The implicit
function
theorem
revisited

by M. Shub

This paper is a survey of some results on
Newton’s method as applied to the implicit
function theorem, homotopy methods, and
Bezout's theorem. An application to
macroeconomics is also described.

Introduction

Newton’s method is one of the primary techniques used
for solving systems of nonlincar equations. It attempts to
replace the problem of solving nonlinear cquations by an
iterative process of lincar-equation solving. First, wc
introduce some terminology. If we have n equations
in m real variables [f,(x,, "2, x)=0, -,

) A6 LTI x_) = 0], we can summarize this information
by one vector equation,

fix) =0,

where x = (x,, ---,x_)and f = (fis 2=~ > £). Thms,
f: R™ — R". The symbol R™ stands for m-dimensional
Euclidean space; the norm of a vector in this space is
Ixll = V] + -+ + x2. Sometimes our problems have
constraints, as is apparent in our examples from
cconomics, below. So instead of considering only R™ or
R, we consider more generally normed lincar spaces
(over the reals or complexes), which we call E and F,
respectively. (A linear space has to do with vectors, and
@ norm measures their lengths.) Also, sometimes our
functions are not globally defined; that is, they are not
defined on all of E, but only in some local region. This
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may occur, for cxample, because of the failure of a power
series to converge or because a denominator becomes
zero.

The linear system by which the nonlincar €quations are
replaced in Newton’s method is given by the derivatives of
fat a point x, which we denote Dfix). For R™ and &" as

above, Dfix) is the Jacobian matrix
x
(%)) i=1:-",n, jml--- m

J

In summary, Newton’s method is employed to solve
nonlincar equations f{x) = 0, where f: E — Fisa
differentiable function between two normed linear spaces
(see Figure 1), and f is either globally or locally defined.
For an initial point x_ in E, Newton’s method solves the
linearized equation Dfix,)v = —fix,) for v and replaces x,
with x, + v as the initial point for the next iteration.
Iterations are terminated when some error criterion is
satisfied. Usually the derivative Dfix,) is assumed to be
invertible; then we can write Newton’s method as

x — N{x), where N(x) = x — (Df(x)) 'fix). (1)

Thus, N/(x) is a transformation from the space E to itself.
Both E and F may be Euclidean m-space, R™. When E is
the real numbers, R, then (1) has the familiar form

)
X—)X‘-r(x).
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normed linear space to another. The straight arrow is the vector

—fxy).

j The system of equations [ viewed 25 a transformation from one

! 17'(0) as a graph of 2 function defined on ker Dfix).
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Newton’s method has the following two important
features:

* Fixed points of N[N(£) = £] correspond to zeros of f
[f(§) = 0].

¢ Ata simple zero of f [{E) = 0, and DA(§) is invertible],
the derivative of Newton’s method considered as a
transformation, DN(§), is identically zero. Thus, the
Taylor serics of N, at £ begins with Quadratic terms, and
Newton’s method converges quadratically to & in a ball
around &.
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We assume that f is twice continuously differentiable, C*.
During the past three years, Steve Smale and the author

have written a serics of papers [1-4] about Newton’s

method and its extensions. In ths paper, some of the

results arc surveyed in three sections on the implicit

function theorem, homotopies, and Bezout’s theorem.

In addition, a new example applying thesc methods to

the theory of economic equilibria is given.

The implicit function theorem

Ifr: R™ — R" with m > n, we may still solve the
linearized equation Dfix v = ~f{x,) for the case in which
DAix;) is onto [i.e., Dfix,) has rank n]. For this case, we
use Df{x)’, thc Moore-Penrose inverse of DA(x,), which is
given by

Dfix)" = Ditx)*(DRx)DA(x)*) ",

where DI(x,)* is the adjoint of Df(x,). It is casily seen

that Df(x,) maps &* to R”, its image is the orthogonal
complement of the kernel of Dfix,), and it satisfies

DIX)DAX)’ = Idy

We now define Newton’s method for f: B™ — R”.
where  is globally or locally defincd, by

N/(x) = x — DRiix)'f(x).

If x, is a “*starting point™ in R™, we may decfine
x = Nfx_,) as long as Dfix_,) is surjective. Note also
that the hypothesis that Df(x) is surjective cnsures that

Faedpamsq'N,corrmpmdtomoff.

This generalizes the first important feature of Newton’s
method. The generalization of the second important feature
lies in the domain of the implicit function theorem. Let
f: R” - R", Ibe continuously differentiable, fix) = 0,
and Dfix) be surjective. Then the implicit function
theorem asserts that there is a neighborbood U of x such
that £(0) N U is given as the graph of 2 C function
o :x + ker Dfix) = x + (ker Dfix))*, where o is
defined on a neighborhood of zero in ker Dfix), and
ker DAix) is the null space of Df{x). (See Figure 2.)

In coordinates, we frequently have B™ = R* x B*,
with B* = ker Dffx). Then o : x + R* — x + R", where
o is defincd near 0 in R* and fiy, ofy)) = 0. That is, o is
the implicit function. In the next proposition, taken from
[4], f may be locally or globally defined, it is assumed to
be of class C’, and 0 is assumed to be a regular value of f;
Le., Df(x) is surjective for every x such that fix) = 0.

Proposition 1 Suppose that 0 is a regular value of
f:R™ - R*. For L € 170), let
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Wi ={x € R*|Ny(x) converges to fas k — <}.
By N,, we mean the kth iterate of N,- Then

* The union of W, over { € £7'(0) is a neighborhood of
17(0).

* The intersection of W' and a small neighborhood of
£7(0) |saccllvarymgconnnuouslym§.

* DN(I) restricted to (ker DY) is zero. The tangent
space of W, at L is the orthogonal complement to
T(1'(0)) = (ker DRY)".

This extends the usual basin of attraction theory from
the case m = n. The W" are illustrated as fibers in

Figure 3.

To obtzin more information on the size of the
nengbbo:boode and speed of convergence, we might cxploit
C’ estimates in a ncnghborbood of £7(0), or higher-order
cstimates along £7(0) itself. We take the latter approach;
henceforth we assume that f is real analytic. Define for
x € R"

B(f, x) =

y(f. x) = max (
Ax]

and

a(f, x) = B(f, x)¥(f, x).

IDRx)'M(x)|  [or = if Df(x) is not surjective),

Dtﬁx) La-1)
lm’)' k! )

[or = if Df{x) is not surjective],

Theorem 1  There is a universal constant
approximately 1/7, such that if f and x are as above, with
a(f, x) < @ and x = x;, then () all the Newton iterates
X;, X, * * - ere defined and converge to L € R*, with

fif) = 0, and (b) for all k = 1,

20—
Ix,, - xll < (5) Ix, — x\. 2)

A point x, € R" is called an approximate zero of [
if (2) is satisfied. Then L is called the associated zcro.

We also verify, in the following theorem from [4), that a
point is an approximatc zero in terms of y along f'(0) and
the distance to £7°(0).

Theorem 2 LetF : R™ — R" have zero as a regular
value, and define y = max,_, ¥ (F, z). Then there

is a universal constant C such that if the distance
d(z’, F7'(0)) < Cly, then 2’ is an approximate zero.

Remark Letf = (f, ---.f) and let cach f, be
homogeneous of some degree d; i.c.,
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~Figure

I The ﬂbemlg of a neughbocbwd of r'w) by the cells of Proposi-
tion 1.

RAx) = (f(Ax), -+, £(Ax)) = (A% (x), - - -, A% (x)).

It is then casy to see, using the chain rule, that
Blf, Ax) = AL, x) and ¥(f, Ax) = (1/A)y(f, x). Thus
alf, Ax) = aff, x) for A = 0.

Example I Homogeneous functions naturally arise

in cconomic theory. Given £ commodities and prices
P=1(pys""".p,) wherep > Ofori=1,-+-, ¢,

one may define the excess-demand function

fip) = D(p) - S(p)ifip) € R’). Here D(p) is the demand
fortbe(oommodiﬁes,andS(p)isthesupplyatprioesm
Thus f maps the positive orthant R’ to the €-dimensional
commodity space. An cquilibrium is given by supply
equals demand; i.e., fip) = 0. There arc two additional
conditions imposed on f:

* (Walras’ law) The dot product p - f(p) = 0, which reflects
the hypothesis that cach economic agent can demand
only goods whose value equals the value of his supply.

* flAp) = fip) for A > 0, which states that supply and
demand depend only on relative prices, not on the units
chosen to express them.

Let E C ' be the subspace {x € R’ | Zx, = 0}.
Then E has dimension € — 1. Letg: B — E be
defined by g(p) = fip) — (Xf(p),/Zp,)p. Then it is quite
casy to see that g(p) = 0 if and only if fip) = 0.
The proof is as follows: If f{p) = 0, then fip), = 0 for
each i, and g(p) = 0. On the other hand, if g(p) = 0, then
fp) is a scalar multiple of p (say up); however, by Walras’
law, p - fip) = p- pp = ulp)” =0, so p = 0.and fp) = 0
It is straightforward to show that the image of g lics in E.
In this way, we may interpret the problem of finding the
supply-¢quals-demand equilibrium as the problem of
finding the zeros of the homogencous function g : R — E.
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Figure 4
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Homotopies

In this section, we assume that we can replace an
approximatc zero with the precise zero to which it is
converging. One can imagine adding such an operation or a
node to the B-S-S model of computation over the reals
[5]. This hypothesis seems reasonable not only because of
the rapid convergence of the approximate zero to the
precise zero but also by the extensive analysis donc in
the approximate case in [1). For what we say below,

We may use approximate zeros at only slightly greater
computational cost (perhaps a factor of three).

One method for finding zeros of functions f: B* — B"
is to start with a function whose zeros are known, f. and
to produce the homotopy £ = (1 -0+ (0D=t<1),
so that f = f. Let / be the unit interval. If we assume that
0is a regular value of the joint map F : / x R* - R",
where F(t, x) = [(x), then F'(0) is the union of z finite
number of paths. (See Figure 4.)

If we assume, morcover, that F is proper, these paths
cannot run off 1o infinity. Following these paths may lead
us[mmthezcrosofl;,losmneofthezerosofq.Allgower
and Georg [6] proposc an algorithm for following an arc 4
of F'(0) for F: R*" - R* withOas a regular valuc.
The algorithm moves tangentially to the curve in a
predictor step and then uses the Moore-Penrose Newton
mcthod as a corrector. We assume F to be real analytic
and make surc that the predictor step gives an approximate

zero for F, which we then replace with its associated zero.
We call this a predictor-corrector step. From [4] we have
Theorem 3.

Theorem 3 The complexity (number of predictor—
corrector steps) sufficient to follow an arc 4 of F™'(0)
(where F : B! — R*, as above) is CyL, where L is the
length of A, C is a constant (not more than 20), and

y = max_, y(F, x).

Theorem 1 can be used quite gencrally to find an upper
bound on the complexity of following homotopies. The
next result is once again from [4]. Consider f, : R™ - R"
and y, € R, a homotopy and path respectively for
Osr=<1l,andletL, eR" satisfy (L) = y,.

Define

A, = ma'x aff, - ¥» X).

& subgect 10
1, (xj=y,

Obscrve that A,, = 0.

Hypothesis  Suppose that A,, < a, whenever
[t — | = & = Lk, where k is a positive integer.

Corollary of Theorem 1 Let £, y,, § be as above and
satisfy the hypothesis. Then k of the hypothesis is a
sufficient number of steps to solve £(L) =y,

The proof from [4] is so simple we repeat it here. Let
f,=0andt =1¢_ + A; thus, aff,L, )<a. Thena
Moore-Penrose Newton step (corrected to yield the
associated zero) yields L from{ , starting from L, with
fi,) =y, The following two examples are natural
candidates for application of the corollary.

Example 2 Letf: R™ - R", f =, fix) = y,, and
¥, = thx,). In this version, sce [7] for the case m = n.
The resulting algorithm has been extensively studied for
univariate polynomials over the complex numbers. Sce
[7, 8] and the references therein.

Example 3 Let g : B - E be defined as in Example 1.
Letg = gandy,!tg(x‘,).'l'hisisavcrsionoISmale’s
global Newton’s cquation (see [9]), for which we now have
a complexity estimate in terms of 4.

For more examples, applications, and discussions,
see [4].

Bezout's theorem

Bezout’s theorem is the higher-dimensional analoguc of the
fundamental theorem of algebra. The fundamental theorem
of algebra asserts that a complex polynomial of degree d,
p(z) =a;z*+--- +a, (where @, € C the complex
numbers), has d complex roots. There arc two provisos:
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sa, #0.
* The roots must be counted with multiplicity.

The first proviso of this theorem may be eliminated
by considering homogeneous cquations. Let
P(z,w)=az’+a, z%'w + a,w’ be a homogencous
complex polynomial. Roots are in C°, and since
P(az, Aw) = A*P(z, w) for A € C, the roots consist
of whole complex lines in C’. Thus, the fundamental
thcorem of algebra now asscrts that P(z, w) has d solution
lines in C’, with the sole proviso that they be counted
with multiplicity.

Let f, : C**" - C be 2 homogencous complex
polynomial of degree d,, fori = 1, - -+, n. Bezout’s
thcorem asserts that the system of equations

f,(x) o 0,"',L(X) =0

has @ = 1", d, solution lines in C***, counted with
multiplicity. The multiplicity is 1 if Dfix) has rank n at
the solution x, [f = (f}, ==+, £), F: €™ - C"). Itis
generally the case that the multiplicity is 1 for all of the
solutions.

In [1-4], we have investigated homotopy methods to
find all of the roots of f given all of the roots of another
system g. We use a projective Newton method suggested
in [10] instead of Moore-Penrose. Let (, ) be the standard
Hermitian product on C**' [(x, y) = "' x.§). Let
null x = {v € C*'" | {v, x) = 0}. Then the projective
Newton method is defined by

N(x) = x = (Df|_, Xx) 'Rx).

Thus, the image of (Df|_)(x) ' is the orthogonal
complement to the line through x in C***. If £ is a
nondegenerate root of f, then (ker DA(§))* = null &;
however, this is not the case in gencral, so projective
Newton and Moore-Penrosc Newton differ.

Let %, (d) = (d,, - -, d,) be the complex vector
space of systems of homogencous polynomial equations
F=(f.",f), where f : C**' > C' is a homogencous
polynomial of degree d,.

The algorithm proposed in [1] considers the homotopy
£ =(1-1)g+f where 0 < ¢ < 1. One of our results,
proven in [4], gives a bound on the number of projective
Newton steps required to find all of the approximate zeros
of f (i.c., one approximate zero corresponding to each
precise root). The bound depends only on (d) and the
probability of success ¢.

Theorem 4 The number of projective Newton steps

sufficicnt to find all of the approximate zeros of f € %,
with probability o of success is
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cD’3n’(n + 1N - 1NN - 2)
1-o
where D = max (d), @ = N d, N is the dimension of

=17
#,., and c is a constant independent of n, (d), and o.
The space %, is given a natural unitarily invariant
Hermitian product. The measurc on #,, is the usual
Gaussian distribution given by the Hermitian structure.,

Remarks  While we know that therc exists a g for each
¥, we do not know how to find it, even for n = 1!
Scc [2] for a discussion of this.

For n = 1, the number of steps is cd*/(1 - o).

Reference [11] is an important predecessor to this paper.
Specialized to n = 1, Renegar’s result has a factor
d*/(1 - 0)". In [12) (which applics to only one variable),
there is a similar result, with d°/(1 - o) .

Experiments by Raymond Russell (2 student at Trinity
College, Dublin), carried out at Berkelcy, seem to support
these findings.* For polynomials in one variable,
homogenizing the homotopy and using projective Newton
in place of Newton for the nonhomogenized homotopy
produced significant speedup. For nonpolynomial systems,
speedup may be achieved by homogenizing to degree 0 and
using Moore-Penrosc or projective Newton. Much more
experimentation is called for here.

For onc variable, more cfficient algorithms are known
for finding all of the roots. Scc [4] for references.

The number of steps in Theorem 4 must be interpreted
as paralle] steps. The algorithm moves along all @ paths of
roots simultzneously. For each path, the number of steps
determincd in Theorem 4 is required. For finding onc root
at a time, we think it likely that the upper bound in
Theorem 4 could be divided by 9, giving a @ factor for
total speedup.
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