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ON THE INTRACTABILITY OF HILBERT'S
NULLSTELLENSATZ AND AN ALGEBRAIC
VERSION OF “NP # P?”

MICHAEL SHUB anp STEVE SMALE

Section 1. Introduction. In this paper, we rclate an elementary problem in
number theory to the intractability of deciding whether an algebraic set defined
over the complex numbers (or any algebraically closed field of characteristic zero)
is empty.

More precisely, we first conjecture: The Hilbert nullstellensatz is intractable.
The Hilbert nullstellensatz is formulated as a decision problem as follows.

Given fy, ..., f,: C* - C, and complex polynomials of degree d,, i= 1, ..., Z,
decidc if there is a z € C™ such that f(z) = 0 for all i.

There is an algorithm for accomplishing this task. From Hilbert, the answer is
no if and only if there are polynomials g: C* - C, i = 1, ..., ¢ with the property

(*) _;ilgi/;'= 1.

Brownawell [2] has made the most decisive next step by finding a good bound
on the degrees of these g,. With that, one may decide if (*) has a solution by linear
algebra, since (*) is a finite-dimensional linear system with the g;'s as unknowns.
This procedure is called the “effective nullstellensatz.”

To say what “intractable™ means in our conjecture, it is necessary to have a
formal definition of algorithm in this context. That is done in Blum-Shub-Smale
[1]. In that paper, algebraic algorithms (called algorithms over C) are described
in terms of “machines,” which make arithmetical computations and branch
according to whether a variable (the first state variable) is zero or not.

In [1], furthermore, one has the concept of a polynomial time algorithm, in
particular, a polynomial time decision algorithm over C. This may be expressed
in the present setting as

T(f)<s(ff  (the c power of s(f)all f).

Here [ =(f,,..., f;) is the input, T(f) is the number of operations (arithmetic,
branching) used to accomplish the decision, and s(f) is the total number of coeffi-
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cients of the f; (input size). Also ¢ is a universal constant. The input size is

=539

i=1

Our conjecture is now formally the mathematical statement: There is no poly-
nomial time algorithm over C which decides the Hilbert nulistellensatz.

An algebraic version of the computer science problem “NP # P?” is also intro-
duced in [1]. From that paper, it follows that the nullstellensatz is a universal
decision problem in a certain sense. It is “NP complete over C.” It follows that
“NP # P over C” if and only if our main conjecture is true.

In other words, we may assert that the algebraic version of NP # P is true if
and only if the Hilbert nullstellensatz is intractable.

Valiant [9] also has an algebraic theory of NP completeness that differs from
ours in his focus on “formula size,” which is not equivalent to a computational
notion. Moreover, his model is not uniform and does not permit branching on a
variable x # 0.

A computation of length ¢ of the integer m is a sequence of integers x,, x,, ...,
x; where x, = 1, x, = m and given k, 1 Sk</{ there are i, j, 0<i, j <k such
that x, = x; o x; where o is addition, subtraction, or multiplication. We define
7: Z - N (the natural numbers) by saying t(m) is the minimum length of a com-
putation of m.

The following is easy to check.

PROPOSITION.  7(m) < 2 log m.

If m is of the form 2%, then (m) = log log m + 2. The same is essentially true
even if m is any power of 2. (All logs are to the base 2)

We raised the question as to whether t(m) < (log log m)’, where c is indepen-
dent of m. Welington de Melo and Benar F. Svaiter [6] showed by a counting
argument that the answer is no. H. Lenstra also tells us that Jeff Shallit answered
our question as well. Carlos Gustavo Moreira [7] subscquently gave quite sharp
estimates on this problem.

Yet our second question remains unanswered.

Problem. s there a constant ¢ such that
t(k!) < (log k¥ all k?

Given a sequence of integers a,, we say that a; is easy to compute if there is a
constant ¢ such that z(a,) < (log k), all k > 2, and is hard to compute otherwise,
We say that the sequence a, is ultimately easy to compute if there are nonzero
integers my, such that mya, is casy to compute and ultimately hard to compute
otherwise.
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MaIN THEOREM. If the sequence of integers k! is ultimately hard to compute,
then the Hilbert nullstellensatz is intractable, and consequently the algebraic ver-
sion of “NP # P” is true.

To prove the Main Theorem, we consider an intermediate decision problem
which we call twenty questions:

Input (k, ht(k),z)e N x N x C.
Decideif ze{1,2,...,k}.

Here ht(k) is defined to be the largest natural number less than or equal to log k.

THEOREM 1. If the Hilbert nullstellensatz is tractable, ie., if NP = P over C,
then there is a machine # over C (in the sense of [1]) and a constant ¢ such that
M decides twenty questions in time bounded by (log k).

THEOREM 2. If a machine over C (in the sense of [1]) decides twenty questions
in time bounded by (log kY for some constant c, then the sequence k! is ultimately
easy to compute.

The Main Theorem follows immediately from Theorems 1 and 2. Theorem 1 is
fairly simple in our computational setting; its proof is carried out in Section 2.
Most of the substance of our paper is in the proof of Theorem 2. For this t
must be extended to polynomial rings. The algebraic and transcendental con-
stants used by the machine must be circumvented. These arguments are carried
out in Sections 3 and 4.

The complexity of deciding twenty questions was considered in a slightly dif-
ferent context in Shub [8]. The paper by Hcintz-Morgenstern [5] is related to
our work here.

Section 2. Proof of Theorem 1 (of Section 1). We prove Theorem 1 by em-
bedding “twenty questions” in a decision problem (Y, Y,,,) which is in NP over C.

Then if NP = P over C, (Y, Y,.;) is in P, and there is a machine .# that decides
twenty questions in time bounded by (log kY, ¢ a constant. Here .# is the restric-
tion of the machine which decides (Y, Y,:) in polynomial time.

The decision problem (Y, Y..) is described as follows. ¥ = C* and ) AR
Uken ¥eex where

Veon = {(k, ht(K), 2y, ..., 20, 0, ... )]z, € {1, ..., k}}.
The embedding of twenty questions in (Y, Y,.,) is simply
(k, h(k), z) = (z, ht(k), z, 1, ..., 1, 0,0, ...),

where the number of ones is ht(k) — 1.
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The proof of Theorem 1 is finished by the next proposition.
ProposiTION. (Y, Y,,,) is in NP over C.

Proof. The NP machine operates on variables
Q2 W W Ujs ---2 U fOr j=1,2,3,4).

It checks if u, is an integer by addition of ones. It checks if the input size
(given with the input by definition) is 6u, + 5. If so, n = u,. It checks if w =1
wiw; — 1)=0, and vu(v; —1)=0for i=0,...,mand j=1, 2, 3, 4. It checks
if uy =302 Tt sets x; =Y ,2%, for j=1,-2, 3, 4. Finally, it checks if
uy =z; + ) i, x}. If so, it outputs yes. Note that if the tests are verified, the w's
and v's are 0 or 1; u,, the x;, and hence z, are nonnegative integers, and
u = ht(u,). The time required is a constant times u,.

Finally, we show that every clement of Y, .1 has a positive test. Let

(k, hl(k), Zyy.eay Zh{.’, 0, ...) € )”e&..
Then z, is a nonnegative integer so that k — z is sum of four integers squared:
k—z, =x}+x3+x3+x2. (u]

Section 3. Easy to compute sequences in rings. In this section, we prove the
facts about easy to compute sequences that are needed for the proof of Theorem
2 of the introduction. These concepts are close to those of algebraic complexity
theory (see, for example, [4], [5]).

Given a ring (or field) R and generators g,, ..., g, of R, a computation of length
¢ of the clement re R is a sequence of elements r_,, ..., Ty T1s ---» Iz, Where
r-; = g for 0 <i < n, r, = r. Moreover, given k between 1 and ¢ (inclusive), there
are p, g with —n < p, g <k, such that r, = r, o1, where o is the operation of
addition, subtraction, or multiplication (or division by a nonzero element if R is a
field).

Define 1 = %,....s.. R = N by 1(r) is the minimum length of a computation of r.
Note that the 7: Z — N of the introduction is a special case.

ProposITiON 1. Let (g, ..., g,) and (h,, ..., h,) be two sets of generators of a
ring R. Then there is a constant ¢ > 0 such that

bt ST s (N+c, allreR.

The proof is straightforward.
Proposition 1 allows one to define hard and casy sequences of elements of R,
independently of the choice of generators, exactly as in the introduction for Z.
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ProPoSITION 2. Let G and H be finitely generated rings (or fields). Let ¢: G- H
be a ring homomorphism of G onto H. If g. € G is an easy to compute sequence,
then so is ¢(g;) € H.

Proof. Lete,,..., e, be a set of generators of G. Then #ley), ..., #le,) is a set
of generators of H. Thus,

Then...uepWG) <., ,(q), forall k. u]

PROPOSITION 3.  Let R be a finitely generated integral domain and K its quotient
feld.

() If fi € K is an easy to compute sequence in K, then there are easy to compute
sequences py, q, in R such that f, = p,/q, for all k.

(i) Let fieK[ty,...,t,,4,,...,2_] be an easy 1o compute sequence where
tys ..., I, are variables and A, ..., 4, are elements of an extension of K. Then
there are easy to compute sequences p, € R[ty,..., 1 Ay,..., 4] q: € R such that

Ji = p/q, for all k.

Proof. We can assume that the generators are Onnonis @5 Bup e csilus Ay aon Aui
where the g, generate R. Now use the instructions for computing f; to compute

(Ps» g2). For example,
(Pe: b)) + (pj q5) = (Pig; + Py9i» 9:9;)- o

THEOREM 1. Let f,€Q(t,4,,...,4.) be an easy to compute sequence of non-
trivial rational functions in the variable t and transcendentally independent complex
numbers iy, ..., A.. Then there is an easy to compute sequence of integral poly-
nomials p;€ Z[t] such that p,# 0 for all i and Jor zeQ, p(z) =0 whenever
izl .. - =0

For the proof we use two lemmas.

LemMa 1. Let a polynomial fe Z[t,,ty,...,t,] have degree d. If f is zero on
every integer point in the cube in R™*' centered at (0, ..., 0) with side having length
(d + 1), then f is identically zero.

The proof is a straightforward induction on m.

LEMMA 2. Let fie Z[t, 4y, ..., i ] be an easy to compute sequence of nontrivial
integral polynomials in the variable t and transcendentally independent complex
numbers 1.y, ..., 2. Then there is an easy to compute sequence of nontrivial integral
polynomials p; € Z[t] such that for z € Q, p,(z) = 0 whenever 5z, 2y,...,4)=0.

For the proof, we may assume that 1, t, 4,, ..., /n are the generators of
Z[t, 4,, ..., i,] that we use for defining computational length.

Let n; be the computational length of f;. Then the degree of f; is less than
2% + 1. Using Lemma 1, considering the 4, as variables, there is an (m + 1)-tuple
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of integers (k,,, ..., k;,.) = k such that Sfilkiyy ..., k;,) #0 and Ik; ;| < 2% 4+ 1, for all
i, j. By the proposition of Section 1, t(k; ;) < 2(m; + 1). Write fi(t, 4,, ..., A2)=
3.1, ,(1)4" where I is a multi-index (a finite sum, of course). Since 4;, j = 1,..., m,
are transcendentally independent, f(z, 4,, ..., /) = 0 for a rational number z if
and only if a;,(z) = 0 for all 1.

Let ki = (k;y, ..., k;). Then if fi(z, 4,, ..., Zg) = 0 for some rational z, we see
that p(t) = ), a, ,(r)(k;)" vanishes at ¢ = z. Note also that pik; ;) # 0.

Finally, by computing k; first and substituting ky, j=1, ..., m in the in-
structions for computing £, p, is computed with computational length at most
n; + 2m(n; + 1), and so p; is an easy to compute sequence.

Now we return to the proof of Theorem 1. By Proposition 3 (i), one finds easy
to compute sequences p;, g; in Q[t, 4,,..., i_] such that pi/a; = f;. By Proposi-
tion 3 (ii), we find easy to compute sequences PieZt, iy,...,2,.]), qf € Z such
that p = p//q;. Thus p/ is not zero. Also p](z, Ayy...y 2,) = 01if z is rational and
filz, 24, ..., 2,) = 0. Now using p; in Lemma 2 finishes the proof.

Section 4. Proof of Theorem 2 (of Section 1). The proof is preceded by two
propositions.

Let a machine .# solve a decision problem (K=, Y) where K is a field of char-
acteristic 0 branching on x = 0 or x # 0. Suppose there is a sequence n, of posi-
tive integers with .# halting at time T(k) on inputs of size n,. Let K™ < K® be
the n,-fold cartesian product of K and Y, = Y n K®. Under the hypothesis that ¥,
is a proper, nonempty subvariety of K™, we define the kth canonical path as the
computation path which at each branch node is taken by a Zariski-dense set of
inputs in K™,

Thus, a canonical path may be described as a certain SEqQUENCE V72" " ¥rs
¢ < T(k) where each y is a branch node, and ¥+1 is the node encountered by
almost all inputs subsequent to 7~ We omit 3 in the case that all inputs arriving
at y, take the same branch (see Cucker-Shub-Smale [3]). Branching is determined
by a condition x, = 0 or not. Then x, is represented by a rational function G,
defined almost everywhere on K"

It is easy to see that the computational length of G; is bounded by c,j + ¢,
where ¢,, ¢, are constants.

Let HA = nGj.

PROPOSITION 1. The rational function H, defined almost everywhere on K™
vanishes on Y,, but is not identically zero. Its computational length is bounded by
¢, T(k) + c,.

Proof. The machine must answer no on a Zariski-dense set of points of K™,
so ¥ must be contained in the union of the varieties ¥; = {x|G/(x) = 0}. This
proves the first assertion.

The last assertion is a special case of the remark preceding Proposition 1.

PROPOSITION 2. Let .4 be a machine over a field K which is a finite algebraic
extension of a field K. Then there is a machine .# over K and a constant ¢ > 0 such
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that for any decision problem (Y, Y,,,), Y < K*, decided by .4, (Y n K=, Y,es 0 K®)
is decided by #; and, moreover, the stopping time satisfies:

TN <cTi(y), yeYnK=.

Proof. We may assume that at any computation node, the computation per-
formed is either addition, multiplication, subtraction, or division of two elements
of K. We may regard K as a vector space over K of some fixed dimension q.
Thus, K can be represented as K¥ where the embedding K < K is the inclusion of
K in K* as the first coordinate. Now addition and multiplication are represented
by fixed symmetric bilinear maps

B.: K% x K- K¢
B,: K% x K7 K¢,

Division of b by a is accomplished by solving the lincar system B, (a, y) = b for y
by Gaussian elimination. This requires on the order of q° steps. To define .4,
replace K= by (K%)=. The input of K= in K= is replaced by the input K* as the
first coordinates in (K9)=. Multiplication nodes are replaced by B, and addition
nodes by B,. Subtraction nodes are replaced by —1 followed by B,. Branching is
done on the coordinates of K¥.

One can see using the isomorphism between K¢ and K that on inputs ye
Y n K=, A4 gives the same answers as .# with the desired time bound where c is
on the order ¢°. (m]

Proof of Theorem 2. Assume that .# decides twenty questions in time
bounded by (log kY. Let p,, ..., u, be the nonrational constants of .# so that we
may view .# as a machine over Q(uys .-, ps). Now Q(gy, ..., ;) is a finite alge-
braic extension of a finitely generated purely transcendental extension Q(4y,...,4,)
of Q. Thus, by Proposition 2, there is a machine .# over Q(4,, ..., A,) which solves
twenty questions restricted to Q(4,,..., 4_). Thus, on the input of (k, ht(k), z),
2€Q(4y, ..., 2,), # decides if z € {1, ..., k} in time bounded by c, (log kY.

Then, by Proposition 1, there are nontrivial rational functions L eQlt, 4y,
.-+ 4y) which vanish on {1, ..., k} and whose computational length in Q(, 4,,
--+» /) is bounded by c,(log k) + c;. Here ¢ is a bound for the computational
length of rational constants introduced by the machine .4, and ¢y depends only
on .4. Therefore, /i is an casy to compute sequence of nontrivial rational func-
tions. By Theorem 1 of Section 3, there is an easy to compute sequence of non-
trivial polynomials p, € Z[r] vanishing on {1, ..., k}. By Lemma 1 of Section 3,
there is an integer m such that py(m) # 0, [m] < 2¢ + 1 where ¢ is the computa-
tional length of p,. So t(m) < ¢ + 1. We may assume |m| is minimal with these
properties. Then p, is zero at each integer between zero and m. Evaluating p, at m
gives a computational length of at most 27 + 1 for pi(m). Since p,(m) is an integral
multiple of k!, the sequence k! is ultimately easy to compute. 0
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