Mysteries of Mathematics and Computation

I was quite surprised last May when Ted Brown, the
Chairman of the Queens College Computer Science De-
partment, called and asked me to give a lecture entitled
“The Future of the Theory of Computing.” I had just re-
turned from two months in California and hadn’t opened
my mail yet. So I didn’t realize that Ted was asking for
a very brief and informal talk. He had written to each
member of the Industrial Affiliation Board of the Queens
College Computer Science Department asking that they
make a small presentation at a meeting to be held at the
College in June,

About two years ago I wrote a book review of David
Ruelle’s book on dynamical systems and bifurcation the-
ory; this made me reflect on what I thought was im-
portant in dynamical systems. I was quite happy with
the result [20]. So 1 hesitantly agreed to give the lecture,
to have the opportunity for some reflection on the the-
ory of computing, only partly aware of the work it would
entail. Among the issues I wanted to consider was the re-
lation of theory and practice — past, present, and future;
especially as sources of funding are more and more ask-
ing the scientific community to assess the effectiveness
of scientific research. After the talk was announced at
Queens College, I was asked to give it in my own de-
partment and at the Courant Institute, and I revised the
talk each time.

Theory is related to practice in at least four ways. For
each 1 will give examples first from computer science
and then from mathematics.

1. Incremental: Theory and practice incrementally im-
prove together in a well-defined branch of study.
Here 1 have in mind the steady improvement of
algorithms for data sorting, compiler design, etc,;
for mathematics, the steady progress in the numer-
ical solution of differential equations of interest in
physics, engineering, and industrial design.

M'ichael Shub

2, Structural: Theory provides a language and struc-
‘ture in which to discuss and analyze an existing
practice.

As an outstanding example here we have com-
plexity theory, P- and NP-complete problems, or the
application of linguistic and logical constructions to
the theory of computer languages and compilers. For
mathematics, we may take the organizing effect that
dynamical systems has had on ordinary differential
equations.

3. Anticipatory: For its own internal reasons, theory
creates structures which later may be important for
practice,

Here we might point to the spectacular example
of Turing’s Universal Machines as precursors of the
modern computer and to this day as the main the-
oretical model of the machine. I will return to this
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later. For mathematics, we have the standard ex-
H ample: the development of Riemannian geometry
which was later so useful to Einstein.

On a smaller scale, but much more recently and
much closer to home, in fact in my own department,
the work of Brian Marcus and Roy Adler on the clas-
sification problem in symbolic dynamics was later
found useful for coding, and was used to improve
the storage capacity of our disks.

. 4. Informal: Theory creates a background which is
] thought to embody the state of knowledge as a mea-
: sure of what can be accomplished.
Here we have Godel’s and Turing’s theorems and
the conviction that NP-complete problems are hard.
For mathematics, we can again cite Godel and Tur-
ing, or the unpredictability of chaotic systems.

For each category there are lots of examples, and, of
course, the structural, anticipatory, and informal all con-
tribute to the incremental,

Having tied theory to practice, I was partly off the
hook as far as the title of my lecture was concerned. The
future of theory will depend to a degree on the future
of practice, and we will have to wait and see what that
is. Currently, the theory of computing is mostly tied to
machine design, data management, and the concomi-
tant combinatorial optimization problems. Looking at

the table of contents of the Symposium on the Theory
of Computing, 1969, T was struck by how much the first
_symposium seemed like logic or perhaps the theory of
computable functions, with emphasis on the complex-
ity of computable functions. By 1992 complexity theory
~has matured enormously and some new issues appear
in the 24th Annual ACM Symposium on the Theory of
~omputing, such as parallel computing and fault toler-

mbinatorial problems and problems about the logical
ture of the machine such as problems of communi-
1.

ver the decades, data processing has occupied most
puter tite, but the advent of the workstation has put
P sophlstlcated computational power on millions
d 28 ks, Computational mathematics, even symbolic
tional mathematics is exploding. CAD-CAM
emerging computer-video interactive technologies,

s, and scientific problems such as protein fold-
Tequire extensive scientific computation. Paral-
istributed computers will give greatly enhanced
puting power. The computer is a tool; numerical al-
hins pet more sophisticated, partly in response to
ticated hardware. We can easily predict that
Incrementally progress along with practice.

explosion of work on wavelets is an excellent

m d1g1ta1 computers were invented to
mputations, Here the theory, numerical
_Practice seem almost entirely incre-

Figure 1.

mental. Wilkinson’s invention of backward error analy-
sis and condition number are two exceptions. I would
call them structural. What are the ingredients of a struc-
tural theory of scientific computation? Let me give you
an example of a problem with scientific origin and the
difficulties we encounter.

Computer graphics have proven to be extremely use-
ful tools for the study of low-dimensional dynamical
systems. The Lorenz attractor, Julia sets, Mandelbrot set,
and Henon attractor are a few of the earliest and most
famous examples. If we consider Newton’s method for
the complex polynomial

f(z) = (* - 1)(z* +0.16),

we have the beautiful picture made by Scott Sutherland

_[1] (Fig. 1; also see the cover of this issue for a color ver-

sion). Werecall that Ny (z) = z— f(z)/ f'(z) isadynamical
system on the Riemann sphere. The fixed points of N
are the roots of £, These are along the imaginary and real
axes. The regions in shades of red, green, yellow or blue
converge under iteration of N to these roots, with the
lighter shades converging more quickly. The black region
is an open set of ppints which converge under iteration
to two attracting points of period two and, thus, fail to
converge to a root. At the boundary between any two
hues, including black, is (an approximation of) the Julia
set. Its fractal nature is evident in the picture. This com-
puter graphic is an excellent heuristic to understand the
dynamics and hence Newton’s method for this particular
case.

But now let us turn this discussion around and ask
ourselves to explain the machine which produced this

‘picture and the picture itself. The Turing machine model
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does not seem adequate to the task. For starters, frac-
tional dimension and the boundary between open do-
mains do not make sense for a discrete set of points.
To truly understand this picture we must posit a ma-
chine which operates on complex numbers, so that we
can understand the complex analytic dynamics Ny (2) =
z — F(2)/f'(#) via the work of Fatou and Julia, Sulli-
van’s theorem on nonwandering domains, the hyperbol-
icity of the Julia set, approximations to it, etc. Newton's
method is but one example. Scientific computation and
numerical analysis deal with problems whose natural
domains of definition are the real and complex num-
bers. To be able to discuss computability, efficiency, and
complexity in this context, Lenore Blum, Steve Smale,
and I [Blum-Shub-Smale [2] (=BS5)] have introduced
machines which operate on elements of a ring. The main
examples of rings which we have in mind are the inte-
gers, Z, the reals, R, and the complexes, C.

Ring Functions Branching
Z Polynomials <Qor>=0
R Rational functions <0or>0
C  Rational functions =0or#0

Our machines, which have come to be known as BSS ma-
chines, are essentially flowchart machines, comprising a
finite directed graph with five types of nodes: input, out-
put, computation, branch, and a certain fifth node which
can access memory. All computations are done on a finite
number of variables and thereis only one input node. An
example of such a machine is a machine to implement
Newton's method.

inputze €

no

For appropriately chosen e, this machine could be
used together with a counter as a subroutine to produce
the illustration on the cover of this issue.

‘Part of the reason to have a machine defined over
various rings is to have the power of mathematical anal-
ysis available for problems over R or C, while having
available simultaneously the well-developed theory of
computability and complexity over Z. One of our first
results, motivated by recursive function theory, was on
nondecidability. Given a subset of the inputs, § C I, a
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machine M is said to decide S, and § is said to be decid-
able, if on input ¢ € I, M outputs yes if v € § and no if
z ¢ 5.

THEOREM 1 (BSS). If f(2) = E‘;:o a;# is a complex
polynomial with three o more distinct roots, then o machine
can decide for input z € C if Newton's method will converge
to a root of f,ie., if F(NF(z)) — Oask — oo.

Thus, the approximation to the Julia set in Figure 1 can
only be an approximation.

For problems which are decidable, we have those de-
cidable in polynomial cost in the input size. This is called
the class P of decision problems. In order to define I’ we
need two more pieces of data for our three basic exam-
ples:

Ring Imput Size Cost
Z Bit Bit
R  Dimension Algebraic
C  Dimension Algebraic

The class NP is roughly that class of decision problems
which can be solved in polynomial cost in the input size.
The classes P and NP are defined in analogy with the
classes of Cook [3] and agree for Z. The basic problem,
does P # NP? now makes sense in all three contexts.
The importance of the class NP over Z is largely due
to the great number of NP-complete problems of Cook -
[3] and Karp [4]; see Garey and Johnson [5]. Recall that
a problem is NP-complete if any other problem in NP
admits a polynomial cost reduction to it.

THEOREM 2 (BSS). The following problems are NP-
complete:

Over Z: .

(a) Given f € Z[z1,...,2,) and abound b € 7, is therea
point (z1,...,%x) € Z" such that f(zq,...,2.) =0
and ¥ z? < W7 (Bounded Hilbert's 10th)

(b) Given n x m integer matrix A, integer vectors b,c,
and an integer k, is there an integer point  such that
Az < band ex > k? (Integer Linear Programming)

Over :

() Given f: R™ — R a polynomial of degree 4, is there an
z € B" such that f(z) = 07 (Four feasibility)

Over C:

(d) Given a system of polynomials fy,..., frx where fj:
C™ - T, is there a common root of the f;, ie. anz €
C" such that fi{x) = 0 for § = 1,...,k? (Hilbert's
Nullstellensatz)

The problems over Z are well known to be NP-
complete. Using BSS machines, we give an integrated
proof for (a), (c), and (d); (b) is only slightly more diffi-
cult. :

In search problems over IR, we are asked not only to
decide if a problem has a solution but to approximate




. a solution if one exists. Even to solve #? —a=01ie,to

I compute v/ up to €, we see that more and more algebraic
operations are needed as ¢ — 0, since /e is not a rational
function of a.

Thus, the degree of approximation must be part of the
input size of the problem. The situation for search prob-
lems in the presence of input or computational error is
even more problematical. The condition of the problem,
i.e., the sensitivity of the solution to perturbation of the

‘ data, will have to play a role. Even for two simultaneous
] linear equations, the solutions are not continuous in the
data, so in the presence of error we have infinitely badly
conditioned problems.

Steve Smale and I have recently done an analysis of
homotopy methods for Bezout's theorem [6-8] which
measures the number of steps in terms of the condition
of the homotopy, gives a geometric interpretation to the
condition, and gives probability estimates that a problem
may be ill-conditioned.

Here is an example of our results for Bezout’s problem:
Find the solution lines of n homogeneous equations of
degreesdy,...,d, inn+1 complex variables, We let H g
be the vector space of such systems, (d) = (d1,...,dn).

We concentrate on theincidence variety V < P(Hg)) %
P(n), where P(H4) is the projective space of Hgy, P(n)
is the projective space of C"*!, and V = {{f,z)|f(z) =
0}. The unitary group acts on €+ with the usual Her-
mitian structure and induces an action on H 4. We take a
unitarily invariant Hermitian structure on H g, first con-
sidered by Kostlan [9]. Thus, we have the Fubini-Study
metric on P{H(q)) and P(n) and an induced metric on
V. We replace Newton’s method by projective Newton
introduced in [10]. The classical condition of (f, z) where
- f{z) = 0is determined by the norm of the inverse of the
derivative of f at 2. We denote the projective version of
this number by p(f, z). Fora homotopy F = f;,let y(F)
.be the sup of pu(f;, z;) over all fi{z,) =

‘:TI-IEOREM (Bez I). The number of steps of pro]ectwe New-
ton’s method sufficient to follow a homotopy is < cLD3?2,
ere ¢ is a constant < 10, D = max d;, and L is the length

of the homotopy.

‘here is also a one-root version of this theorem. Thus,
he condition of a problem is taken into account, the
1 of steps may depend modestly on the condition.
Th umtary group is crucial to our analysis. Next, we
geometric interpretation to the condition number,
neralizing work of Demmel [11, 12].
{(f,z) € Virank Df{z) < n}. &' is the gen-
tion of the univariate variety of (f,z) such that z
oot of f. We define a vertical distance p to

'ez D. For (f,z) €V,

L i
wlhe) = oy

Finally, we estimate the volume of the badly condi-
tioned problems.

THEOREM (Bez 11). The probability for (f,z) € V that
p(f,2) < pg < 1/+/nis < KnNp}, where N = dim Hg
and K is a small constant,

In order fo prove this volume estimate we exploit the
two projections

V € P(Hy) x P(n)
&N
P(Hi) Pin}

When we apply the technique to real homogeneous sys-
temns with the induced Riemannian structure, we have

THEOREM (Bez I1). The average number of real roots of

. real homogeneous systems is the square root of the number of
_complexroots, i.e., DV/2, where D = ILd; is the Bezout number.

For all the d; equal, this is a result of Kostlan [13].
It stands in distinction to the univariate result of Kac [14]
which asymptotically gives (2/7)In d, where d is the
degree. The difference is the role of the unitary group.

This is but a contribution to a theory of the complexity
of equation-solving. Finding adequate, realistic models
and a good body of results for a complexity theory of
scientific computation remains a great problem.

Now I would like to consider the theory and practice
from a completely different perspective. I have pointed
to Turing’s Universal Machine as a spectacular example
of theory developed for its own sake applied to practice.
Turing and von Neumann are both frequently credited
with the invention of the stored-program computer. But
two engineers, J. . Eckert and . W. Mauchly at the Moore
School of the University of Pennsylvania, had built the
Eniac and were planning a follow-up machine.

Von Neumann consulted on the project and wrote a
draft of a report on the Edvac which was distributed
under von Neumann’s name alone [14]. Joel Shurkin [15]
writes:

« The paper has become, arguably, the single most important
» document in the field. Almost every history written about
the computer, or about von Neumann, credits him with the
idea of a stored-memory computer. Among scientists, com-
puters are to this day known as von Neumann machines.
Von Neumann was not the originator of the stored-
program computer. As we have seen, the idea for such a
machine was being discussed at the Moore School a year
before von Neumann arrived on the scene, and Eckert had
written a memo on the subject almost six months before von
Neumann had even heard about the Moore School project.

Shurkin goes on to quote H. H. Goldstine about the
report.

This report represents a masterful analysis and synthesis by
him of all the thinking that had gone into the EDVAC from
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the fall of 1944 through the spring of 1945. Not everything
in there is his, but the crucial parts are. ... -

It is obvious that von Neumann, by writing his report,
crystallized thinking in the field of computers as no other
person ever did. He was, among all members of the group at
the Moore School, the indispensable one . . . only von Neu-
mann was essential to the entire task.

Compare this with S. Frankel quoted by B. Randell:

Many people have acclaimed von Neumann as the ‘father
of the computer’ (in a modern sense of the term) but I am
sure that he would never have made that mistake himself.
He might well be called the midwife, perhaps, but he firmly
emphasized to me, and to others [ am sure, that the funda-
mental conception is owing to Turing —insofar as not an-

- ticipated by Babbage, Lovelace and others. In my view von
Neumann's essential role was in making the world aware
of these fundamental concepts introduced by Turing and of
the development work carried out in the Moore School and
elsewhere.

I can imagine that von Neumann understood Eckert’s
idea better than Eckert because he cextainly knew Tur-
ing’s work. This would be consistent with Goldstine’s
quote and Frankel’s. I have not tried to check the orig-
inal documents. Two things are clear here, though: the
enormous difficulty of tracing the intellectual origin of
ideas in practice, and the value of having someone who
really understands them when it comes time to apply
them. In these tight economic times, as theoreticians we
must not lose our confidence in the value of good the-
oretical work, even when it seems distant from practice
in the near term.

This is how I concluded my talk at Queens College
in June. The other two talks were not scheduled until
October. I put my material aside, afraid to get too in-
volved in this historical question without the skills or
training of a historian, and certainly happy to be concen-
trating on the mathematical papers I was writing. But I
could not put out of my mind the question of whether
von Neumann knew Turing’s Universal Machine. The
assertion was plausible enough. Turing had spent two
years at Princeton after solving the Entscheidungsprob-

lem. Von Neumann had even asked him to be his as-
sistant. But there was a very disturbing feature to the

assertion. The Edvac report mentioned McCulloch and
Pitts, who had invented neural nets in a 1943 paper, but
there was no mention of Turing! It is true that McCulloch
and Pitts [16] mention Turing machines and assert that
their neural nets give the same computable functions.
“This is of interest as affording a psychological justifi-
cation of the Turing definition of computability and its
equivalents, Church’s A-definability and Kleene's prim-
itive recursiveness: If any number can be computed by
an organism, it is computable by these definitions and
conversely” (p. 35 of reprint). But no mention is made
of Universal Machines and Turing’s paper is not refer-
enced. : .

Besides Frankel, Goldstine [17], p. 174, had the follow-
ing to say about von Neumann:
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Tt was his training in formal logics that made him very much

aware of and interested in a result which foreshadowed the
modern computer. This was contained in independent pa-
pers published by Emil L. Post and Alan M. Turing in 1936,
Post taught at City College of New York and Turing was an
Englishman studying at Princeton University (1936-1938),
Each of them conceived of what is now called an automa-
ton and described it in similar, mechanistic terms. The men
worked independently and in ignorance of each other. There
is no doubt that von Nenmann was thoroughly aware of Tur-
ing’s work but apparently not of Post’s.

In 1937, von Neumann wrote a letter of recommenda-
tion about Turing which is quoted and commented on in
Hodge's biography of Turing [18].

June 1, 1937

Sir,

Mr. A. M. Turing has informed me that he is applying for
a Proctor [sic] Visiting Fellowship to Princeton University
from Cambridge for the academic year 1937-1938. I should
like to support his application and to inform you that 1 know
Mr. Turing very well from previous years: during the last
term of 1935, when | was a visiting professor in Cambridge,
and during 1936-1937, which year Mr. Turing has spent in
Princeton. I had opporiunity to observe his scientific work,
He has done good work in branches of mathematics in which
1 am interested, namely: theory of almost periodic functions,
and theory of continuous groups.

Ithink that he is a most deserving candidate for the Proctor
Fellowship, and I should be very glad if you should find it
possible to award one to him.

T am, Respectfully, John von Neumann

Last week I called Goldstine and read him von Neu-
mann’s letter. He found it incredible. He was of the opin-
jon that “Johnny would have mentioned the work if he
had known it.” He also said that in the times of the
Edvac or the early stages of the IAS project, Turing’s
work was never mentioned. Only later when von Neu-
mann lectured on automata theory did Turing’s work
come up. Goldstine had learned of Turing from von
Neumann at some point and had read the work, but he
wasn’t sure when. Some other evidence that von Neu-
mann knew Turing's work was recorded in Hodge’s 1983
biography: reminiscences of Ulam from 1938, 1939, and
of Frankel, who recalls that von Neumann pointed out
Turing’s work to him in 1943 or 1944. On the other hand
Hodge relates that von Neumann claimed not to have
read another paper in logic after Godel’s 1931 theorem.
So another plausible reconstruction of reality is that von
Neumann did not know Turing’s Universal Machine at
the time of the Edvac report, but when he learned of it
he graciously gave him credit,

As anamateur, I've gone about as far as I can. T wonder
if historians can settle the question. Tlank Tropp tells me
I'm opening a can of worms. Does this change my eval-
uation of the anticipatory value of theory in this exam-
ple? Not really. In any case, Turing’s work did anticipate
the modern computer and is enormously important as a
model of computation. Von Neumann's background in
logic was surely an important ingredient to his work on
the Edvac. One thing that becomes even clearer is the




incredible difficulty of tracing the intellectual origins of
ideas in practice,

When I gave this talk at the Courant Institute, Martin
Davis gave me a copy of his excellent scholarly article
[19]. Martin was more certain that von Neumann knew
about the Universal Machine, We agreed that proof, as
mathematicians like to have it, is hard to find.
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