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ABSTRACT. Inthis paper we study volume estimates in the space of systems of n homegeneous
polynomial equations of fixed degrees d; with respect to a natural Hermitian structure on the
space of such systems invariant under the action of the unitary group. We show that the
average number of real roots of real syslems is T2 where T = [] d; is the Bezout number.
We pstimate the volume of the subspace of badly conditioned problems and show that volume
is bounded by a small degree polynomial in n. N and D times the reciprocal of the condition
nummber to the fourth power. Here N is the dimension of the space of systems.

Section 1. Introduction.

This paper can be read independently of Shub-Smale hereafter referred to as [I], but is
closely related to it. Here we confine ourselves to homogeneous polynomials and projective
spaces although some extensions to the affine case may be dealt with as in |L1.

The paper [I] can be read for background and more references.

First consider a real polynomial system f : B"™! — R" so that f(z] =
(f1(2as-- s Zn)se-os falZ0s. .1 25)) and each f; is a homogeneous polynomial of degree
d; > 0. Let H%ﬂ be the linear space of all such f where d = (dy,...,dy) (permitting
fi =10). “

There is a natural inner product on ’HE‘d] invariant under the induced action of the
orthogonal group O(n+1) acting on B"** (so that (fo0,go0) = {f,g} for O € O(n+1)).
See Section 2 for this. This inner product defines a Riemannian structure and volume
element on the corresponding projective space P{Hf‘d}} of lines (Fubini-Study). In furn
this volume element defines a probability measure so that the following makes sense.

Theorem A. The average number of real zeros in P(R) of f € P(H{y) is DL/? where
D= ]_IILl d;.

According to Bezout's theorem, the {(average) number of zeros over Cis D.

*Gome of this work was carried out when Shub was visiting the Berkeley Math Department for 2 months
in 1992,
**Supported partially by NSF funds .
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Eric Kostlan-1991 proved this result earlier in the case that all of the d;’s are the same.
In this paper Kostlan has a similar result for underdetermined systems, or gives average
volumes of real varieties, Moreover, Kostlan-1987 suggested using an orthogonally (or
unitarily over C) invariant metric in these complexity matters. Such a metric was already
used in the theory of group representations and harmonic analysis (see e.g. Stein-Weiss).

In 1943, M. Kac had found in one variable, the expected number of real roots to be
asymptotic to 2 logd using the traditional measure.

Next consider the complex case, f : C**! — C*, with each coordinate function fia
homogeneous polynomial of degree d;. Let Hq) be the linear space of such f, and P(Hay)
the corresponding complex projective space. Define

Vigy = {(£,€) € P(H(gy) x P(C**") | f(¢) =0}

This complex non-singular subvariety of codimension n plays a central role in our work.
Inspired by Wilkinson we define the condition number p : Vigy — Rt U oo by

u(f,¢) = IDHOIR A IS HIIAL
Here A(y;) is the diagonal matrix with y; as the (i,1) entry and
Ne = fw € B(C™) | (w,) = O},

The careful reader will have noted our customary practice of identifying objects in linear

spaces and their quotient projective spaces. But appropriate homogenization gives sense

to our definitions as u(F, ) above. If Df({)|n, is singular then p(f, ) = oc. In [I} 4 was

defined and called ppe;-

Example. Let g = (1,0,...,0) and fi(z) = zg"lzi, i=1...,n. We claim that
2

1/
(. eq) = (ZLL ,%.-) DV, D = max; d;, and thus (f,eo) is a very well conditioned

set of pairs varying over d.
Observe N,, = {(0,v1,..., ), % € C} and that D f(eo}|n,, is represented by the iden-

tity matrix. Moreover it is checked that |[f|| = (Zf‘:l d%)lf?‘ This yields our statement.
Typical numerical algorithms follow paths in Vigy and loss of precision due to round-

off errors can be controlled by upper bounds on the corresponding condition number .

Moreover p plays a primary role in the (exact arithmetic) complexity analysis of such

algorithms (see [I]). Thus it is important to understand the probability distribution of p.

We will show:

Theorem B. Ifn > 1, and D > 1, then the probability that u(f,() > pp is less than

K %‘”} More precisely
(1]

Vol{(f,¢) € Viay | ulf,€) = po} - KE‘E
Vol Vg =




Here N is the dimension of Hq).

The constant /& is a universal constant less than 25. The case n = 1 will be dealt with
in Theorem D.

Note that as a consequence of Theorem B, we see that most (f,¢) in Vig are well
conditioned. The bound is independent of T and a low polynomial in n and N.

Numerical analysis has a useful tradition of relating the condition number to the distance
p of the nearest ill-posed problem (see e.g. Eckart-Young, Demmel). In our setting the
ill-conditioned pairs &' C V4 are described by

Y = {(f,€) € Vigg | Df({)|w, is singular}.

It can be shown that ' is a non-singular hypersurface in V4 by a transversality argument.
For ( € €1 Jet T:"g ={f € Ha | f(¢) =0} and V¢ = P{fﬁ;}. Then V; can be naturally
identified with mg Ne) o Vigy where ma 1 Vigy — P, 18 the restriction of the projection
P(Hg) % Pp — Py, and By = P(Ch ),

Define p( f, () to be the distance in V¢ of (f,{) to E'NV;. This projective space distance
is taken for convenience to be dp = sindg where dg is the Riemannian (or Fubini-Study)
distance. The diameter of projective space is one.

A main result of [I] is:

Condition Number Theorem.

1
& f 1 C} =rr
{ plf,¢)
A sketch of the proof is given in Section 2.
Thus Theorem B may be interpreted as giving distribution estimates of pairs (f, () close
to ill-conditioned ones.
We now pass to the more subtle situation corresponding to all roots of a given f €

P(Hq)- Define the condition number u(f) of f € P(Hay), 1t : P(Hg) — BT Uoo by

ulf) = max ()
flg)=0

Example. n = 1, fq(z) = 28 — 2%, The zeros of f; are (1,g), whre ¢ is a d** root

of unity. Take typically ¢ = 1. Then ||| = v2, ( = (1,1) and ||fa] = V2. Also
N, = {(v, —v),v € C}, | Dfa(Q)IF}] = 5 and it follows that p(fa) = -z

Note that for this series fy the condition number grows exponentially in d, and so is
extremely ill-conditioned. Yet this fy and its variations with exponential behavior are

used in mumerical analysis as a model starting polynomial whose roots are known. We
will prove the existence of well-conditioned sequences {ga} (even for general n = 1), yet
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are unable to exhibit them even for the 1-variable case. In a further account we hope to
develop this subject which in the case n = 1, is intimately connected to elliptic capacity
and transfinite diameter (see Tsuji).

Defining p(f) = ming r¢cy=0 oL f,¢) we have:

Corollary of the Condition Number Theorem.
1

u(f) = o)
Theorem C. Let N, = {f € P(Ha)) | o(f) < p}. Then for p < ?L'ﬁ’ n>1,D>1
VolN, _ pnfn+ (N - 1)(N=-2)D
Vol P(Hiay) — 4
where N = dim Hgy.

The closest previous results in the direction of Theorem 3 are due to Renegar.

Remark. The exponent 4 in Theorem C is somewhat surprising. Since X C P(Hyg) is
a hypersurface, dimensional considerations say that the volume of the tube of radius p
around ¥ should vary like p?.

Problem. Is d(f, £) = O(pf;)?

The theorem says that on the average it is. There 1s one exceptional case where d =
(1,...,1) in which case ¥ € P(H(q,1,..,1)) is of complex codimension 2. In this exceptional
case the p* could be expected.

If we consider 2? — 2ezy = f(x,y) f € Hiz), 22 — 2cxy + €°y® € ¥ but p(f) = Ole).

Corollary. Forn > 1andeachd = (dy,...,dn) thereis fi4) € P(Hq)) such that ulfiy) <
(nsI:n-}-‘l:l[:h-'—'l}[_'\’—ﬂjl"')I’M
5 :

This is a consequence of Theorem 3 and the Corollary of the Condition Number Theo-
rem.

As we have suggested, it is an interesting open problem fo exhibit such fq). These
could serve as better starting points of numerical algorithms than those currently used.

The probabilistic estimates given in Theorems B and C, together with the results of 1]
have implications on the efficiency of algorithms for solving non-linear systems. We hope
to develop this point in a future paper.

In Theorem D we give the results of Theorem B and C for the case n = 1.

Theorem D. Forn=1andd =1

0 Vol{(f,£) € Viglulf, &) = po = 1} _ - (d+1) (1 B i)"{_l p (d—1) (1 B l)d
Vol Vi) - 2 5 2 Ha

3 Vol N, e ogsd-1 ke

i) Vol P(Hg) <d{(1-(1=-p)" 1+(d-1)p7")) for0=p<1l




Section 2. Background.

The following diagram motivates the more abstract treatment of the next section.

P{H{d}} % Py
U

m1 V[d] Ta
o S
P(Ha) f

The map w1 : Vigy — P(Ha) is a branched covering, branched along X' so that on
Via) — 77 H(E), where & = my(%'), w1 is a covering map. The fiber 77 X(f), f € P(H):
f ¢ T consists of D points, corresponding to the zeros of f.

Moreover, 2 : Vigy — Pr is a fiber map with fiber 75 1) = V¢ over ( € Py,

The Unitary Group U(n + 1) is the group of linear automorphisms of C*** preserving
the standard Hermitian inner product. This induces an action # — uz, © € U(n +1) on
P. as well as the action f — fu~! on P(H4)). Moreover U(n+1) acts on P(Hqgy) » Py by
(f,x) — (fu~',ux) leaving Vi invariant. The fiber map =3 : Vigy — Py 18 also invariant

under these actions. ;
: . TR . . d. S
The invariant norm on Mg is given by I£2 =55, et (a ! o ) where
SRR L5

i

fi(z) = ¥ ,abz%, a = (a1,...,05) is a multi-index and (ﬂ o
Lywveahin

) iz the multi-

nomial coefficient, 7.

Here is a sketch of the proof of the condition number theorem. The condition number
pi 1 Vigy — R is invariant under U(n + 1) using the chain rule (as in Lemma 1 of Section
1I1-1 of [1}).

The variety &' C Vi is unitarily invariant as well as the distance in V. This implies
that p: Vigy — R is invariant under U{n+1). Given (f,z) € Vig pick u € U(n + 1) with
ur =eg = (1,0,...,0). Then

1 1
- u_l a,:nd = E
p(f,x) = p(fu™", eo), u(fu=t eg) pu(f o)

Thus it is sufficient to prove the condition number theorm for = = eg.
For f € H{d}, write f = {fl, PR P |

: di—
(#) f,-(z}:ﬂ.;zg‘+.?:u 1Ea;.;jzj g TN

If f € V,, then the a; are all zero, and note thus that K = {f € Hy | filz) = aizg"} is
the orthogonal space to Vy,. Let L{d) = {f € Hg) | filz) = 28 "18ay;2;}, J(d) = the
orthogonal complement of L(d) in V., and 7 : V, — L(d) the projection.
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Note that Null(eg) = {u € C*** | {u,e0) = 0} is {(0,u1,...,un) € C*+11 and can be
identified with C". In this way, Df{eg) may be regarded as a linear map from C* — C*
and as a matrix. This is the matrix (a;;) when f has the form of (x).

Let M(n) be the space of n x n matrices endowed with the Frobenius norm || M|? =
Tim;;|* Recall that A(y;) denotes the diagonal matrix with entries (y1, ... ¥n).

Lemma. The map L(d) — M(n) sending f — &(d:lﬁ)ﬂf{e{;} is 4 norm preserving
linear isomorphism.

The proaf follows from the definition of the norm on Hyy 2 L{d).

Now suppose | f|| = 1. Then u(f,e0) = ||Df(eo)” 1&&” || using the operator norm.

By the theorem of Eckardt-Young (see [1]), u(f, e0) = d( Ald "m)ﬂf{en}, 5)~1in M(n)
where § is the set of singular matrices. It follows using the previous lemma that u(f,eq)

- 1 5 s . = . - L. l .
5 GrEAv in Hyg. In the projective space this translates into our ——=— completing

the sketch of our proof.

Remark 1. In [1] it was part of the definition that u(f, ¢ ) = 1. In fact it is a consequence
of the original definition that p(f, () > /. One uses the condition number theorem and
the fact that p < /A for any any matrix on the unit sphere in M(n).

Remark 2. There is a real version of this section where the unitary group is replaced by
the orthogonal group, O(n + 1), acting on R**1, etc.

We end this section by stating some standard fa:ctb that we use in our proofs. The
volume Vol(S™ 1) of the unit (n — 1)-sphere 5"~ Lis _z'T using the gamma function.
Let P.(R) be real projective space of dimension n and £y complex projective space of
(complex) dimension n. Then

Vol P, (R) = % Vol(5™)

= 1 in+4l
Vol P, = ﬂvﬂl{.ﬁ' ).

We also use the following integral formula:

flt*‘f' )14y — F {E-;?A)F{q+i}.
0 2T (B +¢+1)

Section 3. Some General Integral Formulae.

Let M, N be (real) compact Riemannian manifolds and V' a compact submanifold of
the product M x N with dim V' = dim M. Suppose that the restriction w3 : ¥V — N of
the projection M x N — N is a locally trivial fibration. Let ¥, = my "(y). Let x be




a regular value of m; : V' — M, the restriction of the projection M x N — M. Define
Alz,y) : Ty(N) — T.(M) to be the linear map whose graph is the orthogonal complement
to T'Vy(z,y) in TV(x,y). Let U be an open subset of ¥ and #(z) be the number of points
inwy Yz)N .

Theorem 1.

f #(z)dM = f f det(A*(z, y)Alz, v))/2dV,dN.
rEm U N VNl

Proof.

1
f B(2)dM = f | det(Dmy)|dV = / f | det(D1)| ———dV,dN.
w I U I Jv,ntr Njmy

Here Nyms = |det(Dms | T(V,)*)| is the normal Jacobian and T(V,)* is the orthogonal
complement of TV, in TV (z,y). Here the first equality is a version of the usual change of
variable formula for integrals. The second equality is the coarea formula (Morgan).

By Sard’s Theorem it is sufficient to show that

(+) | det( D) —

= (det A* A)M/?
.“"LTJTTE l:dF }

where both sides are evaluated at (x,y) € M x N and z is a regular value of m : V. — M.

Let H, and H, be finite dimensional real vector spaces (complex vector gpaces) with
inner product (Hermitian product). Let 4 : H; — Hj be linear and define the graph of A
as T(A) = {(z,A(z)) | z € H}. Let w : [(A) — Hi be the restriction of the projection.
Let T'(A) inherit the inner product structure of the product.

Lemma 1. 1

et(I + A*A)1/2

detw| =
| detr| = 5

where A* is the adjoint of A.

I
A
(unitary in the complex case) automorphism ) of Hy such that

“ 1/2
P _Ed
() (2)) - (3)
and hence |det (1{1) | = det(I + A*A)"/%. Also Detw = —II—-— since 7 o (:;) =il
DEL( )
A

Proof. Let . Hy — H; x Hy be the map & — (z, Az). There is an orthogonal

These two equalities give the proof.




Lemma 2. Let B(z,y) : TM(z) — TN(y) be the linear map whose graph T'(B(z,y)) is
TV (z,y) for a regular value z of 7. Then

det(I + B*(z,y)B(z,y)) = det(] + A_'*I:.'I:,y]A_l[;}:._ 7))

Proof. TVy(x,y) is contained in the TM(z) factor of TM(x) x TN(y). As TV (z, y) is the
orthogonal direct sum of TV,(x,y) and T'(A(z,y)), it follows that TV (z,y) is t]‘IP graph
of the linear map B : T‘Lf{mj —+ TN(y) which is zero on TV, (z,y) and A~ e, y) on
(D7 (z, y))(T(A(z, y))) which in turn is orthogonal to TV, (x,y) in TM(x). Consequently
det(] + B*(z,y)B(z,y)) = det(I + A~ "*(z,y)A~ (=, 9))-

Now we return to the proof of (#) and the theorem. By Lemmas 1 and 2, using 4 =
fl{:.'.y:l,
| det(Dmy ) (2, y)| = det(F + A~ A~ 1)71/2

By Lemma 1 and the definition of A,

1

— g A* ]'"IIE.
R det(I 4+ A" A)
Thus

1 _ det(I + At A2

Dy J = .
| det{ 'Tl{tt:! '."J'ﬂ' JVJTIT;'[I, y} det(ir _I_ A..]_q. A_l}lf:l;

The next lemma finishes the proof.

Lemma 3. Let A:V — W be a linear isomorphism of finite dimensional vector spaces
with inner product, then

det(] + A*A)
det(I + A-1*A-T)

= det{A"A).

Proof. Multiply numerator and denominator by det(AA")

det(f + A*4)  det(AA*)det( + A" 4)
det(I + A*~1A-1)  det(AA*)det(f + A~~1A~1)
_ det(AA*) det(7 + A*A)

det{AA* + 1)

But then det(AA* + I) = det(I + A*A) since AA™ and A*A have the same eigenvalues.

Let U, V, M, 7, mg etc. be as in Theorem 2.
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Theorem 2.
Vol = / f det(I + A*A)/2dV,,dN.
N Jv,nu

Proaf.

VulU=f1dV= [f 1 dVy,dN
i In Jy,nw Nima

:f f det(I + A*A)/2DV,dN
NSVt

by Lemma 1 and the definition of A.

Remark. The complex versions of Theorems 1 and 2 are true with the same proof. Then
the exponents of ; on det(I + A*A)/2 | (det A" A)M? musts be removed as we pass to the
real determinant. That is [real determinant| = |determinant|® for a complex matrix.

Section 4. Integration Formulae in Vig.

We use the notations introduced in Section 1, 2 and specialize the complex versions of
Theorems 1 and 2 of Section 3 (cf. the remark at the end of Section 3) with M = P(H )
and N = P,. Section 2 provides the background for the following.

Theorem 1. Let I/ be an open set in Vg which is unitarily invariant, eq = (1,0,...,0) e
P, and #(f) be the number of points in 77 {(f)NU (i.e. the number of zeros of f in U).
Then

(a) VollUJ = Vol P(n) -rnunU det(I + Df(eg)Df(en))

(b) [ #(f) = Vol P(n) [y, det(Df(eo)* D (ea))-

We will use:

Proposition. det A*(f,z)A(f, x) is invariant under the unitary group acting on Viy), and

(*) A*(f.en)A(f.e0) = Df(eo)” Df(eo)

Postponing the proof of the proposition for the moment, we will prove Theorem 1(h).
Use Theorem 1 of the previous section and both parts of this proposition to obtain

ﬁju #(f) = Lﬂ ];(Euﬂydet{ﬂfiﬂn}*ﬂf{cﬂ}}
B / det(Df (eo)" Df (ea))-

Sy, nu
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The proof of Theorem 1(a) is similar.

Since mp : Vigy — Fa is unitarily invariant, so is the orthogonal complement of TV.(f,z)
in TVigy(f, ) where Vo = my (z). Then by definition A(f, x) transforms by unitary
compositions and thus det A*(f, ) A(f, =) is unitarily invariant. This proves the first part
of the proposition.

Working in the corresponding vector spaces, write as in Section 2, Hegy = K + L(d) +
Jid). Also

T(Viay)(f e0) = {(R,w) | Df(eo)w = hleo)}
so that A : € — K C Ty(P(Ha)) is characterized by Aw = h € K and hleg) =

Df(eq)(w). Here we are using the notation of Section 2 and the definition of A = A(f, ep).
Then

A[IUL = jli = Zaijwjzg'"
J

recalling Df{es)(w) = Z;,.' a;;w; and the Hermitian structure on A, Then A*A4A =
Df(eq)"Dflen)-

Section 5. Proof of Theorem A.

We start with:

Proposition 1. Let 7 : § — D* be orthogonal projection of the unit sphere 5 e i
on the unit disk D¥ ¢ R* a subspace of B}, 0 < k < [. Let ¢ : D¥ — R be continuous and
7 < DD* be open then

[ @omxai@n= [ 201~ )= 6o Vol sy~

gI

For the proof we use the following lemma.
Lemma. The normal Jacobian of 7 : §' — D* at z € §* is (1 — ||=(x)||%)*/2.

Proof. Let ||x(z)| = r. Let SF! be the sphere of radius r about 0 in R¥. Then
petfgl-ly =gl .S'i;li_:f which leaves only one normal direction to #~'(w(x)). namely
the one which maps to the day in D¥. Thus the problem reduces to 5 1 ¢ E? and the norm
of the projection is easily seen to be V1—ri
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Proof of Proposition 1.

'Di.'r’:'ﬁ_l — o
[ (eomxG @) fﬂ_l{m. r

= om i_l £ _!:_'"
_jr-;j;——u:m}l({ﬁ ){T E}}“JEE—)

s T = |} ? E..Tz—* 2

= [ [ 020 1)

[—k=1

~ Vol Si-k f (1 - l2]?) 5" é(z)

=k

=vatsi* [ 2y~ ol ola)

Let d = (di,...,dq), D =7Td;. Then
Joras, , #(6)

(el

Vol P(H )

I,i-—

is by definition the average number of real roots. We will prove that A4 = DV2.

To prove this we will show

Lemma 1. Az = DY2G(n) where G is a function of n.

Apply the lemma to the case d = (dy,...,ds) = (1,...,1). Then clearly Ay = 1 and

D = 1. Therefore G(n) is identically 1, and 44 = D%
Thus it is sufficient to prove Lemma 1.

For this we use the real analogues of results of the previous sections, with orthogonal

invariance replacing unitary invariance. Thus the real version of Theorem 1(b) of Section 4

gives (with U = P(Hﬁi}}}:

Lemma 2.

Ad 1 vﬂan[R} fg {dEth{Eﬂ}*Df{ED}]lfgr

— EVﬂlP(Hi{}] e
Here ¢y = (1,0,...,0), Df(ep) : B* — R" is the derivative and Dfleq)*

its adjoint.

Moreover §,, is the unit sphere in f’;ﬁ ={f € Hll':"jﬂ | fleg) = 0} and Vo, = P{I};ﬁ} has

the volume of S,,. Let N = dim#; so that dim g, = N —n — 1.

Lemma 3.
N2

fs (det Df(eo)* Df (e0))/? = ﬂ‘”ﬁ

where H(n) depends only on n.

H{n)

Since VolP(HZ,;) = 4Vol(S¥™') = Hgpy, Lemmas 2 and 8 yield that Ag
DLY/2 Vol P, (R)H(n) proving Lemma 1. Thus it remains to prove only Lemuna 3.
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As in Section 2 let L{d) be the linear subspace of f € fﬁ of the form f; = :rg" == E?=1 Bigis
and 7 : V* — L(d) the natural projection. Then J(d) consists of polynomial systems with
no terms of the form zg"_I, 23" 1Bay;z; in the ith coordinate. Next we may identify L(d)
with the space of n x n matrices A = (a;;) as above. Here L(d) comes endowed with the
Hermitian invariant norm from V5.

Let Mz(n) denote the space of n x n real matrices endowed with the Frobenius norm,

By Proposition 1,

'—1a|2 -1 —
j:"E""r-n (Det Df(co)" D f(ea))/* = ﬁEL(,‘}{Det AT A1 — | AH) T vl
L=t 4] <1

2

N-—n®—mn

. L i &
gN-n*-—n—-1 o 2

Now use the change of variables A™*A = M € Mg(n), & = ﬁ[d:’r?} noting ||A||Lin) =
||ﬂ._iz‘i”dMH.|_'ﬂj. Thus this last integral is:

where Vol is the volume of

g Py, P
Vclj:HEMH(“}[Det((ﬁMJ*&M]}”z{l—L|M§|3}h T
)<

or vet since det A =D
]

4 _flq—r+—
VoI DY2 fusc nta(m) (Det(M M) /2(1 - ||M]?) S5
| A =1

Use polar coordinates to obtain that this last is

N—n?-n

Bt 1 T

o = N—n-—n * i

D2 T |- [ (ot MM,
(H=2—=n) fo MeM(n)

But f“M”:r[det M*M)Y? = ph -1 Jiary=1(det M*M)Y? and where r® ~! scales the
volume element and r™ the (det MM )Y,

z

/I rn2+n_1(1 : _r2] ”"'E‘“'Iﬂgr 1 I (N-,;ﬂ_n) T (1'12;11.) |
0

The last follows from the identity

j: Sh:—l{l 2= Sji—lds = ]]-;f[:i}if.:;

and the substitution r2 = s (compare Section 2). Putting these together yields Lemma 3
and finishes the proof of Theorem A.
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Section 6. Proof of Theorem C.

Our proof of Theorem C depends heavily on the following simple corollary of a result
of Edelman-1992a

Theorem. Forn >2,0<p < :};,

4 27 12
p'n®T(n?*)T(n + 2) 9?1
o det(A*A) < Vol( §=" ;
/ﬁﬁﬂﬂ?} B 2 4T (n? +n —2) 24 )
d{A,5)<p

Here M(n) is the space of n X n complex matrices with the Frobenius norm, 5 is the
set of singular matrices in M(n) and d is the distance in M(n).

We use Proposition 1 of Section 5, just as in the last section, but now we are working
over C so that the real dimension of M(n) is 2n? etc. The argument of the last section
yields (where N = complex dimension Ha)

f det(Df(eo)* Df(e0)) = D farerpn) det(M* M) — [[M|2)¥ "~ Vol
FEN,NSZ:, d'ilﬁif'i?l?p

where Vol = Vol §2(N=n"=nl=1 414 § is the set of singular matrices. Use polar coordinates
to evaluate the integral on the right as (following Section 5)

1 ;
fMEM[ﬂ] d&t[:ﬂf‘M:l[:1—||JW||2:JN_n2_n_l = f T _1{1 —TE}h —n’-n-1 fﬂ.—fEM{n} det M™* M.
[| A =1 o [|AT]i=1
d{ M, 5= diM 5=t

Now apply Edelman’s Theorem to obtain the upper bound for both sides as (for n > 1):

2T (n?)(n + 2)

b | I-l 1 &
VDII:SEH‘— l)% f T,Z'rbz 4-2]‘1—1{1 ] TZ}N—n'—:‘t—lr—lldr

o [(n?+n—2)
o ' T(n)0(n + 2) T(n? +n — LN —n® —n)
T T'(n?) 4 T(n2+n-2) T(N —2) '

Now we put this information together to obtain:

VolN, _ Jmm,croua #)

V(JIP{HM)) = Vol P{H(d]]
_ Vol P, 1

~ Vol P(Hg)) 27

since #(f) > 1

f det(Df(eg)"Dfleo))
FEN NS,

by Section 4, Theorem 1(b). Continuing, this is less than (by the above calculation)

w7 020D Vol §*H 1 - capvont oy TV n? — n)T(n?)T(n +2)
I'(n?) 4 Vol&*N-1ar T'(N - 2)
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which by a further easy calculation turns out to be
P s
LD (n+ DN — 1)V - 2)

Remark. Theorem C and Theorem B might be improved especially for reasonable ranges
of p and pg. For example, Edelman’s result which we have used above actually says that

& s [(n®*)(n+1)I'(n+2)
* P AT (1 —n)" +r—2
/ﬁf;ﬁgf;} detid-d) fu rz_n RS e sy s o s ST R R
diA,S5)<p

where Vol = Vr:rll[Sz'“g_'} and we have somewhat crudely estimated by disregarding the
(1—nA) factors and then maximize the terms of the sum at r = n—1 and finally multiplying
by n.

Section 7. Proof of Theorem B.

For the proof we use several lemmas and a theorem of Alan Edelman.
Lemma 1. Fory € [0,1], (1—y)* = 1 - ky.
Proof. It is true for y = 0. The rest follows from a comparison of the derivatives.

Lemma 2, Forz >0 andnelN

1 — (1 - min(1,nz))* ~* < n(n® - 1)z

Proof.

1—(1- min[l,n:ﬂj]“z'i
< 1—(1—(n® - 1)min(1,nz)) by Lemma 1

< n(n? — 1)a.

Lemma 3. For0<z<1DneHl

(1+E)n(1—mjﬂ A I

T

Proaf.

fn
1 D
( ) =(14+z+22+..)°P">1+ =z
11— !
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Lemma 4. Let M be an n X n matrix with eigenvalues Ay, ..., An then Det(f + M) =
[T(1 + Ai).

Lemma 5. Let A be an n x n matrix which is a weak dilation, i.e.

A = vl  Yv#0 veR.
Let M be a matrix and 0 < Ay < --- < A, the eigenvalues of M*M 0 < p; < -+ < iy, the
eigenvalues of M*A*AM. Then p; = A V i

Proof. The eigenvalues of N* N for any n x n matrix )V are the principal axes of the elipse
hich is the image of the unit sphere by N. The image of the unit sphere by AM is outside
the image of the unit sphere by M since A is a weak dilation.

Lemma 6. Let M be an n x n matrix then Det(I + M*A(d;)M) < (1 + ﬂni”i) where

D = maxd;.

Proof. &(D”E}&[d;”z} is a weak dilation, so by Lemmas 4 and 5
Det(] + M*A(d;)M) < Det(] + M*A(D)M) = Det(I + DM™M).

Let 0 < A < An <0+ < Ay < P, be the eigenvalues of M* M. Then Det(I + AM*M) =
1+ DX) < (1+ D—?‘i]" by the inequality of the geometric and arithmetic means, and
the last equals (1 + EJ%IE) by defintion of the Frobenius norm.

Theorem (Edelman). The volume of Nc N5 f”g “1is
(1 - (1 — min(1,n¢2))™ 1) Vol §2+

where 5‘]2“2_1 is the unit sphere in M(n) with the Frobenius norm.

Proof. Actually this follows immediately from Corollary 3.2—Edelman-1992 and the fact
that Amin = (mingy =1 [|A(@)[)% = ¢%.

Now we pass to the proof of Theorem B. First assume D > 1. By taking N, = U and
applying Theorem 1(a) of Section 4, this amounts to estimating:

T 0 DS D)
Qlp d) = Jv... det(I+ Df(eo)" Df(eo))

Vol N, (B
Here Q(p,d) = —vmém—}

Just as in Section 5, we obtain:

Jatemeny. IM<.2(08,5)<p det(] + M*A(d)M)(1 — | M|Z)N - -1
IMEMER}-HMIIEi det( + M*(Ad; ) M)(1 — || M]|?)N—n?—n-1

Qlp.d) =
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Apply Lemmas 3 and 6 to obtain an upper bound for the numerator. Use the fact that
det(I + M*A(d;)M) > 1 to bound the denominator from below. This leads to

— H‘— _—
Siari<,a0a,5720(1 = [ 4
(1 — ||M]|Z)N—n?=n-1

Qp,d) =

-rll M=l
Using polar coordinates

8 d]{:j§{1-rE)N—ﬂ”—ﬂﬂl—ﬂr?ﬂz—l1&ﬂ(ﬁg;rrw52n*—l}
PO =TT T N on- -1yl (§20 1)

Apply Edelman's Theorem and Lemma 2

p*n(n® — 1) ful{l _ p2yN-nfon—1-Dp2n’ -3,

f;{] - T-E}N—nz—-n— 1p2n%—1Jp

Q(p,d) <

2 TN —n? —n - D)l(n? — I)I'(N —n)
Qlond) < p*n(n” — D5 —H IV = n? = n)T(n?)
22 T(N —n) (N —n?—n- D)
=P N—-n-D-1) TI(N-n®-n)

N-n—-D H
Epin(N—nﬂ—n—D) (N—n—-D-1).

We conclude the proof with

) D
Lemma 7. Letn>1, D > 1, Then (h—@:ﬁn_—%) < K.

N —n—

Proof. Let P = N — n? Then the estimate is

P+ni—n-D =
P—n-D

or

'ﬂ,z P
e
(1+P--n.—ﬂ) -
n? o
< K.
(1+N_HQ_H_D) <K

The worst case isseentobed = (1,2)and N—n?—n-D=1.
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Finally, the condition number theorem allows to pass from the above estimates to The-
orem B. The case where D = 1 is simpler

i ine- det(L+ M*M)
fqzn?_] det(l + M"ﬂ-f]
w3

Qlp.d) =

where Sf“?‘l is the unit sphere in M(n). Now 1 < det(1+M*M) < (14 ;)" < pso

Vol(§2°° -1 A N,)

5 < ep’n n®—1
Vel e =)

Qlp.d) < e

by Edelman’s theorem and lemma 2.

Section 8. Proof of Theorem D.

For the proof of Theorem D we will use a simple lemma on indefinite integrals which
can be checked by differentiating.
Lemma. i} [(1+ dr2)(1 —r*)*2rdr = §((1 - r?)? - (%) (1—r2)¢-1)
i) [dr2(1—r2)32rdr = L((1—r?)¢ = g5 (1 -2

Now we turn to the proof of Theorem D i), Identifying M(1) with C we have as in
Theorem B that

Val N, (')
Vol Vﬂd]

sz'" |z|{p{1 + d|3|2}{1 — Lzrz}d—z
== d) = T, | 1
e e s (1 + dl213)(1 — [2[3)42

Now use polar coordinates and Lemma i).
For the proof of Theorem D ii). Remark that by Theorem 1 (b)

ﬂVﬂlP{HEdﬂ = anP{n)j; det(Df(ea)"Df(eo0))

so for n = 1 as in the proof of Theorem C

Vol N, Vol P(1) 1 f i
Vol P(Hay) — Vol P(Hay) 27 Jpen ns,, det{D f(en)" D f(eq))

Vol P(1) 1 SRR ) 5
=2t W Edlllfﬂda_zdz
Vol P(H(a)) 27 olE €L |21*(1 — |2]%)
d(d — 1) .
S D) [ - ey

lz|<p

Now use polar coordinates and lemma ii) to finish the proof.
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