-
variant section theorem concerns the existence, uniqueness, and regularity of a
section of a bundle, when the section is required to be invariant under a fiber
contraction. Let us recall the definitions. Commutativity of the diagram

E s B S E

[,

X—h—»X,DX

=
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defines a bundle map F. The fibers E, ==x""(x) are assumed to be complete,
nonempty, uniformly bounded metric spaces, and the base map h is assumed to
biject X onto a set that contains X. (We say that h overflows X .) Finally, F is
assumed to contract fibers in the sense that forally, y e E,, and for all x e >, ¢

dh(F(.V): F(}’l) < kxdx(y’ J"’)'

where supk, = k < 1, and the notation d, refers to the metric on the fiber E,.
The constant k, is the fiber constant. Under these assumptions F is a fiber con-
traction, and there exists a unique section ¢: X — E which is invariant under F in
the sense that for all x € X,

oo h(x) = F o g(x).

The proof is natural and straightforward. Merely consider the space X of all
sections g: X — E, furnished with the sup metric

d(o, ¢’) = sup{d,(o(x), ¢'(x)): xe X }
Z is complete, and the natural F-action Fy: Z — I defined by
Fuo)(x)=Focooh™(x) forallxeX

is a contraction of X. The unique fixed point of F, is the unique F-invariant
section of E.

The unique F-invariant section of E is denoted as ;. If we start with any
section ¢ of E and iterate it under F3, it converges to g; Fi(0) > 65 as n - oo,
Thus if F leaves invariant a closed subbundle P of E, then oy is a section of P.

Existence and uniqueness were essentially trivial, but regularity of Oy is some-
what subtler. For example, if F and h-! are continuous, then so is or. For F,

X
FIGURE 2. A fiber contraction and its invariant section
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sends the closed subspace of continuous sections £° c ¥ into itself, and so the
fixed point o5 of F, must lie in Z. Conditions that guarantee that o5 is C', r > 1,
are at the heart of stable manifold theory; see also the proof of Theorem B. Here
are sufficient conditions on a fiber contraction which imply that op is 0-Holder:
(@) E= X x Y, where X is a compact metric space and Y is a closed, bounded
subset of a Banach space;
(b) there exists a & > 0 such that for each x € X,

inr{d("("" D). o x i dfy. ) < 5} =a, >0,
d(x, x')
andinfw, = @ > 0;
(c) sup k.w® < I;
(d) there exists a constant L > 1 such that for all x, x¥' € X, and all yevy,
IFI(x! y) B FY(X'Q }')| < L‘d(x’ x’)‘.'
The constant o, is the base constant. It describes how sharply h contracts the
base space at x. Condition (c) says that F contracts the fiber at x more sharply at
Halder scale 6 than it contracts the base at x. The fiber constant #-dominates the
base constant. In condition (d), Fy is the Y-component of F, and the inequality in
(d) amounts to the assumption that F is 8-Holder. To summarize, we have the
following.

Tueorem 3.2. (Pointwise Holder section). Under hypotheses (a)-(d), the
unique F-invariant section of X x Y is 6-Hélder; i.e., if we write ap(x) = (x, s(x)) &
X x Y. then

(6) Is(x) — s(x)] < Hd(x,x')* forallx,XeX.

Moreover, if R bounds the diameter of Y, then the Holder constant H is no greater
than

LR g
@d*(1 — sup k,w %)’

)

The proof of Theorem 3.2 appears in Wilkinson [16, pp. 29-36]. Under the
uniform assumption kw™° < 1, instead of (c), and a Lipschitz assumption, rather
than (d), the proof appears in Shub [14, pp. 44-48). Like the proof of every
regularity result for invariant sections, the idea is to show that the natural map
F, on the space of sections carries a subspace I° into itself, where £° is the set of
6-Holder sections as in (6), with Holder constant as in (7). Clearly, £ is a closed
subset of I, and hence the unique fixed point of F,, oy, lies in =°.

4. Proof of Theorem A. Recall from §2 that Theorem A becomes Theorem A’
when the diffeomorphism f is assumed to be partially hyperbolic at a compact
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invariant subset A M, instead of all of M, so it suffices to prove Theorem A’,
The proof has three steps. First, using Theorem 3.2, it is shown that the function
taking a point to its local unstable manifold is 6-Holder. This is Corollary 4.2.
Then it is shown that this conclusion implies that the holonomy maps are 6-
Holder at sufficiently small scale. This is Corollary 4.4. After the proof of Corol-
lary 4.4, we deduce Theorem A’

partition of unity, such a C always extends to a continuous subbundle € of E|,
where U is a neighborhood of A in M. If one such extension C is smooth, then C
itself is said to be smooth. A bundle map T:C - C is said to be smooth if it

approximated by a smooth ¢ < Els, and any bundle map T: C - C can be ap-
proximated by a smooth bundle map T: C - C. Finally, if C is trivial, then any
extension C is trivial, at least when € is restricted to a small enough neighbor-
hood of A; an approximation to a trivial bundle is trivial; and a smooth approxi-
mation to a trivial bundle is smoothly trivial.

We assume that f is partially hyperbolic at a compact invariant subset A — M,
with respect to the splitting T\ M = E*@ E°® E*. We lift J to TM using the
exponential of the fixed smooth Riemann structure. Commutativity of the dia-
gram

LME) — 7, M
elp’ Glah

AM ﬁf—’ M

defines a C? map f: TM(8) — TM that covers . Given g: Ej(8) — ES, define the
special norm

lg(x)|
i

lgl, = sup

where x, of course, ranges over the nonzero vectors in E7(3). The set of continu-
ous function g with Igls < oo forms a Banach space %7, Define

% ={geg! Lipg< 1}.
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This gives a bundle % over A with fiber %, at p, on which f acts naturally accord-
ing to the graph transform:

g _Je , 4

graph f,, = flgraph g) n (E},(8) x E3,) l l

Aetyp

It is a standard calculation (see, for instance, [10, p. 571, [14, p. 64], or [16,
pp. 35-36]) that with respect to the special norm, f; is a fiber contraction and

(8) 2 has fiber constant = |T°f|/m(T?f)  and
[+ has base constant = m(T3*f).

We would like to use the Holder Section Theorem 3.2 to show that the unique
fo-invariant section o7, of ¥ is 6-Holder. For o7_ describes the local unstable
manifolds of f, and its Holdcnms would imply that the local unstable manifold
through p is a 6-Holder function of p. A priori, % is neither trivial nor a Holder
bundle, so Theorem 3.2 cannot be applied as it stands; it does not even make
sense to assert that o7_ is Holder. We must modify 4 and f,.

We first approximate E* and E® by smooth subbundles E* and E® in T, M.
Respecting the splitting T,M = E* @ E, the derivative of f, atve T,M(d)is

iy A,:E‘—»E‘ B,:l.',"'—bf“"
C K where e & P
Co.E*sE K, B P

When 6 is small and E¥, E* closely approximate E*, E, the linear maps A,,

C. K, closcly apgroxlmate T71, 0, 0, T*f, respectively. The set of oontmuous
maps g: E"(é)—' » Whose special norm |g|, = sup |g(x)|/|x| is finite forms a
Banach space 9‘ The subset 9 {geg‘ Lipg < 1} is closed and bounded.
This gives a bundle 4 over A w:lh fiber Q at p, which is a smoothing of %, and on
which f also acts naturally according to lhc graph transform:

&

-—]L,

graph f,, = figraph g) n (E3,(0) x ES)

P b (R

=

J
—_

Although not trivial, % is smooth, and it has a unique f,-invariant section 7.
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THEOREM 4.1 The unigue f,-invariant section 7: A= & is 0-Holder.
Proof. The dynamic trivialization Lemma 3.1 implies that there are smooth

bundles H, and H, over A that trivialize £ and £*, and further that there are C?
bundle isomorphisms S;:H, > H, and §,: H; - H; covering f. Fix a smooth
inner product structure on H = H, @ H,. After multiplying S, and S, by appro-

priate positive constants, we can assume that

S, expands H, much more sharply than Tf expands E*, and
§; contracts H, much more sharply than Tf contracts E**.

TM carries a smooth Riemann structure with respect to which hypotheses (1), (3)
of Theorem A hold. It is said to be adapted to f, Together with the chosen inner
product structure on H, this gives preferred inner product structures on £* @ H,,
E®@®H,, and T,M @ H. The trivial bundles A x R™, A x R™, A x R™*m
carry constant, Euclidean inner product structures, but the trivializing bundle
automorphisms

E®H ~A x R™,
E°@H,~A x R™,
TIM®H = A x R™*m

need not be isometric.

To cope with this lack of isometry, we recall a fact from linear algebra. If
. )y andi( 2 are inner products on the same finite-dimensional vector
space V, then there is a canonical automorphism Q: ¥V — ¥ that sends the first
inner product structure to the second, in the sense that for all v,weV,

(QU, QW); -~ <v9 w)l .
To find Q, note that for each v e V, there is a unique v’ € V such that forallwe V,
', W)y = (o, w), .
The mapping T: v+ v’ is an automorphism of ¥, which is easily seen to be
positive_definite symmetric with respect to the inmer product ¢ , D2- Set
0= ﬁ, the unique positive definite symmetric square root of T. Then, for all ¢,

weV,

(QU, QW)} —~ (szs W)z = (Tv, W), = <{v, w)l .
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Applying this fact from linear algebra fiber-by-fiber gives bundle automor-
phisms

AxR™ —— E*®H, AxR™ 2, fsgy,
A i R A =5 A
that carry the Euclidean inner product structures to the preferred inner product
structures. Since all the inner product structures are smooth, so are the auto-

morphisms a,, a,. Set a = a, @ a,, and define F by commutativity of

A x R™*™(3) —F—y A x R™*m

F is C? and has the same properties with respect to the Euclidean inner product
structure on A x R™ "2 that /@ S has with respect to the preferred inner prod-
uct structureon T,M @ H.

Thus writing F, = F(p, ) with respect to R™ x R™ gives the Taylor expres-
sion

A, 0
9) F(2)= [l:; 7 ][:] +r,(2),
»

where z = (x,y), 4,= 4,85, K, = K,®$5,, and r, is the remainder. Since F is
C? and sends the zero section A x 0 to itself, we get an estimate

IE,(2) = F,(2)

(10) Iz]

< Lip(DF) d(p, g).

The C' mean value theorem gives F,(z) = F,(z) — F,(0) = [§(DF,),. dt z, and so

1
DF,),. — (DF,),.l d
IF’(Z) = ";(Z)l < J; “( ’)" 7( q)u" 4 |Z|

- < Lip(DF) d(p, q).
i iz] ip(DF) d(p, q)
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When the point z € R™*™ has norm <4, § is small, and E¥, E* closely approxi-
mate E*, E, we see that the C!-size of the remainder is small, say IDr,| <& (The
remainder absorbs the off-diagonal linear terms B,, C,, but these terms are C!-

approximate E¥ E<)
The Banach space G = {g € CO(R™(3), R™): Igls < 0}, equipped with the
special norm |g|, = sup |g(x)/]x| as above, contains the closed, bounded set

Y={geG:Lipg<1).

By construction, 4, ® K, is partially hyperbolic with approximately the same
pinching that T.f has. Thus F acts naturally on maps g € ¥, and we get a fiber
contraction

Ax}’i—.AxY

|

7, (PR S

where F,(p, g) = (fp, g,) and graph 9, = F;(graph g) n (R™(5) x R™),

We claim that the Hélder Section Theorem 3.2 applies to F, and that con-
sequently its unique invariant section is 6-Holder. By construction, the bundle
space A x Y is trivial and Y is a closed, bounded subset of the Banach space G.
(In fact, Y is compact.) This verifies hypothesis (2) of Theorem 3.2, Since the
remainder in the Taylor expansion (9) is C'-small, (8) becomes

(11) F, has fiber constant ~ i T;,“fll/m(?;'f) and

F, has base constant ~ m(T*f).
Together with the 6-pinching condition (3), (11) verifies hypotheses (b), (c) of The-
orem 3.2. It remains to verify hypothesis (d). We actually prove more: not only is

F, Hélder, it is Lipschitz. Given P, q€A and ge Y, we claim that for some
constant L,

(12) [(Fay(p. 9) — (Fo)elg, 9)l, < L d(p, q).

The Y-component of Fu(p. g) is the function g, referred to above. Its graph is
contained in the image under £, of the graph of g. We must show that

lg,(x) = g,(x)|
—m—’ -< Ld(p, g).
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The formula for g, is
gp(x) = Fp (h7*(x), g(h;'(x)))  and  h,(x) = F,(x, g(x)),
where F,(z)=(F,(z), F;,(z)) with respect to R™ x R™. The map h,: R™(5)—R™
overflows and is an expansion since h,(x) = Ax + 1y,(x, g(x)) and r,, has small
C'-size. Thus Lip(h;*) < 1. Set z, = (h;*(x), g(h; " (x))) and z, = (k] (x), g(h;* (x))).
Then, by (10),
195(x) — g4(x)| < |F2,(z,) — Faglz,)] + | Faglz,) — Foo(z,)l
< Lip(DF) d(p, 9)lz,| + Lip(F)|z, — z,|
< Lip(DF) d(p, g)|x| + Lip(F,)|z, — z,|.
Now
1hz*(x) = h* ()] = |h;* o hyo h*(x) — h;* o by o h71(x)]
< Lip(h;*)lhg o b (x) — hy o by (x)]
< |Fiqlz) — Fy (2
< Lip(DF) d(p, g)|z,]|
< Lip(DF) d(p, g)|x|.

Since Lip g < 1, this implies that Iz, — z,| < 2 Lip(DF) d(p, q)|x|, and

L"_'(X)I;I 9l {Lip(DF) +2 [sup Lip(F,)] Lip(DI")} d(p, q).

This verifies (12) and hypothesis (d) of Theorem 3.2, so we conclude that the
unique F,-invariant section of A x Y is §-Holder. The bundle A x Y contains
a subbundle P consisting of pairs (p, g) such that g sends E‘,’(&) < R™(4) into
E7 = R™, Since F leaves T, M invariant, F, leaves P invariant. The subbundle P
is closed in A x Y. Thus the unique F,-invariant section of A x ¥ actually is a
section of P. 5
ForeachpeAlet y,: E}(&) —ofi‘,’ be the restriction of or,(p) to EZ(S). The map
p 7y, is a section of bundle %, and it is invariant under f,. Hence it is the
unique f,-invariant section of 4. Since the restriction of a Hélder function is
Hélder, y is 6-Holder. (m]

CoROLLARY 4.2. If f is partially hyperbolic at A and Tf satisfies the 6-pinching
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condition (3), then the local unstable manifold of f at pe A can be represented as
the exponential image of the graph of a function in T,M that depends in a 6-
Holder fashion on p.

Proof. The local unstable manifold of fatpis exp, graph y,. (m]

THEOREM 4.3.  If % is a lamination and locally the leaf of % can be represented
as the exponential image of the graph of a function in T,M that depends in a
0-Holder continuous fashion on p, then the holonomy of & is locally uniformly
0-Halder at small scale.

Proof. For simplicity we first give the proof when % laminates all of M,
ie, when we have a foliation & of M by k-dimensional leaves. Fix a smooth
Riemann structure on TM, fix a point P€ M, and use exp;? to lift & to a : folia-
tion # of a small neighborhood of the origin in T_M. The leaves of F are

suffices to show that F has uniformly 8-Holder holonomy at small scale near the
origin of T, M. Split T.M as F @ F* where F is the tangent plane to the #-leaf at
p. Fix any x, € F(3) with 6 > 0 small, and express the F-plaque through (x,, y)
as the graph of a C! function, 9,:F(@)-F*. Call g= €xp,(xo, y). Then
€xp, graph g, is a neighborhood of gin ¥, g.(x,) = y, and Y g, is a 6-Holder
function F*(3) » Co(F(s), F ).

If o, x; € F(3), set V, = Xo X FY(8)and V; = x, x F*, They are vertical trans-
versals to %, and the #-holonomy from Yo to ¥, is given as hy: y s g (x,). By
construction hy is §-Hélder. We also want to show that the F-holonomy between
other transversals is 6-Holder.

Fix a number L > 0. When 6 > 0 is small, sup_ . I(Dg,).l =1 < 1/L. For if
Xo=x=y=0, then Dg,=0. Let t,, 1,: F* > F be C! functions such that
16(0) = x,, £,(0) = x,, and the norms of Dt, and Dt are no greater than L. The
graphs 1o, 1, of t,, t, have coslope < L. Near the origin, 1, and t, are #-

<
/"_'_\\ f
L) 4 exp, PR

5 Xo 0 F@é) P

Y

o ¥,

/

FIGURE 3. Plaques in T,M and M
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Wo

FIGURE 4. Comparing the holonomy in T, M between vertical transversals and
between transversals of coslope <L

transversals, and we have the F-holonomy map h: 7o = 1. Let h(y,) = y, and
h(wo) = wy for y,, w, € 15. Let 2, 2, be the points where Z, v Strikes Vo, V.

We know that |z, — y,| < H|zy — yol°. The ratio |w, — y,l/lz, ¥ is bounded
since the slopes of the #-leaves are uniformly less than the slopes of the transver-
sals, I < 1/L. Similarly, |wo — yol/]zo — yol is bounded away from zero. Thus,

[h(wg) — h(Yo)l < H'|wy — yo"

where H’ is a multiple of H. In fact, by trigonometry, one easily shows that

2(1 + L)
s ”( T=iL )

suffices. Hence the #-holonomy from 1, to 1, is uniformly 8-Hélder.

This completes the proof of Theorem 4.3 for foliations, and we turn to the case
of laminations. Let % be a lamination through a compact subset A « M. As
before, we fix a smooth Riemann structure on TM, fix a point pe M, and use
exp,* to lift & to a lamination 2 through A = exp;'(A) in T, M. Then we try to
show that the Z-holonomy is uniformly 6-Hélder. Split ™ as F@® F*, where F
is tangent to %,. Just as for foliations, the natural holonomy map belwecn verti-
cal lransversals, Vo n A — V,, is §-Holder, for it merely expresses the fact that (in
the exponential coordinate system at p) the plaque of % at g is a #-Holder contin-
uous function of g € A.

Unfortunately, this is not completely satisfactory. For even when A is non-
tnvnal, A may fail to meet ¥, except at p. Then 6-Holderness of the Z- holonomy

%N A = V, is vacuous and implies nothing about the Z-holonomy between non-
\erucal transversals. Instead of A, consider the set A(p)=),. aZ,(p), where
Z,(p) is the plaque of radius p at p. Thus, %,(p) is the exponential image of the
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graph of a function F,(p) - F,and A(p)is a compact subset of M that contains
A. If the leaves of % happen to lie in A (ie, & laminates A), then A(p) = A, but
in general A(p) is strictly larger than A. In the hypothesis of Theorem 4.3, we
assumed that “locally the leaf of & can be represented as the exponential image
of the graph of a function in T, M that depends in a 8-Holder continuous fashion
on p.” We shall interpret this to mean that for some 4 > 0, Z(p) is a 6-Holder
function of g € A(é). Reducing the size of p lets us assume that p =4; ie, g
Z(p) is a Holder continuous function of g € A(p). Note that these assumptions
are stronger than g — %(p) being 6-Holder as g varies in A, and we must pay
attention to this in the proofs of Corollary 4.4 and Theorem A’ For, as we show
by example after the proof of Corollary 4.4, Holder continuity of g +» Z(p)asq
varies in A does not imply Hélder local “#-holonomy.

The set A(p,v) = {ve T,M(v): exp,(v) € A} is a neighborhood of p in A. Its
plaque saturate is A(p, v, p) = | ) Z(p), where v varies in A(p, v). As above, let
L > 0 be fixed, and choose

O<dxvp«l.

1
To

FIGURE 5. The local holonomy along #
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Let 1o, 7, be transversals to Z in T,M(») that are graphs of C' functions 1,,
ty: FY(v) > F whose derivatives have norm <L. These transversals have coslope
<L. The set 14(8) = 1o T,M(8) " A(p, v, p) is a natural domain of definition
of the local #-holonomy map h, and in fact h sends 1o(8) homeomorphically into
t,(v). For the Z-plaques through 1, N T,M(9) are part of the plaque saturate, and
these plaques stretch all the way from t, across 7;. We must prove that h is
uniformly #-Halder.
As in the foliation case, we first consider vertical transversals

Vo(0) = (xo x F*(3))nA(p, v, p)
Vl = (xl x Fl)ﬁx(l’, v, P),

where x,, x; € F(8). The Z-plaque through (x,, y) € V,(3) contains the graph of a
unique function g,: F(8) —» F*, and g, is C* with 9,(xo) = y and [(Dg,)| small.
Since g+ ¥(p) is 6-Holder, so is the map Yy g, that sends Vy(d) into
C°(F(8), F*). Thus the holonomy h: y — g,(x,) is a 6-Holder map V,(8) - V,.
Then the same trigonometry argument as in the foliation case lets us pass from
vertical transversals to general transversals 4, 1, in T,M(d) having coslope <L.
Note that the argument is valid because the saturating plaques crossing from 7,
to 7, also cross vertical transversals. o

COROLLARY 4.4. If f is partially hyperbolic at A and Tf satisfies the 8-pinching
condition (3 ), then the holonomy along the unstable manifold lamination %™ through
A is 6-Hélder at small scale.

Proof. If A=M or #™ laminates A, the corollary is immediate from the
theorem, for, by Corollary 4.2, p > W*(p, p) is a 0-Halder function of pe A. On
the other hand, if A is a proper subset of M, we must show that qg— W¥gq,p)isa
0-Holder function of g € A(p). This is not hard. The set A(p) = U,pea WH(p. p) is
compact and f overflows it, f(A(p)) > A(p). In the proof of Theorem 4.1, we
could just as well have worked with an overflowing base map, instead of a base
homeomorphism. For Theorem 3.2 is valid in this generality. Thus Corollary 4.2
is true on A(p): the local unstable manifold of f at g € A(p) can be represented as
the exponential image of the graph of a function in T.M that depends in a 6-
Holder fashion on g € A(p). Corollary 4.4 then follows from Theorem 4.3. m]

Example. If we only assume that % is C® at A, rather than on A(p), the
holonomy maps may fail to be C*. Let I = (—1/2,3/2), J = ( —3/5,3/5),and K =
(—1/5, 1/5). Set

glx, y) = [4x* + (1 — 4x?)e ¥ ]y,

and define G: I x J — R? by G(x, y) = (x, g(x, y)). We observe that G is a homeo-
morphism to its image U, and U includes the rectangle I x K. Consider the
lamination % of U whose leaves are the G-images of the horizontal lines
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FIGURE 6. Overpinched holonomy

Y = const. In fact, & is a foliation of U. Its properties are
(1) the leaf of & through (1/2, y) is the graph of x - g(x, y)
(i) y— g(., y)is a C* (in fact, C*)map K - C°(I, R);
(i) x — g(x, y)is uniformly smooth with respect to x;
(iv) the holonomy map h: ¥, - V; fails to be C* for all @ > 0.
The transversals are Vo=0xKand ¥V, =1 x R. The holonomy map

ht,:l/2xK—»Vo

is y i ye ' a smooth homeomorphism which is infinitely flat at y = 0. The
holonomy map k,: 12 x K - Viis yis (4 — 3717y 5 diffeomorphism. Thus,
the holonomy map h: ¥, — ¥, is h = hy o hg'. It has infinitely steep graph at
¥ =0, and for all 6 > 0, it fails to be 0-Holder.

Proof of Theorem A'. Tt only remains to show that small scale 6-Halder holo-
nomy implies 0-Holder holonomy at unit scale. For general foliations, this may
well be false, since the composition of an a-Hélder map and a f-Holder map is
only af-Hélder. In the case at hand, the holonomy is invariant under the par-
tially hyperbolic diffeomorphism f- A high iterate f¥ transforms plaques W*(p, p)
to unit plaques, and the small scale 6-Holder holonomy becomes unit scale -
Hélder holonomy. (m]

5. Proof of Theorem B. From §2 we know that Theorem B becomes Theorem
B’ when the diffeomorphism f is assumed to be partially hyperbolic at a compact
invariant subset A < M, instead on all of M, so it suffices to prove Theorem B’,
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FIGURE 7. The foliation of W*™(p) by strong unstable manifolds W*(q)

invariant lamination #* of A. The leaves of .%* lie in A, and f is l-normally-
hyperbolic at #*. In [10, §6, 7] it is shown that through the leaves of a 1-
normally-hyperbolic lamination there pass unique, f-invariant C* leaf-immersed
submanifolds W<, Existence of this family of center unstable manifolds W< is
true regardless of whether E™ integrates to a lamination %™, Besides, each W™ is
foliated by strong unstable manifolds W*(g), g € W*(p), and W* is tangent to E
at g.

We are trying to show that the subfoliation of W™ by the strong unstable
manifolds is uniformly C'. The tangent bundle of W™ is only C°, so it is foolish
to hope for a C' section of this bundle that is tangent to the strong unstable
manifolds.” Instead of focusing attention on the tangent bundle to #7* we em-
ploy the method of §4, and construct directly the leaves of #™ via the C! in-
variant section theorem. This theorem, proved in [10] and [14], is more standard
than the Holder Invariant Section Theorem 3.2. 3

Think of W*(p) as the base space, and the fiber at z W*®(p) as &, where 5, is
the set of functions E%(6) — E¢* described in the proof of Theorem 4.1, The base is
contracted at worst by m(T;f), f overflows the base, and the fiber is contracted
by (m(Tf))"* | T;f|. Center bunching implies that the fiber contraction domi-
nates the first power of the base contraction, and so the resulting invariant sec-
tion is a C* function of z € W*. Thus the leaves of % ™|y are uniformly C?, and
they depend in a C' fashion on their centerpoint . According to the following
theorem, which is merely Theorem 4.3 in the C' world, this implies that the
subfoliation of W™ by ™ is C'.

THEOREM 5.1. If & is a foliation and locally the leaf of & can be represented

HIf f were 2-normally-hyperbolic at £* instead of 1-normally-hyperbolic, then W™ would be C?
and its tangent bundle could support a C' subbundle. In fact, in this case, the restriction of E* to W=
s indeed C7, and we get a sccond proof that ¥™ is a C* subfoliation of W=,
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as the exponential image of the graph of a Junction in T,M that depends in a C"
Jashion on p, then the holonomy of # is locally uniformly C.

Proof. This is the same as the proof of Theorem 4.3. Sce also Theorem 6.1.
u)

6. Regularity of foliations. It is widely agreed that a topological foliation &
is a division of a manifold M into disjoint subsets called leaves of the foliation
and denoted .#,, such that

Each #, is an injectively immersed k-dimensional (connected) manifold and
PE F,.

F is locally trivial in the sense that each peM has a neighborhood U
homeomorphic to the product of open discs by a map ¢: D* x D% -, U,
such that ¢(D* x y) #,, where ¢ = (0, y) and y e D™,

The map ¢ is a foliation chart of #. Local triviality amounts to saying that near a
point p, & looks like a stack of pancakes. By invariance of domain, the set
- ¢(D* x y) is a neighborhood of g in ¥, and k is independent of p.

A simple example of a foliation is the product foliation of the cylinder S* x W
by the copies of W, 8 x W, for 6 S! and W compact. The next simplest example
is the irrational foliation of the 2-torus by lines whose slope is a fixed irrational
number. Each leaf in the first foliation is compact. Each leaf in the second is
dense. It is not hard to see, even at the topological level, that the leaves are as
complete as M. By local triviality, you cannot travel to the edge of a leaf without
getting to the edge of the manifold.

Now we turn to the question of regularity. When is a foliation & of class ,
r € N? Here general agrecment is harder to come by. Three natural variants of
the definition exist:

(a) the leaves are tangent to a C* plane field;
(b) the foliation charts are C* diffeomorphisms;
(c) the leaves and the local holonomy maps along them are uniformly C".

FIGURE 8. The foliation chart ¢
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TaBLE 1
general r,r > | @ L 0 + ©
general 7 + 6,r > 1and 0 < 6 < Lip (a) : b) < (o
r=1 (@) : b <= (©
r=oo (@ <= () <= (9

Note that (a), (b), (c) continue to make sense when the positive integer r is re-
placed by r + 0 and 0 < 6 < Lip. The relations among (a), (b), (c) are summarized
in Table 1. After discussing these implications, we go on to analyze leaf unique-
ness and foliations with mixed differentiability.

To fix terminology, we focus on (b) as the natural concept of a C” foliation: by
definition the foliation & is of class C” if and only if M can be covered by C
foliation charts.

The origin of (a) is Frobenius's theorem; see [1, pp. 93-95]. It states that if
pr F,is a C" k-plane field on M (i.e,, a C" section of the Grassmannian G*M), if
r = 1, and if F is involutive in the sense that it is closed under Lie brackets, then
through each point p there passes a unique integral manifold, and together the
integral manifolds C” foliate M. That is, (a) = (b). An integral manifold of a k-
plane field is an injectively immersed k-dimensional submanifold V < M every-
where tangent to F. Foreach pe ¥, T,V = F,. The submanifold ¥ must be maxi-
mal in the sense that it is part of no larger (connected) submanifold tangent to F.
The topology of V is permitted to differ from its induced topology as a subset of
M, as is the case for the irrational foliation of the 2-torus.

The tangent bundle to #, T#, is the plane field F. It certainly exists when & is
', r 2 1, and it also exists if the leaves of & are differentiable. If & is a foliation
with differentiable leaves and its tangent bundle is continuous, we call & an
integral foliation. All foliations in hyperbolic dynamics are integral foliations, as
are the foliations discussed in §1 through 5.

Clearly, each integral manifold of a C” k-plane field is of class C* . r>=0,and
so (b) implies (a) if and only if r = co. According to Hart's smoothing theorem,
however, if r > 1, then a foliation & with C* foliation charts is diffeomorphic,
by an ambient C’ diffeomorphism M — M, to a foliation & with a C tangent
bundle. The foliation # is just slightly smoother than &, (See [7].) Thus, modulo
a 7 change of variables, (b) does imply (a) when r > 1. The corresponding ques-
tion in the topological category has a negative answer. There are topological
foliations of smooth manifolds which are not homeomorphic to integral folia-
tions. Take any topological manifold ¥ such that ¥ has no smooth structure but
S* x ¥V does have a smooth structure. (The existence of such manifolds in dimen-
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sion four is a consequence of the work of F reedman, Donaldson, and others, as
was explained to us by Andrew Casson.) The product foliation of M = Slxy
cannot be homeomorphic to an integral foliation since the homeomorphic image
of ¥V would then have a continuous tangent bundle; hence ¥ would have a Ch
structure, and hence ¥ would have a smooth structure.

Next we discuss (c), uniformly C” leaves and uniformly C* holonomy. Intu-
itively, the plaque of # at P should be a C* embedded disc whose r-jet depends
continuously on p, and the local F-holonomy should be a ¢ diffeomorphism
whose r-jet depends continuously on the transversals.

As in §4, we analyze & by lifting it to TM. We fix a smooth Riemann structure
on TM, we fix a point p € M, and we consider & = exp,(¥). It foliates a neigh-
borhood of the origin in T,M and has the same local regularity properties as &,
The plaques of # lift to plaques of #, and the latter are represented as graphs of
functions g(., y): F,(3) - F;*, where g(0, y) = y. The map

9:(x, ) = exp, o (x, g(x, y))

is a natural foliation chart for & We say that & has uniformly C" leaves and
uniformly C* holonomy if the plaques of ¥ have these properties in a neighbor-
hood of the origin in T, M. That is,

The plaque map x s g(x, ¥) is C" and its derivatives of order <r with re-
spect to x depend continuously on (x, y).

The holonomy map h: ¥+ g(x, y) is C" and its derivatives of order <r with
respect to y depend continuously on (x, ¥).

This shows that if 7 > 1 then (b)=(c). Forif #isa C foliation, then g(x, y) is a
C" function of (x, y). Also, if r = 1, then (c) = (b).

Note that the foregoing discussion of uniformly C’ holonomy makes perfect
sense when r = 0. The r-jet of the holonomy map # is just h itself. Note too that
when r =0, (c)=(b) is vacuous, for, by definition, every foliation has foliation
charts that cover M.

What happens when r = 2? The plaques of F are graphs of functions g(x, y)
that have jointly continuous first- and second-order partials with respect to x and
Jointly continuous first- and second-order partials with respect to y. This, how-
ever, does not imply that g is C2. Mixed partials may fail to exist. That is, exis-
tence and joint continuity of g, 9xs Ixx» Gy g, does not in general imply existence
of g,. A counterexample is the function R —» R defined by

{y+xylogIIOg(IXI+|yl)l if (x,)#(0,0)
0 if (x,¥)=1(0,0),

as can be checked by several applications of L'Hospital's rule. The foliation of R?
whose leaf through (0, y) is the graph of x — g(x, y) has uniformly C? leaves and
uniformly C? local holonomy, but it is not a C2 foliation. It has no C? foliation
chart at the origin.

glx, y) =
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The amazing thing is that if r is replaced by r + 6 where 0 < 6 < 1, then the
difficulties disappear. According to Lemma 2.3 of de la Llave, Marco, and Moriyon
[5). as improved by Journé [11], if a function g(x, y) is uniformly C"** with
respect to x and also uniformly C"* with respect to y, then it is jointly C"*%. Pure
x and y derivatives do give rise automatically to mixed derivatives! Consequently,
we have the following theorem.

THEOREM 6.1.  About uniformly regular foliations we know the Sfollowing:
() if r = 1is an integer and 0 < 6 < 1, then a foliation that has uniformly C"**
leaves and uniformly C"** local holonomy is a C*** foliation;
(i) a foliation with uniformly C* leaves and uniformly C* local holonomy is C=;
(iii) a foliation with uniformly C' leaves and uniformly C* local holonomy is C;
(iv) a foliation with uniformly C* leaves and uniformly C? local holonomy is not
necessarily C2.

The assumption that & has uniformly C" local holonomy is important. It is
quite possible for a foliation to have uniformly C* leaves and C* local holonomy,
yet fail to be C*. Just draw a foliation in R? whose leaves are pictured below. The
bumps tend to 0 in each C" norm, so the leaves are uniformly C*. The local
holonomy maps between vertical transversals are all C*. Indeed, every holonomy
between C™ transversals, not necessarily vertical transversals, is C=. But the
holonomy maps are not uniformly C*, and there is no C! foliation chart for # at
the origin.

This completes our analysis of the relationships between the three possible
definitions of the C” regularity of a foliation. Next we discuss the extent to which
the leaves of a foliation are unique, in analogy to the uniqueness property of

solutions to ordinary differential equations.

e e

R

——

0,0)

FIGURE 9. A foliation whose leaves are uniformly C* and whose holonomy is
C*, but which does not have uniformly C* holonomy and is therefore not a C*
foliation
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Let & be an integral foliation. We say that TF is uniquely integrable if each
differentiable curve y everywhere tangent to T# lies wholly in a leaf of #. It
cannot travel from leaf to leaf,

PROPOSITION 6.2. If r > 1 and & is C, then T# is uniquely integrable.

Proof. The issue is local, and we can examine y in a foliation chart, since the
chart is C', r > 1. The path y will still be tangent to T#, but in the chart T# is
constantly the horizontal plane field, so y too is horizontal. It staysinitsleaf. 0O

As Anosov showed, the stable and unstable foliations of a smooth totally hy-
perbolic system are uniquely integrable despite the fact that they are not usually
C, r = 1. Unique integrability is also valid for the strong stable and strong un-
stable foliations of a partially hyperbolic diffeomorphism, as can be shown by
similar dynamical means. Unique integrability of the center foliation ¥, when
W exists, is an open question.

An equally natural definition of unique integrability might scem to be that any
injectively immersed k-dimensional manifold ¥V < M that is everywhere tangent
to the k-plane field T# is contained in a leaf of #. Unique integrability in the
first sense clearly implies unique integrability in the second, but the converse fails.
An example is constructed as follows. Let 2 be the diagonal foliation in R3
whose leaves are the planes z = x — x,, and let ¥ be the image of 2 under the
smooth homeomorphism h: R* - R?, defined by

h(x, y,2) = (x, y, 2* + y*2).
Under h, all points of the (x, y)-plane stay fixed and

1 0 0
Dh=|0 1 0
0 2yz 32242

Except at the x-axis, Dh is nonsingular. Tangent to the 2-leaf at (x, y,2) is the
span of e, + e; and e,, so tangent to the $-leaf at P = h(x, y, z) is the span of
e; + (322 + y%)ey and e, + 2yzey. This plane depends continuously on p, so TF
exists and is continuous. Off the x-axis, F is smooth. Since each leaf is tangent to
the x-axis, & fails to be uniquely integrable in the first sense. The x-axis travels
from leaf to leaf. On the other hand, suppose that V is an injectively immersed
open 2-disc in R* that is tangent to T#. Since T.F is never vertical (i.e., it never
contains the vector e;), V is transverse to the (x, z)-plane I1. The intersection
¥ n 11 consists of at most countably many curves y, and each lies in the closure of
two connected components of ¥, = V\(V ~Tl). Each component of ¥, is every-
where tangent to T'# and is disjoint from the x-axis, so it lies wholly in a leaf of
#. The same is true of its closure, so each 7 lies wholly in an #-leaf. Thus V lics
wholly in an #-leafl. Any injectively immersed surface is built from overlapping
injectively immersed 2-discs, so & is uniquely integrable in the second sense, but
not the first. Therefore, it is natural to define unique integrability of a foliation to
mean that a curve tangent to leaves lies wholly in a leaf.
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FIGURE 10. The trace of a nonunique foliation on three (x, z)-planes

Finally, we consider foliations with mixed differentiability. If a foliation has
uniformly C” leaves and uniformly C* holonomy, we say that it is of class C"**.
We always assume r > 1; that is, & is an integral foliation. The symbol 7 A s is
meant to suggest “C" in x and C* in y.” We can restate the conclusions of Theo-
rems A and B as follows:

(A) #™ and #7 are foliations of class C**?;

(B) #™ C'*! subfoliates cach % “-leaf W, and

#7* C'*! subfoliates each % “*-leaf W<.
In fact, if the partially hyperbolic diffcomorphism f is C, r = 2, then it is not
hard to see that (A), (B) can be improved to

(A) #™ and #°* are foliations of class C"**%

(B) #™ C"*! subfoliates each % *-leal W, and

W C"*! subfoliates each # -leaf W=,

That is, the leaves of #™ and #™* are uniformly C". If, in addition, f satisfies Ith-
order center bunching conditions, 1 < I <r (ie., f is l-normally-hyperbolic at the
center foliation), then (B) can be further improved to

(ﬁ) #™* C"*! subfoliates each % *-leaf W™ and

#7* C"*! subfoliates each W *-leaf W<,

Not only do foliations with a low degree of regularity occur naturally in smooth
nonlinear dynamics, they have basic features distinct from smooth foliations. An
interesting case in point is the contrast between results of Bill Thurston [15] and
Raoul Bott [3]. I E is a continuous k-plane field contained in the tangent bundle
of a compact manifold, then one can ask whether E is homotopic to a plane field
tangent to the leaves of a foliation. Is E integrable modulo a homotopy? If k = 1,
the answer is obviously “yes™ since E is a line field, it can be approximated by a
smooth line ficld, and the latter integrates to a smooth 1-dimensional foliation.
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Also, any approximation to E is homotopic to E. On the other hand,if 2 <k <
dim M — 2, then Thurston’s answer is “always,” while Bott’s is “not unless certain
Pontrjagin classes vanish”—the difference being that Bott's foliation is of class
C?, while Thurston’s has smooth leaves but js not transversally smooth. An out-
standing question in hyperbolic dynamics is whether every Anosov diffcomor-
phism of a compact manifold is conjugate to one of the known linear examples.
The stable and unstable foliations of these linear examples are C*. A first step in
finding a new example might be in constructing a pair of transverse foliations to
serve as its stable and unstable manifold foliations, and doing so in a way that
Thurston’s criteria are met, but Bott’s are not.
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