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COMPLEXITY OF BEZOUT’S THEOREM 1V:
PROBABILITY OF SUCCESS; EXTENSIONS*

MICHAEL SHUB' AND STEVE SMALE?!

Abstract. We estimate the probability that a given number of projective Newton steps applied to a linear
homotopy of a system of n homogeneous polynomial equations in n + 1 complex variables of fixed degrees will find
all the roots of the system. We also extend the framework of our analysis to cover the classical implicit function
theorem and revisit the condition number in this context. Further complexity theory is developed.
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1. Introduction.

1.1. Bezout’s theorem revisited. Let f : C**! — C” be a system of hc;hlogeneous
polynomials

fz(fl"'-’fn)v degﬁzdi, i=1,...,n.

The linear space of such f is denoted by H 4, whered = (di, ..., dn). Consider the algorithm
(studied in Bez I) ! to solve f(¢) = 0 approximately by following solutions of f;,0 < ¢ <1,
where f; = tf + (1 — t)g. Here g € H(g) is a certain universal system whose zeros are
assumed to be known. Each step of this path-following algorithm is a version of Newton’s
method called projective Newton. Our complexity result here puts a bound on the number of
these steps, a bound depending only on d and the probability of success o. Note that some
f € Ha have a continuum of solutions so that the introduction of ¢ is natural.

THEOREM 1.1. A number of projective Newton steps sufficient to find all the approximate
zeros of f € Ha) with probability o of success is

cD3Dn?(n + 1)(N — 1)(N — 2)
l1—0o

where D = max;(d;), D = [[;_, di and N is the dimension of Ha).

Remark 1.1. An approximate zero is defined in Bez I, also see Theorem 1.4 below,
without recourse to an arbitrary accuracy ¢. Newton’s method starting at an approximate zero
converges quadratically, immediately to an associated actual zero.

Remark 1.2. Projective Newton steps are defined in Shub [1993], and in Bez I one can
see the detailed full algorithm.

Remark 1.3. See Bez I, I1, III for background. This paper may be read largely indepen-
dently from Bez I, II, III, although it uses some of those results. In particular, Theorem 1.1
uses the main theorem of Bez I and Theorem C of Bez IL.

Remark 1.4. For the case n = 1, the number of steps is %.

Remark 1.5. Renegar [1987a] is an important predecessor to this paper. His result
specialized to the case n = 1 has a factor 57—z (1 . In Smale [The F undamental Theorem of

Algebra and Complexity Theory, 1981], there is a s1m11ar result (n = 1) with a = 0)7 , but that
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COMPLEXITY OF BEZOUT’S THEOREM IV 129

paper has no theory for systems. There are much better results dealing with n = 1, and no
probability o. For example, see Shub and Smale [1985], [1986], Kim and Sutherland [1991],
Renegar [987b], Neff [1993], and especially Pan [1987].

Remark 1.6. The constant ¢ in Theorem 1.1 and Remark 1.4 can be estimated from the
explicit constants of Bez I and is not very large.

Remark 1.77. The proof of Theorem 1.1 is given in §2 below.

Remark 1.8. Let us elaborate on 0. The space H 4 is given a unitarily invariant Hermitian
inner product which induces a Riemannian metric and probability measure on the associated
projective space P(H ). Then given o, 0 < o < 1, there is a set in P(H4)) of measure o
such that for f in that set, the bound of Theorem 1.1 holds.

Remark 1.9. What is g of Theorem 1.1?7 Our theory asserts the existence of such a g, but
it is not known how to find it. In fact that is the main problem of Bez III (even for n = 1).
Besides the references in Bez III, see also Conway and Sloane [1988], especially §2.3 and the
references there.

Remark 1.10. For finding one root of f € H 4 it seems likely that one can eliminate the
factor D in the bound of Theorem 1.1 (see noted added in proof).

Remark 1.11. The number of steps in Theorem 1.1 must be interpreted as the number of
parallel steps; the algorithm moves along D paths at a time, one for each root, and each path
takes the number of steps displayed in Theorem 1.1. Recall that Bezout’s theorem asserts that
the number of zeros of f € P(H ) is D = I1}d;, with probability one.

1.2. The condition number revisited. In this section we describe how by redefining the
condition number and distance to the nearest ill-posed problem in certain reasonable ways,
one may show that they are precisely reciprocals of one another for our problem of polynomial
system solving. In contrast, previous results in the literature only offer bounds.

Consider the implicit function theorem. Assume that F : R* x R” — R™ is a C! map
(F could be defined locally or over C). Suppose that F(ag, yo) = 0 and that the matrix
%g(ao, y0) : R” — R™ is nonsingular. Then there exists a C! map G : U(ap) — R™ such
that F(a, G(a)) = O for all a in the open set U/ (ap) C R*.

We call the matrix DG (ap) : R* — R™ the condition matrix at (ag, yo). The condition
number (essentially as in Wilkinson [1963] and Wosniakowski [1977]) is then defined by
w = w(ag, yo) = |DG(ap)||, the operator norm. Thinking of a as input and y as output, u is
a bound on the infinitesimal output error in terms of the infinitesimal input error.

Remark 1.12. The map G is given only implicitly, yet the condition matrix

oF _,OF
DG (ao) = 3;(00, Yo) 5;(00, Yo)

is given explicitly, and so is its norm, the condition number.

Example 1. Let P; = {(ao, ...,as) = a € R"!} represent the space of polynomials
of degree d and define F : P; x R - R by F(a,y) = Zg a;y'. Then u(f, ¢) bounds the
infinitesimal change in the solution of f(¢) = 0 as a function of an infinitesimal change in
the coefficients (see e.g. Wilkinson [1963], Demmel [1987], [1988], Bez I, 11, III).

Example 2. Generalize Example 1 to systems of polynomials f : R* — R”" (or f :
Cc* - Cn).

Example 3. Let T be a linear subspace of Py over Cand F : 7 x C —> Cbe F(f,¢) =
f(¢). Defining the condition number of these sparse systems is a great convenience; if P,
is replaced by a linear subspace 7 C Py, the “sparse case,” only infinitesimal changes in
T are taken into account in the condition number, say u7(f, ¢). Then ur(f,¢) < u(f, ¢)
and for certain 7, u7 may be much smaller than wu(f, £). Now see the discussion after the
proposition of §1.4.
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Example 4. The special case of Example 3, 7 = {f € P | f(x) = x¢ — a} defines the
condition number for the dth root.

We extend the framework of the implicit function theorem. Let F be as above. Let
V={(a,y) e R* xR" | F(a,y) =0} and mr; : V — RF be the restriction of the projection,
and suppose that zero is a regular value of F.

PROPOSITION 1.1. Dy is singular at (a, y) € V if and only if %%(a, y) is singular.

Here Dry(a, y) : T,y (V) — RF is the derivative defined on the tangent space. The proof
is standard.

Suppose D is nonsingular at (ag, yo) € V and G : U(ag) — R™ is as above. If g is the
branch of 7~ ! taking aq to (ag, y) then myg8(a) = G(a), where mp : V — R™ is the restriction
of the projection. The branch g is defined on a neighborhood of ay with values in V, but may
be “topologically continued” to become defined on a larger domain of R¥.

The last situation permits a direct extension to Riemannian manifolds. Let X be amanifold
of “inputs,” ¥ a manifold of “outputs,” and V C X x Y the manifold of solutions to some
computational problem. (Algorithms attempt to invert, or approximate the inverse of, 7| :
V — X.) We suppose dim V = dim X as some kind of local uniqueness hypothesis. If
(a, y) € Visasolution thenthe conditionmatrix DG (a) : T,(X) — T,(Y)is defined provided
D y(a, y) is nonsingular. In this case u(a, y) = |DG(a)|, otherwise “u(a, y) = 00” and
(a, y) is ill conditioned. The set of ill-conditioned (a, y) in V is defined by the “equation”
DetDry(a, y) = 0 and denoted by X’. ¥’ is not a smooth variety. In Bez II we incorrectly
asserted its smoothness. Let 7;(X’) = X C X be the set of ill-conditioned inputs.

This framework includes the condition number defined in Bez I and clarifies it. This is
given in Example 5. Moreover there is an aspect of universality in the preceeding treatment
of condition number.

Example 5 (see Bez1). X = P(H(a)), ¥ = P(C"*!) and

V ={(f,¢) € P(Ha) x P(C**) | f£(£) =0}.

DG(f) : T(P(Hw)) — T(P(C"™H). u(f, ¢) = IDG(f)I.
It can be shown that

1(f, ©) = IFIIDFOIN AU I DI

Here Df(¢)|n, : Ne — C" is the derivative restricted to N; = {v € C*1 | (v,¢) =0}, and
A(lIZ11471) is the diagonal matrix Diag([|Z[|“ !, ..., | |*~!). Compare Bez I, IL
If feNy CHwy,¢ €N C C"*!, then

I £z, Py = Al

e 1 f N1y

: 1 llcre
¢z, Pty = ,

‘ 1 llcres

hence 1 may be thought of as a relative condition number as in Wozniakowski [1977]. In
general, condition numbers for homogeneous problems will have natural relative condition
number interpretations.

In Bez [, II, III we normalized w using factors of dil/ 2. That is,

tnom(f, £) = I FIIDF QIR AG AN 147D,

Henceforth we will call that the normalized condition number. (In Bez I, this was called
Mproj(f5 ¢).) The normalization gave the condition number theorem, restated below, a shorter
form.
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Now one may describe y in the case of sparse systems of homogeneous polynomials as
well, as in Example 3. This permits the sharpening of various results of our previous papers
in the sparse case, as will become evident in what follows.

Remark 1.13. The condition matrix has an interpretation in economics as the matrix
of comparative statics. For example, it dictates how infinitesimal equilibrium allocations
change as a function of infinitesimal endowment charges (see e.g. Smale [Global Analysis and
Economics, 1981]).

In the situation of Example 5, we restate the condition number theorem proved in Bez I
and Bez II.

Let X' C V (see Example 5) be the ill-posed set, i.e., (f,¢) € ¥’ if and only if ¢ is
a degenerate root of f (or the derivative Df(¢) : C"*! — C" has rank < n). The map
7y 1 V. — P(C"*!) has fiber V; over ¢ € P(C**!), given by

Ve ={f € P(Hw) | (&) =0} =n;7'(¢).

Thus as a subspace of P(H4)), V; has an induced metric d;. The condition number theorem
gives a formula for u(f, ¢) in terms of this fiber distance.

THEOREM 1.2 (condition number theorem (Bez I, II, III)). For (f,¢) € V C P(H(a)) X
'P((C"‘H)

I£l
1AW fllsind, (MA@ £,0), & NV

A corollary to the condition number theorem computes . (f) = max ¢ w(f, ¢) interms
¢)=

of mind; in the obvious way,

B 11
IA@) £l ming sind, (AG) £,0), 20V

w(f)

Remark 1.14. If instead of the fiber distance d; (A(d,’%) f, £), &' N V;) we try to relate
the condition number to the distance from f to X in P(H)), d(f, X), the situation becomes
more complicated. In Bez II we asked, is Zéz_) = O(;u]%), where pp = sup| ¢y #(f, $)?

This is not true, as can be seen by considering the family of cubics x> — 3exw? as ¢ — 0in
P(Hay).

Next, we consider the condition number for the eigenvector, eigenvalue problem and show
how it fits into the preceeding picture and how a coresponding condition number theorem holds.
For background see Wilkinson [1984], Demmel [1987], [1988].

Let M (n) be the space of all n x n complex matrices and V be the subvariety of M (n) x
P(C") x C defined by

V={M,v,A) €e M(n) x P(C") x C | Mv = Av}.
The tangent space to V at (M, v, A) is defined by
(M, ,1) € Ty(M(n)) x T,(P(C") x C
satisfying (just differentiate Mv = Av)
(M —ADv+ M =AY =0, (v,v)=0.

If M is a regular value of the restriction 7r; : V — M(n) of the projection, then v and A
are each linear functions of M. These functions are the condition matrices, say

Ki(M, v, )M = b, Ky(M,v, )M = X.
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Multiplying (M, A) by a scalar ¢ and leaving v fixed we see that

1
Ki(cM,v,cA) = —K{(M, v, A),
c
Ky(cM,v,cA) = Kr(M, v, ).
The Hermitian structure on P (C") is the usual one, so for

(U1, uz2)er
Ui, Uy € vl, (Ml, u2) =V
(v, V)

We take trace(AB*) = (A, B) as a Hermitian structure on M (n). Here B* is the Hermitian
transpose of B. The induced norm is the Frobenius norm ||A||> = Zi, j |aj [2. The condition
numbers are then defined from the condition matrices as usual, say

Ci(M,v,A) = | Ki(M,v, )|, i =1,2.
Define the “ill-posed” variety X’ by
Y ={(M,v, 1) € V| rank(A] — M)* < n — 1, some integer k > 0}.

Consider

w1 N\ T2
M(n) P(C") x C,

where 7; and 7, are the restrictions to V of the natural projections from the product space,

and X = 7(X).OnV — nfl(Z), 7y is an n-fold covering map. The fiber V, ) = nz‘l(v, A),

of m, is an affine subspace of M (n) of codimension n. Let d,, » be induced metric on V,, ;.
THEOREM 1.3 (second condition number theorem). For (M, v,A) € V

(1) Ci(M, v, ) = [dy (M, v, 1), ' NV, )",
@) Ca(M, v, 3) < 12 )
2=\ (M, 0,0), TNV, ‘

As in the (first) condition number theorem one has an obvious corollary for C;(M) by
taking the maximum over (v, A) € 7| L.

The proof of the second condition number theorem is in §3. The formulas for C; and C;
first appeared in Wilkinson [1972] and Demmel [1987].

1.3. Moore-Penrose, Newton, and complexity. Newton’s method can be generalized
to search for zeros of maps f : R® — R™, n > m, using the Moore-Penrose inverse of the
derivative (as in Allgower and Georg [1993]).

We recall the definition of the Moore—Penrose inverse A of a surjective linear map A :
V — W, where V, W are finite-dimensional vector spaces with inner products. At:w v
is simply the inverse of A restricted to (ker A)*. It may also be described as the unique linear
map AT : W — V satisfying AAt = I, and AT A is the orthogonal projection onto (ker A)*.
Note that AT = A*(AA*)~!, A* the adjoint.

Now we will define Newton’s method for f : R” — R™ (f could as well be defined on
a domain of R”, or from C” to C™). Let Ny : R* — R”" be

Nf(x) = x — Df ()T f(x)
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and if xo is a given “starting point” in R", x; = Nf(x;_;). Note that Ny is well defined at x
provided Df (x) is surjective. Moreover if m = n, Ny is the usual Newton method.

If Df (x) is surjective then x is a fixed point of Ny if and only if f(x) =

PROPOSITION 1.2. Suppose 0 is a regular value of f : R" — R™. For ¢ € f~1(0),
let Wi = {x € R" | Nf(x) - ¢ ask — oo}. By Nf we mean the kth iterate of Ny.
Then (a) the union over ¢ € f~1(0) of W; is a neighborhood of f ~1(0), (b) Wg intersected
with a small neighborhood of f~'(0) is a cell varying continuously in ¢, and (c) DN¢(¢)
restricted to ker Df (¢)* is zero. The tangent space of W{ at ¢ is the orthogonal complement
to T;(f~1(0)) = ker Df(¢).

This extends the usual basin of attraction theory from the case m = n.

Proof. The existence and continuity of W, are contained in Theorems 5.1 and 5.5 of
Hirsch, Pugh, and Shub [1977]. The fact that the union fills a neighborhood follows from a
simple degree argument. We will make the size of the small neighborhood more pre01se in
85, Proposition 5.2.

We now give the complexity theory for using this method for finding zeros of analytic
f :R" > R™, generalizing Smale [1987], Bez I. Define for x € R”,

B(f,x) = ||Df(x)Tf(x)|| (or oo if Df(x) is not surjective),

Dk k T
e f( ) (or oo if Df (x) is not surjective),

y(f,x) = max | Df (x)

and a(f, x) = B(f, )y (f, x).
THEOREM 1.4. There is a universal constant oy approximately % with this property: if
f> x = xo, are as above with «(f, x) < «y, then all the Newton iterates x1, X3, . . . are defined,

converge to { € R* with f(¢) =0, and for all k > 1

1\ 21
3 lxes1 — xell < (§> lxr — xoll.

A point xo € R" is called an approximate zero of f if (3) is satisfied. Then ¢ is called
the associated zero.

The proof of Theorem 1.4 is in §4.

Imagine an operation (an ideal operation) which produces from an approximate zero the
associated actual zero. This could be done in the Blum—Shub-Smale [1989] model of compu-
tation with a “6th type of node” for example. Given an approximate zero as in Theorem 1.4,
iterating Newton a fixed number of steps gives a desired final accuracy. Since convergence is
immediately quadratic and no roundoff is assumed, it is reasonable to assume the exact answer
is computed. We will assume in our complexity estimates below that such an operation exists.
Justification is based partly on the gain in conceptual simplicity of the results and on simplicity
in the arguments. Moreover the results in Bez I give a mathematical justification. Using the
robust « theory of Bez I (Theorem 3, §§I-2 and II-3), one can bypass the use of this 6th node,
at a cost of more technical work. Using these arguments it seems likely that the use of the 6th
node here could be eliminated, obtaining estimates with slightly worse constants.

Let us see how one can use Theorem 1.4 to get global complexity results. Consider
fi : R* > R™, y, € R™, a homotopy and path, respectively, for 0 < ¢ < 1 and let {; € R”
satisfy fo(Zo) = yo. Define

Ay = max a(fy —yr,x).
x subject to
Sr@)=yr

Observe A;; = 0.
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Hypothesis. Suppose A, < ag whenever [t —t'| < A = %, k a positive integer.

COROLLARY 1.1 (of Theorem 1.4). Let f;, y:, &o be as above and satisfy the hypothesis.
Then a number of steps (6th node) sufficient to solve f1(£1) = yi is k of the hypothesis.

The proof is immediate. Let tp = 0, t; = t;_; + A, so «(f;, {,_,) < ap. Then the 6th
node yields ¢, from ¢;_, starting from &o with £(¢&,) = yy,.

One may use Moore-Penrose in place of projective Newton for finding roots of f € H ).
In projective Newton, at z € C"*! one restricts Df (z) : C"*! — C” to the orthogonal space
N, = {v € C"*!, (v, z) = 0}. In Moore—Penrose this is simply replaced by the orthogonal
space of ker Df (z). For (f, ¢) € V —X’, N, and the orthogonal space of ker Df (¢) coincide,
but this is not the case in general.

The main theorem of Bez I estimates the number of steps needed in following ¢, from
o, where f;({;) = 0, and f; is a curve in H(y). The same estimate can be proved for the
Moore—Penrose version.

THEOREM 1.5. Let F; = (f;, {;) be a homotopy path in H 4y x C** (so fi(¢) =0), and
¢o satisfy f(¢o) = 0. Then k = CLD??u? (the greatest integer in) Moore—Penrose steps are
sufficient to produce &, &y - . ., &, With t, = 1 and so f1(¢1) = 0.

Here, C is amodest universal constant, 4 = max; (nom(f7, ¢;) is the normalized condition
number and L is the length of the curve f; in P(H ). We use the 6th node and our proof
(see §4) does use a couple of results from Bez I, but is much shorter with the concepts more
clearly exposed than the proof of the main theorem in Bez I.

In other words, the number of steps required to follow the homotopy successfully grows
as the square of the largest condition number of the zero ¢, of any polynomial f; along the
homotopy path.

Consider the complexity of the problem of following the curve F~1(0), where F : R"*! —
R" has zero as a regular value. Here the algorithm has Moore—Penrose as one ingredient of a
predictor-corrector method just as in Allgower and Georg [1993].

THEOREM 1.6. The number of predictor-corrector steps sufficient to follow an arc A of
F~Y0), F : R*! — R" as above, is Cy L, where L is the length of A, C a constant (not
more than 20), and y = max,cq v (F, x).

Theorem 1.6 yields a way of dealing with the problem of producing a complexity theory
for zero-finding of real polynomial systems. The difficulty here is that the set of ill-posed
problems has codimension 1 so that paths will generally have to meet that set. Now one could
use the parameter ¢ of the homotopy for the extra variable. If one wants to follow a zero of
fi : R" —> R, just define F : R"*! — R”" by F(t,x) = f,(x), where R"t! = R x R".
Generically 0 will a regular value of F even when the path f, meets the set of ill-posed
problems, so that Theorem 1.6 applies. It would be interesting to see this idea carried out to
obtain explicit bounds.

Theorem 1.6 is proved in §4.

The preceeding results extend to Riemannian manifolds provided with a computation of
the exponential map.

The following result has a different version in Theorem 1.8 of §1.4.

THEOREM 1.7. Let F : R" — R™ have zero as a regular value and define y =
max,c s-1(0) ¥ (F, 2). Thenthere is auniversal constant C so that if the distance d(z', F~'(0)) <
%, then 7' is an approximate zero.

For the proof see §4.

1.4. Complexity and condition number. Approximate zeros were defined without ref-
erence to any actual zero. The corresponding zero was then derived. We now define x, as an
approximate zero of the second kind (as in Smale [1987]) for f : R* — R” provided there is
some ¢ € R?, f(¢) =0, and
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1 2I¢—l
||xk—§||5(§> xo—¢ll, k=1.2,....
Xk = Xk—1 — Df (1)L f (k1)
THEOREM 1.8 (Smale 1986). Let f : R* — R", x, ¢ € R", £(¢) = 0, and

3-J7
>

lx =&ly(f. 5) <

Then x is an approximate zero of the second kind.

We will suppose that our “6th node™ has the power of producing the actual zero from an
approximate zero of the second kind.

Now consider the setting of the implicit function theorem F : R¥ x R” — R”, where F
may also be defined on some domain or over C. Suppose that .

t = (a(t), £(t)) € R* x R", with F(a(t), £()) = 0,

isacurve, 0 <t < 1, such that 3—?((1(1), ¢ (2)) is nonsingular for all ¢. The idea is that a(¢) is
given explicitly (the input of a problem) and ¢ (¢) is given implicitly. Suppose that £ (0) is also
given and that we want to find ¢ (1). This is a general setting for path-following algorithms.

For our algorithm and complexity result, it is convenient to write ¢, = ¢(¢) and F(x) =
F(a(t),x),sothat F;(¢;) =0,0 <t < 1.

The algorithm (slightly idealized) depends on a partition ty = 0, #; < tiv, ty = 1,
i =0,1,...,k, and the condition is that ¢, is an approximate zero of the second kind for
Fi,, and &, ,. Thus k “6th node” operations are sufficient to produce ¢; and so k is the main
ingredient in the complexity.

We may estimate k thus by Theorem 1.8. Accordingly, the required condition to implement
the above procedure is

37
5~

||§ti+l - ;t, ||V(F't,'+19 ;ti-(-]) f

Let Ai+l = ||§t5+1 - ;t,' ”’ Vi = y(Ft,'.H’ ;t,+1)' SO

kA k
) k=Y —=c) A
1 1

where ¢ = #, is sufficient. This yields the following theorem.

THEOREM 1.9. Suppose that F; (&) is as described above, y = max, y (F;, ), and L is
the length of the curve t — ¢;. Then given {y, a number of steps (“6th node”) sufficient to
reach ¢ is ﬁLy.

Use (4) and that | A;; <y 3~ A; < yL. The number of Newton steps without using
the 6th node could probably be estimated at about three times the above, using the robust «
theory of Bez I. Then one would obtain an approximate zero of f; instead of ¢;.

Theorem 1.9, while dealing with an idealized algorithm, is nice because of its extreme
simplicity in statement and proof. It displays the main complexity ingredients.

The condition (4) is sharper. For example if y (F;, ¢;) is monotone, the complexity is
bounded by [\ [1¢/ly.dt.

In the main theorem of Bez I, the condition number 1 ( f, ¢) turns up as the main ingredient.
It is quite natural to ask why, since (£, ¢) is an infinitesimal invariant reflecting other aspects
of computation. We are now in a position to deal with that question.
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Consider the environment of the previous theorem. One of the two complexity ingredients
is L, the length of the curve ¢,. This curve is only implicitly given, and hence L is also. It
would be preferable to replace L by a more direct invariant of the input curve a(t).

Here F; () = F(a(),¢(t)) = F(a(t),G(a(t))),and G : U — R" is defined on a(¢).
Let L, be the length of the curve a(¢). Recall that the condition number w(a, ¢), withG(a) = ¢
at (a, ¢), is || DG(a)|| and so the condition number u of (a(t), ¢(¢)) is max, u(a(t), £(t)).

PROPOSITION 1.3. L < uL,.

Proof.

1 1
L =/ g/ lat =/ IG(a(®)) lldt
0 0
1 1
=_/0 IDG(a(t))a’(t)||dt 5_/0 IDG(a®)ll lla’(®)lldt

1
< M/ la’(®)lldt = pLa.
0

Proposition 1.3 and Theorem 1.9 yield the estimate

<
6) complexity £ < - ﬁyuLa.

The last results give some way for taking advantage of sparsity in complexity estimates.
In Bez I we found that for full systems, i.e., allowing all coefficients to be nonzero for systems
of polynomials f : C* — C" of given degree (di, ..., d,), the condition number y squared
was decisive. One factor of 4> came from an estimate on y. The second factor of u could be
interpreted as the u in (5). But now in the theory just preceding, the sparse case leads to the
condition number u of (5) which could be much smaller than the u of Bez I.

We end section 1.4 with a couple of comments.

(1) The condition matrix itself leads to an algorithm of predictor-corrector type, and its
complexity may be estimated as above.

(2) Results here may be extended to maps of Riemannian manifolds using the exponential
map extensively.

Remark 1.15. The unitarily invariant norm on M used in Bez I, II, III, and this paper
is described in detail by Weyl [1932] with his focus explicitly on unitary invariance. Stein
and Weiss [1971] use the same norm (and corresponding inner product), but don’t discuss its
unitary invariance. As mentioned in Bez I, Eric Kostlan brought this approach to our attention.

2. Proof of Theorem 1.1. The proof uses the main results of Bez I and Bez II. First we
follow Bez I to obtain Theorem 2.1. We use some of the notation of Bez 1. For example, we
write fproj(f, ¢) for pipom (f, ¢), the normalized condition number, and extend the definition
to (f, ¢), where f(¢) is not necessarily zero by the formula of §1, Example 5.

Let B,(f, s) be the d,, ball of radius s around f € Hy — {0}, where d, is the chordal
metric

By(f.s) ={g € Hw | g #0anddy(f, g) < s}.

THEOREM 2.1. Given C, > 1, AC; > 1 with the following property: if g € H,
g8(x) =0, and pproi(g, X) < 00, then x may be continued to a zero x(f) for all f in B,(g, s),
where

1

S =
C1D¥212, (8, %)
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and
Mproj(fv x(f)) < CZﬂproj(g’ x).

Proof. We prove three preliminary propositions and a lemma.
Here we recall Proposition 5(b) of Bez I, §I-3.
PROPOSITION 2.1. Let f, g € Ha). Then

Mproj (8, X)(1 +d,(f, 8))
- DI/ZdP(f, g)l/‘pmj(g’ x)

as long as the denominator remains positive.
LEMMA 2.1. Let f, g € H). Let g(x) = 0. Then
(a) ﬂO(f’ x) < H/proj(f’ x)dp(f’ g)r
(6) Y0(f, X) < §proj(f, X)D*?,
(©) a(f, %) < 3 (f X)dp(f, ) D¥2.
Proof. From Propositions 2, 3, and Lemma 1 of §I-3 of Bez I

Bo(f, x) < llvproj(fv NS, x) < Uproj (S, x)dp(f’ &),

which proves (a). (b) is Proposition 3 of Bez I §I-3 and (c) results from multiplying (a)
and (b).

PROPOSITION 2.2. There is a constant Ky > 0 such that, if g € Hg) and g(x) = 0, then
x may be continued to a zero x(f) of f for all f € B,(g, s), where s = Kl/ugmj(g, x)D3/2.
Moreover given constants K,, K3, K4, K5 > 0, K| may be chosen small enough such that

(a) /‘Lproj(fv x) =< (1 + KZ),u'proj(g’ X),

(b) B < 2K/ pproi (g, ) D2,

© (BEBHP < 1+ Ky,

(@ Bo(f,x) < K3/Mproj(g, x)D3/2,
© 7(f, ) < 52 ppoj(g, x) D2,
® EE -y (f,0) < K.

Proof. By Proposition 2.1
(a

.uproj(fv x) < 1

Mproj (&, X) (1 + PT:W)
proj
Mproj (f5 X) < ( X )

R . S
Hproj(8:X) D

1+ K
< Hproj(8> X) (1 — K:) =< Mproj(g, x)(1 + K2)

for K; small enough.

@ Bo(f, %) < tioroi (. X)d,(f, §) by Lemma 2.1(a)

- (2. %) 1+ K, K,
= Hproj(8; 1-K,; Mgroj(g’x)D3/2

1+K
(1—1(1) K, K;

= <
,u'proj(g»x)DS/2 /'Lproj(g’ x)D3/2

for K; small enough.
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(e
Yo(fo x) < lupr‘,j(f, x)D*? by Lemma 2.1(b)

+1<1)'D3/25 1+ K»)

1
2ll’pl'0_] (g, x) ( K 2 ,upmj(g, X)D3/2

for K, small enough.

Thus a(f, x) = Bo(f, ©)yo(f, x) < 3 (i+§‘) K, sofor K| small enough a(f, x) < .
x(f) is then defined as the associated zero of f | N, for Newton’s method with starting point x.
(b) By (d)

1+K
() Kulix

B(f,x) < ‘W-

Thus by Smale [1986] (referred to hereafter as P. E.), or Bez I,

2 (&) Kilxl
Ix(f) — x|l £ ————=5
f Mproj(g’ x)D3/2
© D1 D-1
(||x(f)||> < (l]x(f)—xll +1>
[l flx |l
14K D-1
< 21+K: K, 1
<|—pw+
< ez(%)K1
1+K
choose K sufficiently small so that ez(ﬁ)K‘ <1+ K4
lx(f) — x|l 2K; (1+K2> 3/
——p(f,x) < . Mproj (g, X) D/
lxI Hpro (8, x) D32 2 P!

= K3(1 + K3) by (b) and (e)

and we may choose K3, K sufficiently small so that K3(1 + K3) < Ks.
PROPOSITION 2.3. Let f € Hy, x € C*" and y € Ny = x + Null x. Then

| (1 —uy? (nyn)
/"/prol(fv }’)5 w() ,varo_|(f x) I P

where ro = ”)ﬁ;ﬁc”’ u = roYo(f | Ny, x), and

(14 )2
1= ro (%234 + Dpsge (. ¥)n(f, %)) S8

K=

aslongas0 <u <1-— 4 and rq is small enough so that the denominator of k remains
positive.
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Proof.

woroi (> ¥) = ILFILI(DS, | Null)™ (A [y 147l
< I£111(DFy | Null,)™"(Df, | Null)|l [(Dfy | Nully)™'(Df; | Null)]|

di—1
> (2)
llx |l

1/2

x[[(Dfy | Nully) ' A@? x]14~Y)||

(1—u)? <||)’||)
SK—— V() ﬂpro_](f x) 1=l )

by Proposition 1 of Bez I, §III-2, Lemma 3(2) of Bez I, §II-1 (initially from P.E.), the definition

of fproj, and the fact that the norm of a diagonal matrix is the largest norm of its entries.
Proof of Theorem 2.1. Choose K, K3, K4, Ks, K¢, K7, Kg > 0 so that (1 4+ K3)(1 +

K)(1+ Ke)(1 + K7) < Ca, (1 + KDY2/(1 = K3(EE5) Ks + DEEL) < (1 + k),

%(—’;%<1+K6,and0<Kg<K5

Let C, = where K of Proposition 2.2 is chosen with respect to K3, K3, K4, Ks.

K 9
Then in Proposmon 2.3 with y = x(f)
1 —u)? D—-1
k < (14 K>y), ﬂ<1+K6, wfl-i-lﬁ,
¥ (u) llx]]

and Nproj(fv x) < (1 + K2)tproj(g, x). Thus

Mproj (s () < (1 + K7)(1 + Ke)(1 + K2) tproj(g, x)(1 + K4)
< Czﬂproj(g: X). o

COROLLARY 2.1 (of Theorem 2.1). Let L be a great circle in Hy and N, the special
neighborhood of £ in H 4y as in Bez I. Then there is a universal constant ¢ so that if LNN,, # @,

then VoI(L N Nyp) > .
The “Vol” is the measure of a subset of the circle and a great circle is just the intersection
of a real 2-dimensional linear subspace with unit sphere.
By Theorem 2.1, there is a constant C such that u(f) = u(f, y;) <2u(g, xi) <2u(g)
for all f withd,(f, g) < Therefore, if u(g) < ﬁ then u(f) < ; forall f such

— Cn(lt(g))sz
that

_ 4
2 - 3/2°

dy(f. 8) <

Now let f € LNN,,ie., u(f) > l and g € L N (N,,)¢ (using c for the complement) so
n(g) < 5-. Thend,(f,g) > Dm Hence if f € L N N,, then the interval of d,, length

2
C4D?/2 around fin L is contained in N,,. Since d, = sindp this interval has Riemannian

length greater than =55, G D; = and so its “volume” is greater than 53,22 ]

Let S be the unit sphere in Euclidean space E of some dimension and £ be the space of
great circles of S. The orthogonal group O of E acts isometrically on the product S x £ by
(x,L) = (Ox, OL) for O € O. The subspace

V={xL)eSxL|xelL}

is invariant under this action, and O acts transitivelyon V. Forx € S,let L, ={LeL|x€L}.
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PROPOSITION 2.4. Let U C S, W C L be open sets. Then
(a) there is an x € S such that
Vol(L, N W) - Vol W
VolL, ~ Voll°

(b) fLeL VOI(U N L) Vol E‘(‘;OIILQVOI Uu

Here Ly is just a standard great circle and VolLy = 2.

For the proof of the proposition let w1V — S, m : V — L be the restrictions of the
projections and U’ = ‘U, W' = ;' W.

First we prove Proposition 2.4(b). Let xo € S and £y = L,,. Let NJ; and N J, be the
normal Jacobians of the maps 7; and 75, respectively (from the coarea formula as in Bez II).
These are constants by the orthogonal invariance. We use X’ to denote the characteristic
function.

LEMMA 2.2.

f XU Nmy'L) = <&> Vol(U) Vol(Ly).
£Jn'L NJ

Proof.

U -1 _ /
//~1LN_12X(U N, L)_/VX(U)

1
= XU/OV —— Vol(U4)Vol(Ly),
./N-Il ( ) = NJ[O()O(O)
where V, is the fiber over x of 7y, proving the lemma.
In the lemma consider the special case i/ = S, U’ = V to obtain that

NJ; _ Vol(£)Vol(Lo)
NJi — Vol(Ly)Vol(S) "

Observe that

/ X(U'ﬂn'2 L)y =VolU N L).
-1y

Putting this and our evaluation of xf into the lemma yields Proposition 2.4(b).

Now for part (a) of the proposition: the coarea formula gives

1
X(W) = _— X (W’ Ve
/v()/sNJlfv,(”)

1 1
X(W’):f —f X(W N L) = ——Vol W Vol L.
./v c NJ& Jroip NJ, 0

and

Thus
NJ
// X(W NV,) = —LVol W Vol L,
sJv, NJ,

_ Vol LyVol S Vol W
- Vol £
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by the computation of 11\%12 above. Therefore

Vol W _ mises [y, X(W'NV2)
Vol L — Vol l:o
Vol (£, NW)
- Vol L,

for some particular x. This proves Proposition 2.4(a).

We now apply Proposition 2.4 to the case where E = H ), with £, S defined for this
specialization. Then for g € S (i.e., g € Hy), lIgll = 1), L, is the space of all great circles in
H(ay containing g. Define

Log={L €Ly | LNON, # 0.

THEOREM 2.2. There is a constant ¢ > 0 such that for eachd = (d,, . .., d,), there is a
8 € Hy of norm 1 and

Vol £
208 < p2p(n 4 1)(N — 1)(N — 2)D¥2D,
Vol £,

For the proof we use Proposition 2.4 taking{ = N>, and W = {L € L | LN N, # @}.
Using Corollary 2.1,

cp?

Vol W < [ VOl(L N Ny,) < | Vol(L N Ny,
D3/2 ., P

which by Proposition 2.4(b) is

Vol £ Vol LyVol N,,
Vol §

By Proposition 2.4(a) there is x = g so

Vol(L, N W) _ ( ep? ~! Vol LoVol N,
Vol L, —\ D32 Vol §

Now use Theorem C of Bez IL. It yields (for n > 1)

Vol sz

4p%n? D(N = 1)(N = 2)D.
VolSSpn(n+)(N )( 2)

Joining this with the previous estimate yields Theorem 2.2 (note that £, N W = L, ¢)- The
case of n = 1 is implied by Theorem D of Bez II.

Proof of Theorem 1.1. Fix g as in Theorem 2.2. Given f € P(H(), the homotopy
0 <t =<1 fi =tf+ (1—1t)g has length less than or equal to one. Let p(f,g) =
sup,{f:} N N, = @. Then by the main theorem of Bez I, ;f%(%?/—z) projective Newton steps are
sufficient to find all the approximate zeros of f, with ¢, around 10. Now by Theorem 2.2
the probability that p(f, g) > s is greater than or equal to the probability that the great circle
through f NNy =0 > 1 — cs?n*(n + 1)(N — 1)(N — 2)D3/?D.
Thus the probability that 02?23/2 steps suffice is greater than or equal to 1 — cs?n?(n +
1)(N — 1)(N —2)D3D and setting t = cs?n?(n + 1)(N — 1)(N — 2) D3/?D we find that

3
with probability 1 — 7, @ @EDW-DW-DDD gon cyffice,
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3. Proof of the second condition number theorem. Note that V;, , is the set of M having
v as a A eigenvector and that if M € £’ NV, ,, then A is a multiple eigenvalue.

The unitary group U (n) acts on P(C") in the natural way and acts on M (n) by sending
A — UAU! for U € U(n). Moreover if (M,v,1) € V, Mv = Av, so UMU ' (Uv) =
A(Uv). Thus V is invariant under the product action of U(n). Since 7y : V. — M(n),
7y 1 V. = P(C") x C both commute with the action of U (n), it follows that K;(M, v, A),
i = 1, 2 are also invariant under the action of U/ (n). Thus K;(M, v, A), i = 1, 2 only depends
on the linear map M | v*, where v is the Hermitian complement of v in C", and not on a

particular t basis.
Let M = T, M | v and M, = m,M | vl, where m,. and 7, are the orthogonal

projections of C" onto v' and v, respectively. Since U(n) acts transitively on P(C") we
may assume for proof that v = (1,0,...,0) and thus that (M, v,1) € M, has the form

M= (3 Z‘) In general we assume ||v]| = 1.
LEMMA 3.1. (2) K1(M, v, VM = (AL,_y — M) ‘7. M(v), )
() K2(M, v, VM = %

where y satisfies (M* — AI)y = 0, M* the adjoint of M.
Proof. The equations

(6) (M — M)v+ (M — M)y =0,

) (v,v) =
define (M, 0, &) € Tu,u.V C T (M(n)) x T,(P(C") x C. Applying 7, to (6) gives
Tyt M(v) = e (A — M),
and since v € v by (7) e M(v) = (\I — M)v proving (a).
For (b) note that (y, (M — M)u) = 0 for all u € C". Take the inner product of (6) with
y to obtain (y, (Al — M)v) = 0 so that
(y, Mv)
(y;v

LEMMA 3.2. (a) | K1(M1v, Dl = |(Muy — M7,
) 1KMo, V]| < (1+ [IMIPI ALy — MDD,

Proof. Assume M = (g Z‘) v =(1,0,...,0) and write M = (

v = 0 for M of the form ( 0 Z ) since the eigenvector v is constant for these perturbations.

Thus K,(M,, v, A\)M factors through projections on M, and | M>|| = ||7mye M,)].
For (b) y may be taken as

8) =v+ WL — M)* ' (M* = AD)v
for Image(M* — AI) C Ker(M — AI)* C vt. Applying (M* — AI) to both sides of (8) gives

(M* — D)y = (M* — AD)v + (M* — AI)(M_y — M)* Y (M* — AD)v
= (M* —AD)v — (M* — Ay =0

A= = Ky(M, v, 7).

AMI

e ). Then for (a),

using (M* — AI)(Ad,—y — M)*' = —1I,_;. Now from (8)
IyI1? < 1+ I — MY 2 I(M* = A
< 1+ QI = M) P Mol
<1+ = M)P M|
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using ||A*|| = ||A||. Also from (8) it follows that (y, v) = (v, vy = 1. Thus

(v, Mv)

K2 (M, v, VM| = < Iyl M|

using Lemma 3.1, Cauchy-Schwarz, and the above. The estimate of ||y |? finishes the proof
of (b).

For the proof of the theorem we also require the following proposition

PROPOSITION 3.1 (Eckart and Young [1936]). A7} = dF(A 55, Where A € M(n),
S C M(n) is the set of singular matrices, and dr is the Frobenius distance.

Proof of Theorem 1.3. Assume M = (O Afl‘) v =(1,0,...,0). Then it is simple to see

that the closest matrix in V, , N = is N = (0
to M such that M, — N is singular. That is,

o ) where N is the closest matrix in M(n — 1)

dy 3 (M, v,2), %' NV,,) = dp(M, N)
=dr(\ o1 — M, S)
= | pey = D)7
by Proposition 3.1. Here S is the set of singular (n — 1) x (n — 1) matrices. Now Lemma 3.2
finishes the proof of the theorem.

4. The proofs for §1.3. The proof of Theorem 1.4 is adapted from Smale [1986] (P.E.).
LEMMA 4.1. Let f : R* - R™, z,7 € R, and u = |7 — zlly(f,2). Let V, =
ker Df (x)* and 7, : R" — V, be the orthogonal projection. Suppose u < 1 — % Then

1 2

()] ||Df(Z)TDf(Z/) — Tl < (T——u> —-1<1,

N|— (1 - )2
(10) IDf DS @Ivll < = (u”) ,
where W (u) = 2u®* — 4u + 1,

(1 —u)?
N

11 IDf(Z)'Df(2)| < T

Proof. For (9) expand Df (z') by the Taylor series

kf(z) _ )k 1
1)'

Df(z)—Df()+Z

Apply Df (2)t, noting Df (z)' Df (z) = m, to obtain

2
”Df(Z)TDf(Z/)_”z”Szkuk_l—1=( : ) —1
k=1

(compare PE.).
Next note that

IDf @Iy Df @)y, — Iv, || < I1Df @' Df () = 7],
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so as in P.E., (10) follows. Here Iy, : V, — V, is the identity. Finally (11) is a consequence
of the fact that for any surjective linear A : R"*! — R”" and hyperplane V C R**!, v € R",
1Al arvll < IALS 2. :

Using the lemma, the proof of Theorem 1.4 follows just as in P.E.

We now prove Theorem 1.5. This uses Moore—Penrose (i.e., Newton’s method extended
by Moore—Penrose) to follow a curve (f;, &) in Hzy x C**! with f,(g“,) =0, using x; | =
fo.+1 (x;). Using the 6th node we may take x; = ¢,, eachi = 0,1, ...,k provided that
al(fe, &) <apfory; <t <ty

By Bez I, especially the higher derivative estimate,

77D3/2
2 9
where n < d,(f;, fi,) =dpisasinBezland d,(f, g) = sind(f, g), d(f, g) the Riemannian

distance in P(’H(d))
Use Proposition 5 in Bez I, §I-3 to obtain

,u'norm(ft, ;t.)(l +d )
Dl/zdp,unorm(ft,- ’ é't,-

w(l+dp)
~ 1—DYV2d,pu

a(fr, gt,) < Unom ([t é‘t,')z

,u'norm(ft’ Ct,) 1=

, W= max Mnorm (St &)

To apply Theorem 1.4, we thus need

w1 +d,) \* DY
1-DV2d,u) 2

d, < ag.

There is a universal constant ¢ which makes d, < m sufficient. Thus we obtain the
complexity k = 142D32L. 0

Proof of Theorem 1.6. Let zero be a regular value of F : R**! — R* u € F~1(0),
i e T,(F~1(0)), and ||| = 1. Suppose that

(12) a(F,u+ hu) < a.
Then the predictor-corrector algorithm with the 6th node produces
u—u+hi—>u e FY0),

where u' is the zero associated to the approximate zero u + hu.
The estimate (12) has two parts, the estimate for y (F, u + hu) and for B(F, u + hu).
One uses Lemma 2c of P.E., extended by Moore-Penrose, to see that

y(F,u + hu) <cy, forhy < ¢,
and forallu € A C F~1(0).
The Taylor expansion of F about u yields

D*F (u)(hu)*

Fluthi) =) — =

k=2
since the first two terms are zero. Compose with D F (u + hit)! to obtain

A t Pk k
BFu+hi)< Y IDF(u + hut) DF(:?DF(u) D*F@)l*
k=2 .
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Here we used DF(u)DF ()t = 1.
Equation (11) of Lemma 4.1 applies to yield

(1— hy)?
Y(hy)

Thus we obtain B(F, u + hit) < ch®y and so a(F, u + hit) < c(hy)? for hy < ¢’. Thus
(12) is satisfied provided that 4y is less than an easily estimated constant.

To finish the proof of Theorem 1.6 we need to relate /4 to the complexity. It is sufficient to
show that ||u’ —u|| > ch where u’ € F~!(0) is obtained by the predictor-corrector step, and c,
asusual, is anew universal constant. In factitis sufficient to show that || (u+hu)—u'|| < 1k, c1
asmall universal constant. Since u +#Au is an approximate zero, ||u+hu—u'|| < 28(F, u+hi)
and B(F, u+ hu) < c(hy)h. But hy can be assumed to be universally small as above. O

Proof of Theorem 1.7.

LEMMA 4.2. With the setting of the theorem, let u = ||z — 7’|y (F, z), where-F(z) = 0.
Thenif ¥ (u) > 0, a(F,7') < w(_l:t)f

Proof. Use Proposition 2 of Bez I, §II-1 extended to Moore—Penrose as before. Then

2
IDF(u + hit)! DF (u)|| < ,hy <1— —‘ZC

(1 —wa(F,z)+u
¥ (u)?

But a(F, z) = Osince F(z) = 0, proving the lemma.

There is a constant ¢ such thatif u < c, W <. Soifz € F71(0)and ||z — 7| < }C-,
a(F,7) < ap. O

Then we are finished by Theorem 1.4.

5. Estimates of DNy.
PROPOSITION 5.1. Let f be an analytic map f : R* — R", x € R*, f(x) = 0. Let
u=|lx = ylly(f, x). Then

a(F,7) <

||DN()—DN(x>||<(1_”)2( ! —1>+2—“
Y TN = \ 0= w2 T2

aslongas y(u) >0,ie,u<1-— 4

Proof.

DNy (y) — DNy (x) = D(Df' o f)(y) — D(Df o f)(x)
= D(Df M f(») — DF'DF ()
—D(DfMY) f(x) + DF(x)TDf (x)
=D(DfMNf)+Dfx)'Df(x) — Df ) TDF ().

A B

We will prove in the lemmas below that
(13) Al < =
BRAO

and

(1 —u)? 1
(o 181 = =5 ((1—u>2_1>'




146 MICHAEL SHUB AND STEVE SMALE

Recall that Df (x)T Df (x) is an orthogonal projection on ker Df (x)* and Df(y)t Df(y) is
an orthogonal projection on ker Df (y)*. First we estimate the norm of o : ker Df (x) —
ker Df (x)* such that ker Df (y) = graph(c) = {(v,c(v)) | v € ker Df (x)}. Write Df(x)
as (0, C),

C:kerDft - H O:kerDf - H

the zero map and Df (y) = (D;, D») in these coordinates.

1— 2
LEMMA 5.1. |o|| < <W;—(a;1—)f —1).

Proof. ¢ = —=D;' Dy so ||lo|| < ||D;'C|| [C™'Dy|l. Now || D;'C|| < 4= by formula

- Y@
k k-1
(10) of Lemma 4.1, and ||C~' Dy || = | Df (x)T 330 2L <(’;3£y1),"> I< gtz — 1L

LEMMA5.2. Let E C Hy X H, be givenasthe graphofo : Hy — H,. Then ||ng—ny, | <
llo|l, where wg and wy are orthogonal projections on E and H, respectively.

Proof. Let A : V — H; x H,. Then orthogonal projection (Image A) is given by
A(A*A)"1A*, A* the adjoint of A. Thus

(I+0*0) =1 (I+0*0) o

Mg — Ty =
B2 ( oI +o*0)' o +0c*0) lo*

and the norm of the matrix as an operator is easily seen to be less than or equal to | o ||.
Lemmas 5.1 and 5.2 prove (14) using that |wgL — Ty =01 —-7mg)—U—mg)| =
|lmg — 7y, ||. Now we turn to (13)

DDfWN f() = =Df D D (3)* + D F () )DFf DF ) f(y)

+D2f(W*(DF()DF ()" f ()
= —DfT (D> F)DF*MNDF D)) F ()

E
+ (I = DFTG)DF () (D*FM*(DF)DF N f ().

G H

G is a projection so |G| = 1. We will prove || E|| < Wﬁ and |H| < —w&)z,
LEMMA 5.3. | E| < a(f, y).
Proof.

IEI < IDFWID*fF I IDF*(Df DF W)™ DI
<y, B y) = alf, y).

The notation D? f(y)* has the following interpretation: D?f(y)(u,) for fixed u is linear.
D? f(y)* means the adjoint of this linear map.

LEMMA 5.4. | D2 f()*(Df () DF N F I < a(f, ).
Proof.

ID2F ) (Df DL F DIl < ID* F3)* (DF MDF ™ DE O
xIIDf (3)*(DF D) F DI
using that Df () Df ()" (Df () Df (»)) ™" = Id

<y, B(f.y) =a(f,y)
using that ||A*|| = ||A|| for linear A. 0

Now the proof of Theorem 1.7 gives a(f, y) < m, proving (13) and Proposition 5.1.
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We make part of Proposition 1.2 more precise for analytic f : E — F, where E, I, are
Hilbert spaces. Suppose 0 is a regular value for f and ¢ € f~1(0). Write E = ker Df (¢) ®
ker Df(¢)*. Let Sy = ¢ + {(x,y) € ker Df(¢) @ ker DF ()" | x| > lIyl}. Let S, =
¢+ {(x,y) € kerDf(¢) @ ker DF(E)L | |lxll < llyll}. Let ¢ = (&1, &) with respect to
ker Df (¢) @ ker Df(¢)*, and let B, (x) denote the ball of radius r centered at x.

PROPOSITION 5.2. There is a universal constant ¢ > 0 such that for analytic f and ¢ as
above andy = y(f, ¢),

@V=Ff=10n B:(¢) = Mnso NE(Si N B< (1)),

(b) V is the graph of C! function o, : Bf (&) — ker Df (&)t and | Doy () + x)|| <
3lxlly,

(c) ngoc = {(x,y) € B<({) | Ni(x,y) € Be(¢) Vn > 0and Ng(x,y) — ¢ as

n — 00} =[N0 Ny ($2 N B ({)),
(d) WS\, is the graph of a C' function

,loc
0w : Bs(¢2) > ker D (¢),

Doy(5) =0and sup || Doy (y)| < 1.
Y€B§(§2)

Proof. To see V as a graph over Bﬁ (¢1) restrict f to (¢ + x) x ker Df(¢)* and apply

formula (10) of Lemma 4.1 to deduce that a(f | (¢1 + x) x ker Df(¢)*, & + x) < Zp(uT)Z
Now choose u small enough so that this quantity is less than «g. Now Theorem 5.1 of Hirsch,
Pugh, and Shub [1977], the use of a bump function, and remarks on center manifolds finishes
the rest of the proof. The estimate of || Do, (¢, + x)|| follows from Lemma 1.

Note added in proof. Remark 1.1 is accomplished in Bez V.
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