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I-1. INTRODUCTION

This paper represents a step in the general program of establishing principles
for solving nonlinear systems of equations efficiently.
Let /‘Z 4) be the vector space of all homogeneous polynomial systems [ :

C"' — C" of degree d = (d,, ..., d,) (sothat degree f =d,).

n
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460 MICHAEL SHUB AND STEVE SMALE

Consider the computational problem, given f € A4, - solve f({) =0. What

does this mean? A reasonable answer is: exhibit x € C""' such that x is an

approximate zero of f restricted to N, f/N :N_— C" where N, =x+

{yeC"™'/(y,x) =0} and (, ) is the Hermitian inner product on C"*'.
See () of Theorem 1 of the next section for the precise definition of approxi-
mate zero. In particular, Newton’s method for f/N_, starting at x, converges
quadratically to some { € N with f({) = 0, and ¢ relative accuracy is ob-
tained with log|logé] further steps.

N, is the Hermitian orthogonal complement to the vector x € ct! through
X, and can be thought of as the tangent space to complex projective n-space.
In order to apply Newton’s method, f is restricted to an n-dimensional sub-
space. The choice of N is natural from the projective space point of view and
optimizes some of our estimates. That x is an approximate zero of f /N, is
invariant under scaling; i.e., Ax is an approximate zero of f/N. e AF 0,0 x
is an approximate zero of f/N_ . Thus we say x is an approximate zero of f
in the projective sense with associated actual zero .

Acurve F:[0, 1] -7, x C"*! satisfying £(8)=0, F =(f,¢,) is called
a homotopy-path.

An important computational problem is to produce from the input ( f;) and

an approximation z, of {;, a sequence z;, i =1, ..., k, which fits ({,) in
the following sense. Each z, is an approximate zero of f in the projective
sense with associated actual zero {, , 0 =1, <--- < ti_, < t <<t =1,

Projective Newton’s method proposed by Shub [24] ylelds z, from iy by
applying Newton’s method to S, /N, . The problem we deal w1th here is how
i i—1

small can k be taken to obtain z,, ..., z, fitting ({).
The answer we demonstrate is that the controlling factor is the distance along
P(Zf d)) , p(F), in the corresponding projective spaces, of the curve F, in /‘Z )%

C"*!' 1o the discriminant locus ¥’ (an irreducible algebraic variety of ill-posed
problems). The other factors are the length L of the curve (f)), a modest
contribution from the degree of f and a small constant.

More precisely:

Main Theorem. Let F, = (f,, {,) be a homotopy-path in #, x c™, and let

(@)
z, satisfy
lzo = Loll _ Cip(F) ~
S o G=035
Let
LD
(> SEPC e msas
p(F)

then [ projective Newton steps are enough to produce z
Here D = max(d,).

s ee s 2y fitting (C)).

The number of variables n does not enter directly into the complexity /,
but {(F) </ so it is implicitly there.
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The problem of finding the starting point can be dealt with by choosing a
universal f( a) € Zf ) OF from aspects of the particular problem. The invariant
p(F) needs to be studied from a geometric probability point of view. Part II is
devoted to these problems.

For the problem of fitting al/ the solution curves of given f , we find similar
results, using the distance in ;z’f ) to the discriminant locus X. This will lead to
the complexity of algorithms for finding all the zeros of a given system f € ) -
Moreover, we provide a similar complexity analysis for the (nonhomogeneous)
general polynomial system f : C" — C" using a more traditional (yet global)
form of Newton’s method.

One novel feature in our development is unitary invariance. For example,
if U is a unitary transformation then x is an approximate zero of f in the
projective sense iff U(x) is an approximate zero of fo U ~! in the projective
sense. In general, one would not expect the particular coordinate representation
of the polynomial system to be reflected in the basic invariants of the theory.
The distances of solutions to each other seem basic. Our way of dealing with
this is by using a fully unitarily invariant theory. This has an added feature of
forcing a more elegant development of the mathematics.

Our proof of the main theorem puts into a very general setting theorems of
Eckart-Young, Houth and Demmel on the condition number and the reciprocal
of the distance to the algebraic variety of ill-posed problems.

The most important work on this problem previously is that of Renegar [20].
That paper was very helpful to us.

Very roughly, work on algorithms for Bezout’s problem can be divided into
two distinct schools. One is algebraic, represented for example by Brownawell
[2], Grigoriev [9], Heintz [10], Canny [3], Renegar [21], and Ierardi [12], and
a second more numerical analysis approach represented here. The algebraic
algorithms tend to be less numerically stable (see, e.g., Morgan [18]).

The convergence and practice of path-following algorithms (or homotopy
methods) may be seen for example in Allgower-Georg [1], Garcia-Zangwill [7],
Hirsch-Smale [11], Keller [13], Li-Sauer-Yorke [16], Morgan [17], Wright [34],
and Zulehner [35]. One variable complexity results on these algorithms is in
Shub-Smale [25, 26] and Smale [27, 28].

The proof of the Main Result is quite long. The rest of Chapter I is devoted
to giving the structure of this proof by displaying some intermediate theorems.
In fact, in these theorems there is an effort to isolate some main concepts.

We would like to thank Matt Grayson for his calculations of some of our
constants.

I-2. COMPLEXITY OF PATH FOLLOWING IN BANACH SPACES

Here we state some general results on complexity which are valid in a wide
setting, yet form the framework of the main proofs on the complexity of Be-
zout’s Problem. These ideas revolve about an invariant «(f, x) proposed
in Smale [29, 30]. Subsequent work of Royden [23], Wang-Han [32] sharp-
ened and broadened these first results, and that work is incorporated into the
present treatment, Theorems 1 and 2 below. Moreover, robustness results of the
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a-theory, only suggested in Smale [30] and in Renegar-Shub [22], are formu-
lated in Theorems 3 and 4. Besides applications to polynomial systems, these
theorems may be used to analyze complexity of linear programming algorithms.

It turns out profitable to give a complete demonstration of both the old and
new results of this a-theory together. Thus the theorems stated in this section
are proved in Chapter II. For some motivation and broader perspective one can
see Smale [30] as well as the other references.

Throughout this section and Chapter II, E and F denote Banach spaces.
In the main applications they are both C”, m-dimensional complex Carte-
sian space (or subspaces) with a norm defined by the standard Hermitian inner
product.

We consider analytic maps f : D,(x,) — F where x, € E and D,(x,) =
{x €E||lx — x|l <r}. For x € D,(x,) let

Df(x):E—F

denote the derivative of f at x (see Lang[15] for our way of doing calculus). If
Df(x) is not an isomorphism all the following «, f, y are oo (or not defined).
Otherwise define for f: D (x;) — F and x € D,(x,)
-1
B(f,x)=IDf(x) SO,

-1 1k
/7, ) = sup | P2
k>1 :

a(f, x) =B, x)r(f, x).

Newton’s method (when defined) constructs a sequence of points x,, x,, ...
in D,(x,) by the formula

X, =%,_,-Df(x, ) flx,_), n=1,...

1
k-1

E

We also write
N/(x)=x-Df(x)"" f(x) and x,=Nx,_ ).

Thus B(f, x,) = lx,,, —x,ll.
We also frequently use these quantities:

I+a)—y/(1+a) -8
(1+a) (1+a) ° for0<a<3-2vV2~.1715

4 )

T(a) =

and |
ag = 7(13- 3V17) ~ .157671.

Theorem 1. Let f : D (x,) — F be analytic, B = B(f,xy), v = ([, X,),
o = By and suppose r > ’—(yﬁl Then if a < «, the Newton iterates x,, X, , ...
are defined, converge to { € D (x,) with f({)=0 and forall n > 1

1 2"—1 .
(* -5l < (3) b=l
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Moreover |[{ — x|l < %2, and || - x, || < Y=

A point x, € E is called an approximate zero (of f) if (x) is satisfied.
In that case { is called the associated (true) zero. The following is an easy
consequence of Theorem 1.

Corollary. Let f:E — F be analytic, x, € E satisfy a = a(f, x,) < o, and
have associated zero (. Then the nth Newton iterate z, of z, is within ¢ of

¢ provided n > (log|log ==* t(a D+1.

Remark. The % in Theorem 1 may be replaced by any 4, 0 <4< 1, with q,
redefined. See §II-1.

Consider as an example the following family of real-valued functions (which
have a universal quality as we will see):

2

-8 vt
hﬂ,y(t)_ﬂ t+l—yt’ ﬂ’y>0-

Let a = By satisfy (a+ 1)2 —8a > 0 or equivalently 0 < a < 3 —2v2. Then
h 5.y has two distinct real positive roots at

dm_ja+nivm+1f—m

Vs 4y

Moreover dzhﬁ y(t)/dtz >0 aslongas 0 <t < % Thus Newton’s method
starting at 0 converges to the smaller root since by convexity the Newton se-
quence is monotone. Let 7, = Nh (tn_l) where 7, =0.

Theorem 2 (Domination Theorem). Let f : D,(x,) — F be analytic, p =
B(f,xy), »=7(,x)), a =By and suppose r > %2 and o < «. These
values of B,y define h 5.y and the sequence t, . Then

llx |<t, —1 n=1,2,...,

n_ xn—ll = n—1°
where x, is the Newton sequence of f starting at X, .

The Domination Theorem yields the last sentence of Theorem 1 as follows.

oo oo
”'xO - Cl‘ < Z”'xm-l _xn“ < Ztm—l -, = ’

o0
¢u<2uxn+| xlsz g =20

We next deal with the question, “How does « vary with the initial condi-
tion?”
Let

t//(u)=2u2—4u+1, Ogugl——\/;z—,

sothat 0 < yw(u) < 1.
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Proposition 1. Let f: D, (x,) — F be analytic. For x € D (x,), we have
alf, X)) (1 —u) +u

v(f, x) <
ol w(u)

2

where u = y(f, x))llx, — x|l and u <1 - 4

Proposition 1 plays a role in the proof of the following result which permits
repeated applications of Newton’s method.

Theorem 3. There are universal constants
a about .08019667, @ about .02207

with this property. Let f : D, ({) — F be analytic with y = y(f, () <7 (some

constant), f = B(f, () < % and r > %‘L) Suppose x € D, ({) satisfies
lx =l < & and {, is the associated zero of (. Then |x, — (|| < 4, where

X, = Ny(x).

Theorem 3 can be readily seen to have global implications. A homotopy
S, : E — F is a family of analytic maps 0 < ¢t < 1 with the induced map
[0, 1]xE — F continuous. An associated path is a continuous map [0, 1] - E,
t — {,, satisfying for each ¢ € [0, 1], (a) f,(¢,) = 0 and (b) the derivative
Df({,) : E— F is an isomorphism. Sometimes we call {f,» {,} a homotopy-
path.

The central algorithm in this paper (as used in Smale [28]) is designed to
follow a path associated to a homotopy and works this way. To a subdivision

1

T={t,=0,1,,....,4, =1}, t, < t,,, |T| =k, x, with llxg = &olt <0,
define inductively by Newton’s method

(%) xisz’(xi_l), i=1,...,k.

If |t; —¢t,_,| and |lx; — {|| are small enough, then |x, — (, || is small for
all i =1,..., k. More precisely we will say that Newton’s ‘method follows

the homotopy path {f,, ¢}, relative to T and & provided x; of () is well
defined, of Lo X ) <ag, and C is the associated actual zero to the approximate
Zero x; offv,z_l |T|

Note that iln this case the number of Newton steps to reach an e-approxima-
tion of the zero {, of f, is given by

(@)
T log —2
|T| + loglog o

where a = Ot(fl » X)), »=7(f], x;). The central complexity measure is |7 .

The most 1mportant example of a homotopy is a linear homotopy: S, =
tfl (1=0/fy> fy» f; : E — F. Often in this case a zero (or all the zeros) of i
1s known.

Theorem 4. Let F = {f,, {,} be a homotopy with an associated path as above.
Let A= i— k an integer, and 7 > 0 be such that B(fr. L)< ’)—' and y(f,,¢,) <
7 if |l —t<A.
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Let ||z, - {ll < % Then if T ={0,A,2A, ..., kA= 1}, Newton’s method
Sfollows F . In fact

The proof of Theorem 4 from Theorem 3 is practically apparent. One uses
only the appropriate continuity of the associated zero which comes from The-
orem 1.

Theorem 4 indicates the importance of estimating f( s &) v(f, ¢, and
much of the rest of this paper is devoted to just that.

I-3. COMPLEXITY FOR POLYNOMIAL SYSTEMS
IN TERMS OF THE CONDITION NUMBER, U

We start this section with some general background on polynomial systems.
It turns out that the affine (usual) and projective developments shed light on
each other, and in fact we treat, in part, the affine problem in a homogeneous
context. In both cases a representation of the unitary group plays an important
role in our study.

Subsequently, the condition number x = u(f, x) for f:C" - C", x ¢
C", is introduced. This is a modified version of the simple |Df (x)_'|| . Our
condition number must assume a more technical definition for several reasons,
mainly related to natural scalings.

The algorithms to follow a path of a homotopy are modeled on that of Theo-
rem 4 (previous section) and we are able to estimate the appropriate « invari-
ants in terms of the degree and the condition number of the homotopy. The
passage from Theorem 3 to Theorem 4 in the previous section gives the under-
lying idea of how we then obtain complexity results. As usual, this section is
on the overall structure with full proofs in Chapter III.

We turn to describing spaces of polynomial systems together with a unitarily
invariant metric. This metric while natural and used in the theory of group
representations (Stein-Weiss [31]) is not traditional in the numerical analysis
literature of equations. It has been suggested by Kostlan [14] and seems to be
well suited to purposes of complexity, and corresponding estimates appear to
be more elegant. Unitary invariance plays a central role in our approach to
complexity.

We use 9"( ) 10 denote the linear space of all polynomial systems f: C" —

c", f= (fi»---»f,), each f a polynomial of n-variables of degree < d;,
and d=(d,,...,d,), d >0.
Let Zf 4) be the homogeneous counterpart. That is, f € Zj ) is a map

C"™' - C" of the form f = (fy>---» f,) where each f is a homogeneous
polynomial of degree exactly d,. We suppose 0 € /‘?{ ) SO that Zf ) 18 a linear
space.

Note that there is a natural linear isomorphism @ : 9"( o~ %(’ ) given by
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homogenization as follows. Let f=(f,,..., [ )€ 9”( a) > S0 that
Sz, z,) = Z a,z"
le|<d,
a=(a, s @)
where z% = z{'---z» and |o| = Y o;. Then ®(f) = (®,(f,), ... ,@,.(1))
with @, (f)(zy, ..., z,) =, aaz"‘zg"'_l"I . The inverse of ® is given by setting
z,=1.

0=

For homogeneous polynomials g, f: ct!

— C of degree d, let

o S (#54)

|a|=d

where f(z) =3 a,z%, g(z) =) b, z". This induces a Hermitian inner prod-
uct on ’?Ed) . Simply write, for f, g € Zd) ,

(fa g) = Z(f;a g,')di'

1

Proposition 1 (Kostlan [14]). Let the unitary group act on C"*" in the canonical

way and on ’?E 4) by the induced representation. Then ( ) on Zf 4) is invariant.

In other words (fu™', gu_l) =(f,g) forall f,ge€ /‘?{d) ,and u:C""' S
C"!' unitary. Of course ||fu""|| = |f].

By the isomorphism & : 9"( o= Zf 2 We obtain an induced Hermitian struc-
ture on 9”( 4)- We will denote the corresponding norm on f* by simply || f|| for
each 97’( ) and %{ 4)- We sometimes use the same symbol for f € 97’( 4) and
D(f) € are

If E is a linear space over C, let P(E) denote the corresponding projective
space of lines through the origin in E. So P(E) = (E - 0)/C", C* =C-0.
A Hermitian structure on E induces a Riemannian structure on P(E) (of con-
stant curvature). Thus we have canonical metrics on P(g"( d)) , P(%{ ) - Some-

times for f € Z’(' 4)» the same symbol will denote the corresponding element of
P(#) .-
We define, for x € C"*' |
Null(x) = {v e """, (v, x) = 0}
and an affine subspace

n+l
N, =x+Null(x)cC .

Let ¢,=(1,0,...,0)eC"".

We will use the notation A(y,) to mean the diagonal matrix whose ith ele-
ment is y, .

We are ready to define the condition number u(f, x) of f € 9"’( 4 AL X € c".

The idea is to take u to be ||Df(x)_l||, e.g., as in Wilkinson [33], but it
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is important to take into account the special polynomial nature of f. We
also want to make u compatible with homogenization. Moreover, for sharper

. . . . . 1
estimates on complexity it is convenient to have a further factor of d? . Thus
define

u(f x) = 1AL DA™ AU 6]

1
or 1, whichever is larger, and where |x||, = (E'l' )cl.2 +1)%.
If f istreated as an element of /‘?{ 4) this is equivalent to

w2 x) = IANID A, ()7 A ) or 1

where x = (x;, ..., X,), X,=1.
We will use the two versions interchangeably.
The projective version of the condition number is: For f € Zf 4) and x €

Cn+1
Honei (> X) = LA 1DS 1y, () A el or 1

whichever is larger.
For fe/?gd), let

A X F ol
nf 0 = 7 :

For f€ %, , n(f, x) is the same except ||x|| is replaced by [lx||, .
Let fe @(d) , x € C". Appropriate versions of B(f, x), y(f, x) are

UL
Aoldo 0=,

yO(fa x) = y(f’ X)”X”l.
Thus a(f, x) = By(f, x)7(f, X).
The projective case goes as follows. For f € Xf )
BolS 1y, %) = By )/I1x,
7ol » X) = 71y 0)lx]l

These definitions are invariant under scalings of f and x, so they make
sense on P(#,) and P(C""").

Proposition 2. For f € 9"([1), xeC",
Bo(f s x) < ulf, x)n(f, x).
For feX,, x ec™!,
BolS 1y + X) < oy (F )0, ).

The proof of Proposition 2 is obtained by putting together the definitions
with ||4b|| < ||4]| [|b]].
In Chapter III we will show

b

+1
xeCc",
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Proposition 3.

3
D? n
yo(f,x)s&izx)—, fe®, xec",
3
(f, x)D? "
yo(f|,vx,x)5“l°’%—)——, fe#, xec™.

For f, g€ %Ed) s let dp(f, g) = min, “f—”_f—’hﬂ. dy(f, g) is independent
of scaling of both f and g and defines a distance function on P(;?E d)) . To see

that this function is in fact a metric we compare it to the standard metric on
P(;?( d)) . There is up to scaling a unique unitarily invariant Hermitian metric on

P(Z d)) . One way to get the existence of one is simply to restrict the Hermitian
structure on Zf ) to Null( f) at each f. This Hermitian structure defines a
unique Riemannian structure and a distance d(f, g) for f, g € P(Z d)) .

Proposition 4. d,(f, g) =sindy(f, g) for f, g€ P(Zfd)).
Proof.

el W =EER e
(/&) =M A = T ‘(‘ ||f||2||g||2>

by expanding the norm in the numerator as a Hermitian product. Now

LN If, &)l
<l ||f||2||g||2) = S AT Tl

so we have only to see that d(f, g) = arccos I {I’Iigg)ll . To see this last, use

unitary invariance and the uniqueness of unitary structure on cV up to iso-
morphism. We may assume that d, and arccos% are defined on CP(1)

corresponding to c? spanned by f and g. Moreover in affine coordinates we
may assume f = (1,0), g = (1, x;,) where the metric (see Mumford [19]) is

ds dxdx (xdx)(xdx) dxdx

TP A+ A+

Now integrate on the path (1, tx;) for 0 <7< 1.

1
X, 1
/ % dt = arctan|x,| = arccos (“"”“—2—1‘75)
o 1+, (L +x,1%)

which verifies the formula in this case. Note that to see that &, is a metric it
is enough to note that sin(4 + B) <sin4 +sinB for 0< 4, B<%.
The diameter of P(Z 4)) equals one with dp (and equals 7 for dg). Note

d, <dy.
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.\ 1
Proposition 5. Let [, g€ %, , (€ C™'. Then

u(f, O +dp(f, g))
C = 1 b
1-D'"2d,(f, g)u(f, {) or S
Horei ([ O+ dp(f, 2))
1= D'"2dy(f, )ity (f 5 0)

as long as the denominators are positive.

(a) u(g,0)<

(b)  ny(8,8) < for ¢#0

Remark. D'* in (b) may be omitted by a different proof.
For a while now we restrict ourselves to the affine case. So in §I-2, E and F
both become C" and a homotopy f, : C* — C" is a (continuous) curve in %, .

Then (, is a curve in C" with f,({,) =0 and Df,({,): C" — C" nonsingular.

Theorem 1. Suppose C, € [0, 1] and {f,, {,} is a homotopy-path in 93(:1) xC",
1,0 €[0,1], u=u(f,, L) with

dp(fy, ) <2C, (1 - Co>2 1

1+ C, D3/2/12 ’
Let
D [1+C,
7=—u :
2 1-C,
Then
ﬂ(f;’y C,)? S C 5
and

y(./;' ’ Ct) < y()(f;' s C;) <7?.

For example one could take C, as «, or a from the previous section. If
C, = a, then
1-C\*> -
2G, < 1+ C0> -@
is about .11629.

We give the short proof here (assuming the previous propositions). Choose
in Propositions 2 and 3, f = f,, and x ={,. Then

B(f;’ } C;) < Au(f;’ s C;)"(f;’ > Ct)

Lemma 1 (easy).
ﬂ(f,' > C;) < dp(f;' 5 j;) = AP'

By Proposition 5
u(l+4p)

fr gy s KR
“ (1-D"a,)

so we obtain using the lemma,

1+A
Bz 6) < (ot )
P
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Lemma 2.
1+A, 1+ C,
172 < :
1-D"?A,u~ 1-G,
Proof. Using the hypothesis on A, and the fact that D > 2, u > 1, one sees
that ﬂDl/zAP < C,. Then A, < C, and the lemma is proved.

The estimate on f and y of Theorem 1 now follows by making the appro-
priate substitutions.

We now will give an estimate of the number of steps of the algorithm of
§I-2 described right after Theorem 3. For a homotopy-path F = { J;» ¢} in

9"( a) % C", define L = L(F) to be the length in the metric dp of the curve f,,
0 <t < 1. Define the condition number

p=u(F) = max u(f,, ¢,)-

<i<1
Note that u takes different meanings in different contexts.
Theorem 2. Let F = {f,,{,} be a homotopy-path in Z, a0 X C". Let

3/2
k> LD 2

> ———u".
(64

Then k Newton steps are sufficient to follow the path {,, [0 <t < 1], in the
sense of §I-2.

Again we give the short proof which follows from Theorem 1, but first note:

Remark. For the main case of a linear homotopy fi=tf+(1-1) f0 , recall that
L is less than or equal to the diameter of projective space, which is 1.

Proof. One may choose ¢; so that

L .
dp(fys S, )5 i=1,...k

Then since 7%— <a* /D3/ 2/1 , the hypotheses of Theorem 1 are satisfied where
C, = @. The conclusions of Theorem I put us into the situation of Theorem 3

of §1-2 and this finishes the proof of Theorem 2.

The next theorem is an important step in analyzing the projective version of
Newton’s method.

Theorem 3. There exist numbers i ™ .07364, Uproj. ™ .0203... with the
following. Suppose f € # 72 p'?

(@) 1(f 2 Oty (2 O) S @y /7.
(®) llx = CI/NCH < vy /7
(©) 7(f,0<7.

Then

and x € N, satisfies

||X - C ” proj.

1 I
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where x' = NHN (x), x' € Ny and A’ is the associated zero of x for Sy
some A€ C.

Remark 1. If we take 7 = D*?

satisfied by Proposition 3.

w2, u= ,upmj‘(f, {) then (c) is automatically

Remark 2. That f € /‘Z’( 4) is not crucial to the proof. f, homogeneous complex
analytic of degree d, with large enough radius of convergence around ¢ suffices
with 7 > max(1, Dl/z) , D=max,_, |d;| . Note also that the expression nu
of (a) does not involve | f|| and is defined for all such f.

A homotopy ft :C"' = C" inthe homogeneous case is a curve in the space
Zfd) , 0 <t < 1. Anassociated path {, is acurve in c"! satisfying f,({,) = 0.
Let

u= 'uproj.(F) = mtax'uproj.(ft > CI) > F= {f; > gt} ’

be the condition number of the homotopy-path F . 1

We will now prove the main theorem, §1, with p(F) replaced by T - In

the next section, the main theorem asserts these quantities are equal and so that
result will finish the proof of the main theorem.
Let C, be the first positive root of

c \? Cc\?
C<l+—D3/2u2> =2apmj_ <1_D_u>

for D=2, u=1 and let szcl]. Then C,=835... .

Let X
1 R u(1+A)D*

= )_) = -
C, D’ 2(1 = D'*Ap)
Choose ,, i =0,..., k =[%], such that for s € [t,, 1,1, dp(f,, f,) <A.
Here [x] is the smallest integer > x. Let ' = Supc(, ,]l‘(fs’ ¢,). Then

’ u(l +A)
= 1/2
1-D""Au
by Proposition 5 and for s € [7,, 1, ],

1]
u(1+A)D*?
2(1 = D'?Ap)

by Proposition 3. This gives condition (c) of Theorem 3. We now check con-
ditions (a) and (b). For (a), note that n(f ,{,) < A for s € [7,,17,,,] by
Lemma 1. Also

YO(f;, C[l) S Z]_)

Ao < ! w(1+A)D?  u(l +4)
TS 32 2 12 12
C,Du? 2(1 = D'Au) (1 - D'7Au)

2
¢, (1+¢,/p"w) <
= 2 = Xproj.
2(1-C,/Du)” P
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by the definition of C,. Thus 5 < aproj_/y,u' .
For (b), by hypothesis,

”Zo - C()” C P(F) uproj..
1Sl 'p¥r T 7

Apply Theorem 3 inductively to obtain
=gl _u

proj.

PR
for all i.
Finally from Proposition 2 of §III-2
2
a, < K(aproj. ’ uproj.)2 uproj. < .024,
‘//(uproj')

the last using a pocket calculator. Here o stands for a of f at x, . Thus
X, 1s an approximate zero of f, and so certalnly X, s Theorem [ of 81-2
i+1

tl 1+l

applies to yield log log estimates, i.e.

i _
”N-’;Hlanl (xtiH) CIHI ” < l
Iz, 1 =7

where {,  here means the associated root of x, in N, . O
i+1 i t

I-4. COMPLEXITY IN TERMS OF THE DISTANCE
TO THE DISCRIMINANT VARIETY X
The goal of this section is to replace the condition number in the estimates
of the previous section by the distance to the discriminant variety. To that end,
we extend an idea going back to Eckart and Young [6] and developed especially
by Demmel [4].
Consider the product space /‘Z’( ) % c"™' with quotient /‘Z 2 <P, where P, =

P(C"+l) is n-dimensional complex projective space. Let
V=A(f,2)€Z, xP,|f(z) =0}

We may consider the projection of ¥ onto the second factor V — P asa
vector space bundle with fiber over z given by V, = {feZ, | flz)=0}.

The associated bundle #, : V' — P, with fiber P(I7z) is a smooth algebralc
hypersurface V' C P(Z d)) x P, (see Shub [24]).

Let X' be the algebraic hypersurface in ¥ given as the set of (f,&) € V
such that Df(¢): C"™' — C" is singular (i.e., of rank less than n).

While we have considered V' as abundle n,: V' — P we may also consider
the projection n: V — P(Zf ) on the first factor.
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Remark. ¥ may alternately be described as the set of critical points of 7. That
is, (f,x) eV isin I’ precisely when Dn(f, x): T, oV)— Tf(P(%(’d))) is
singular.

The image under 7, 7(X) =X C P(%(’ 7)) is the algebraic hypersurface of
polynomial systems with a degenerate zero (i.e. f € X if and only if there is
some { € P, with f({) =0 and Df({) singular).

This variety £ C P(Z/(‘ d)) is called the discriminant variety. It is familiar
in the affine one variable case as the set of all polynomials with nonvanish-
ing leading coefficient having a multiple root. The map = : V — P(Z ) is
an n-dimensional generalization (homogenized) of the well-known map taking
roots of a polynomial onto the coefficients by the symmetric functions (in one
variable; sometimes the “Vieta map”).

The variety X has played an important role in recent complexity analysis
of polynomial zero finding since it consists of “ill-posed problems”. For one
variable Newton method see especially Smale [27, 28], Shub-Smale [25, 26].
For the many variable case see Renegar [20]. On the algebraic side, a similar
situation prevails; see Canny [3], Heintz [10], Ierardi [12], and Renegar [21]. In
both cases, however, there is a subvariety of the discriminant locus of a more
seriously ill-posed system which contains an infinite number of zeros.

An underlying theme in much of this literature is the idea that the condition
number is bounded by the reciprocal of the distance to X£. This theme also
comes from numerical analysis (see for example Demmel [4, 5]) even more
explicitly. We sharpen and develop that idea here with Theorem 1 below.

Our account continues with one version of a result seen in undergraduate
numerical analysis texts. Let ||A4||, be the Frobenius norm of a matrix 4 €
A (n), the set of all n x n matrices. Thus

1Al = (Zla, 1)

Let § C .#(n) be the subset of singular matrices and let d.(4, S) be the

distance from A to S in the Frobenius norm.

Proposition 1 (Eckart and Young [6]).

—1 1
4 |l = 4.(4.5)

The proof is in Golub and Van Loan [8].

Here ||A_l || refers (as always here) to the usual operator norm induced from
the Hermitian structure on C".

Next we define a function p on V which represents the distance to the
discriminant variety. For (f, x) € V, take p(f, x) as the distance in the
fiber V. of n:V — P over x of (f,x) to TN V.. Recall that this fiber
is the projectified subspace {f € Zfd) | f(x) =0} of #; > and the distance
is computed in the d, metric. Thus p is ultimately defined by our unitarily
invariant norm on % )

Theorem 1. Let f € %, , x € Cc™!', f(x)=0. Then Horoi (> X) = 51 l‘x) .
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On one hand Proposition 1 is used to prove Theorem 1; on the other hand it
is a special case of Theorem 1. In the case of one variable polynomials, there
is the work of Hough and Demmel [4] giving upper and lower bounds for the
condition number of f at x in terms of a version of our p(f, x)™'

In the passage from Proposition 1 to Theorem 1 we use heavily unitary invari-
ance. Unitary invariance has already played a role in the proof of Proposition 3
of I-3 and continues to do so throughout many of our proofs.

In more detail the unitary group U(n + 1) acts on % c! by sending

(f, z) to (fu_1 , uz) for u € U(n+1). This action 1nduces actions on /‘?(d)xP
leaving ¥ invariant and on P(z’?{ ) %P, leaving V invariantaswellas &' c V
invariant.

As a corollary to Theorem 1 we have immediately that in the main complex-
ity results of §I-3, we may replace P, (f, x) by —7_

Next we give a result which corresponds to Theorem 1 with the x eliminated.
Quite simply for f € # ) let

fuproj.(f) = mfx :up,-oj.(f, x),
S(x)=0
p(f) = min p(f, x).
S(x)=0
Then p,. ( /) may be thought of as the condition number of f .

Corollary. Let f € Zf ) Then

1
#pmj.(f) = “m

Remark. 1t is easily seen that p(f) > d,(f, Z) so that u(f) < 1/dp(f, Z).
We now proceed to an analysis of the condition number in the aﬁine case.
The situation here is more complicated.
Define Zg =V nZ_ where

={(f.2) € P(#,) x P, | z, = 0}.

Thus (f, z) € Z;) means that f has z asa zero at co. Let I, = n(Z;)), T
V — P(Zfd)). We may consider X, as contained in Fa) Via o' c gy 9’@
(abusing notation). This way X, consists of all polynomial systems f : C" —

C" with the property that the hlghest order homogeneous parts of J; have a
common nontrivial zero. It was observed in Hirsch-Smale [11] that if f ¢ %,

then f is proper. From the construction ZO and hence %, are varieties and in
fact irreducible (compare Shub [24]) hypersurfaces in V , P(#,;) respectively.

The followmg proposition gives a bound on the zeros of a polynomlal map
f:c" ="

Proposition 2. Let f € %, , x€C" and f(x)=0. Then

" 12 ||A< d’fl _ D'|rf
”x”'=<l+§,:|x"|2> A7 5y Sd(f,zou)‘
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2,172 1/2 .
o et o) = dU7 2/ Thus (1+ S xIYE < D pg(f) i f(x) =
The following gives us the affine condition numbers in terms of the projective

ones.
Theorem 2. Let f €%, , {€C". Then

1(f 5 &) SNEN iy (5 (1, E)).
Corollary. Let f € %, , x €C" with f(x)=0. Then

pi2

po(Np(f, x)’
Dl

H) < ST

The corollary uses both Theorems 1, 2 and the proposition. This yields
another version of Theorems 1 and 2 of the previous section.

We summarize this section by reviewing what must be proved in Chapter IV.
These results are Proposition 1, Theorem 1, Proposition 2 and Theorem 2.

u(f, x) <

CHAPTER II: THE ABSTRACT THEORY

II-1. POINT ESTIMATES

We prove the results stated in §1-2. The proof of the first part of Theorem 1 of
§1-2 is given. We proceed directly with a general result which is rather technical
sounding. It is used in proving all of the theorems of §I-2.

Use the basic notation of §I-2 and besides let

wic,u)y=1-2(c+ Du+(c+ l)u2

Proposition 1. Let [ : D (z) — F be an analytic map and Z e D (z). Let
B=PB(f,z), B'=B(f,2) and c,d > 0 satisfy

—1 1k
LIGEFICTRPP

Ifu=|z-2'||6 and w(c,u)>0,ie, u< \/c2+c/(c+ 1), then

]

o = then

Moreover, if ¢’ =

(cu)’ lu’

”Df(Z)k'D f(Z)” <c (5’)/( 1 k=2,3,
Finally, if k = B6, k' = B'8", then

¢ <y (o (7))
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Note that the k' estimate is a consequence of the B’ estimate and the defi-
nitions of ¢, x, x’.

We write down the special case of Proposition | for ¢ =1 and § = y(f, z).

Let w(u)=w(l, u).
Proposition 2. Let f: D (z) — F be analytic, z' € D, (z) with y(u) >0 where
u=|z' - z|y(f, z). Then

pir, 7y < 1=

oo (L=wB(f )+ 12 - 2l
y(f, 2)
w(u) (1 -u)’
(1=wa(f, z)+u
v (u)’ '
This proves Proposition 1 of §I-2.
We now prove Proposition 1.

y(f,2) <
alf,z) <

Lemma 1 Let A, B :E — F be bounded linear maps wzth A mverlzble such
that |4~ 'B - I <c< 1. Then B is invertible and ||B~ A|| < 1_C

Proof. Using the series 1 = 1 + x +x>+ .- for x|l <1, 47'B=1-
(I-A47'B) is invertible. So B is invertible and ||B™'4|| = [|(4™'B)™"|| < L

The following very easy lemma is left to the reader to prove.

Lemma 2. L
o) )

If w(c,u) >0, then c(({)" - 1) < 1.

Lemma 3. With notations and hypotheses of Proposition 1
(1) Df(Z") is invertible,
) IDf)'Df(2) < (1 —w/w(c, ),
(3) 1D (YD £k < o)

Proof. The Taylor series of Df(z') about z is

k-1
Df(z) = Df(z Zfo,lf{).Z) .

So

-1
1D/(2) D) 1||<Zk”Df I (G

<CZk§kl 1_ kl

Sc((liuy_l)'
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This bound is less than 1 by Lemma 2 and thus Lemma 1 applies to yield

11 1
IDAEDAEN < T

By Lemma 2 we obtain Lemma 3 parts (1) and (2).
For part (3) of Lemma 3 we use part (2) as follows.

[P <oy g ZDf D)y
DT
o ‘:,f;"-‘; L
= le/l(c_ l:t))2§k_l (1 1 u)kH = a//(cc, u) (Tf_u>k_l
<c (5/)k 1

proving Lemma 3.

By Lemma 3 it is sufficient for the proof of Proposition 1 to estimate B, or
the first part of the following lemma.

Lemma 4.
@) D)7 fN < B+ + )2 - 2.
(b) Let z —Z—Df(z)—lf(z) Then

1D~ (2)f(z )||<

IIZ - z||.
Proof.

oo k
IDf(2)" ()] < HDf(z)“ (f(z) s 2IE z)")

k=1

oo -1k
<UD (2 + 2 - 2+ S IRLEL DTN
k=2 )

But

—1 00
S IRIE DNt (St )i - o

k=2
cu

1-

To prove (b) note that in this case ||Df(z)—lf(z) +z —z|| = 0. For (a) we
have

< ||Z - z||.

IDS2) " S < B+112 - 2] +7q

IIZ —z||.
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This proves Lemma 4. Proposition 1 follows,
B =IDS) " SN < IDSE) DINIDA2) " ()

1—u)’ : /
< U (B0 = 2+ 1202 - =)

by Lemma 3 and the above.

Proposition 3. Under the conditions of Proposition 1, let z' = z—D [ (z)'l f(z).
Then
pc

B Smk(l—x).

Moreover take 6 =y and ¢ =1, to obtain
’ M4
< N1 N b
~y(a)(l-a)
l < ﬂa(l - a)
v (a)

b

Q
INA

w(a)®
as in Smale [29].

Note that for 1
z =z-Df(z) f(z2)

we have u = k and

-1
B(z) = IDf()" f(2)]
-1 -1
<IDF()DINIDS(2)” f(2)l
(1- u)2 . cu
Ty, u) (1-u)
ck(l — k)
WQK)B
using Proposition 1 and Lemma 4(b). Now recall that for § = y we may take
¢=1 and k = u = a. Thus the inequality for y' follows from Proposition 2,
the inequality for B’ from the above both by substitution and the inequality
for o' by multiplying the inequalities for ' and B’ . This proves Proposition
3.
We next make a change of variables from ¢ to o as follows:

’
Iz -z

* . 0<o<a,
(1-%x) 4

! !
/ CK
(1-x")*

We are continuing the use of notation from Proposition 1.

g =
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Proposition 4. Under the hypotheses of Proposition 3,
/
(@ k < W,
(b) ﬁ — lﬂ(Za:LK (S l—UZUB)’
2
(©) o <(t%)"-

Proof. Observe that

y(c, k)

(1-x)*
Then (b) follows from Proposition 3 and an easy substitution, and (a) follows
from (b) since ¥’ = g'0’ and ¢’ < 1= by Proposition 1 recalling that u = k.
It remains to confirm (c).

=1-20+0k.

Let w = w(c, k). Then

But
(1-x)? (l—x) (1-x)? B 1 _ 1
v —1) =y (-2t Dt rd)  1-2ex/(l-x)} 1-20

proving Proposition 4 from Proposition 3.
We now suppose the hypotheses of Theorem 1 of §I-2.

Proposition 5. For 0< o <1, let 0< A< 1 satisfy 6 =4/(1+A)". Then
2kt
B, <A By, k=0,1,2,....
For the proof of Proposition 5, we use the following lemma.

Lemma 5. Let B, = B(f, z,) and o be the jth iterate under o — (]_"20)2 of
0, =0. Then

(wm<mﬁlgm
(b) (Z5) <4

. —_ J k— o . .
Since I'[’J;Ol M= , Proposition 5 is a consequence of the lemma. More-
over, (a) is a consequence of Proposition 4(b). Note that

, A+ N\ X
7 S(1—2,1/(1+/1)2> 1+

It follows that
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But since .
(1-20)(1+4" )" > 1
we have o .
k<52
1 - 20k -

proving (b) of the lemma.
Take ¢ =1. Then k = a and

a _ A
(1-a) (1+4)%
Choose 4 = 1,50 a =a, = 1(13 - 3V/17) and Proposition 5 implies the first

part of Theorem 1 of §I-2. Recall that the rest of Theorem 1 follows from
Theorem 2. The next section is devoted to a proof of that theorem.

II-2. THE DOMINATION THEOREM

For the proof of the domination theorem (Theorem 2 of §I-2), we will use
some lemmas. The first concerns the monotonicity of the functions defining the
inequalities in Proposition 4 of the previous section. Let

OK
K= 5 v o
1 -k)o
B, x,0)= lﬂ—(2a +)ax’

s0- ()’

Lemma 1. Suppose 0<x, <k,<1,0<0 <0,<3% and 0< B, < B,. Then
(a) K(g;, k) < K(a,, k),
(b) B(B,,x,,0,)<B(B,,x,,0,),
(¢) S(o,) <8(ay),
(d) S(o)) <%, 0<K(g,, k) and 0< B(B,, x,,0,).
Proof.. For (a), (b), (c), compute the derivatives of K, B, S with respect to the

appropriate variables and note that they are nonnegative. The proof of (d) is
straightforward.

Next introduce the functions

1-x) 5t
hﬂ‘x’a(t)zﬂ—t+( K)al'i

We have purposefully not simplified the expression for ease of manipulation.
By direct calculus we prove
Lemma 2.
2
() Dhy . (1) = —1+Ea (=14 1/(1 - 50)°),
(b)

.

D"k 0 (1-x)? (&7
A K) B .
i = p G(I—Et)”" fori>?2,
B
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(©) hp o o(B)=0(l-K)B,
(d) Dhy . (B)=~(1-20 +K0).

Let
T(B,x,0)=(B(B,k,0),K(c, k), S(0))

and B’ (B, x,0) bethe B component of the jth iterate 7’ of T.

Lemma 3. .
h +s ) k", 5s
p,x,a(ﬂ )=ﬂ—5+(1 K)O_ 8 ,

—hy . o(B) K (1= )
where (B, k', 0 Y=T(B, K, o).

Proof. We prove this algebraic identity as follows: the Taylor series for
hﬂ,x,a(s + B) is:

, (=) s~ 7
_ h /
o(L=K)B +hy o o(B)s+ ag(l—x)’“

using the previous lemma.

h K 0(S+B) U(I—K)ﬁ oS xS i—1
ﬂ’ , pr—
B 1-2o4xa T R(I=20 T wa) &2 (5)

2
_ o (=ay)s
k(1 =20 +K0) (1 - gf=55)

1—-k)

Comparing terms finishes the proof.
Newton’s method has the following basic property.

Proposition 1. Let L be a linear automorphism of F, A : F — E an affine
isomorphism, U CE, and f:U — E. Then

-1
Ny, =A N

Let Tr(b) denote the translation by 5.

Lemma 4.
n—1 . n—1 .
Tr( — J J =
Jj=0 0
for n>1.

Proof. For n=1
Tr(—B)NhﬂVK‘aTr(ﬂ) =N, =N,

_ hp,,c,g‘Tr(ﬁ)
~hy o o(B)

b
T(B.x.0)
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The first equality follows from the last proposition and the second equality from
Lemma 3. Now induction finishes the proof.

Recall that in the setting of the domination theorem we have

2

yt
hﬂ,y(t) =f—-t+ Ty hﬁ,a,aa(t) where g =

(1-a)?

and ¢, is the nth iterate of 0 by Newton’s method so t, = N,:' (0).

B.a,0,

Lemma S. For n > 1
n—1
t,—t,_, =B (B,a,0).
Proof. For n = 1, this is obvious. Since t, = 0, induction gives us at stage
n—1 that

n-2
(%) o, => B (B, a,0).

J=0

It follows from Lemma 4 that

n-2 n-2
Mooy Q=N )<ZB’(/3', a, aa)> -> B'(B.,a,0,);
ya, 04 » @, 0y _]=O

j=0
substituting (x) gives

N, (0)

"8 .a.0,)

Nh(ﬁva'an)(tn—l) —l = Iy =1,
where the last equality is the definition of ¢, . Now B"_I(B ,a,d, ) is by

definition the S component of T"_l(ﬂ ,a, 0) SO

B”_'(,B,a,aa)zN,, 0 =t,-1,_,.

" (.00,

Proof of the Domination Theorem (Theorem 2, §1-2). By Proposition 4, §II-1,
Lemma 1 and induction it follows that

B(f. x,_)<B"'(B,a,a,) forn>l.

Now |x, = x,_ |l = B(f. x,_,) by definition and B"'(8,a,0,) =1, —1,_
by Lemma 5; thus |x, —x,_ [ <t, —1t,_

1
1-

II-3. ROBUSTNESS
Here we give the proof of Theorem 3 of §I-2. Toward the proof of Theorem 3

consider the function a(t) = t(¢) — ¢ with 7(2) = (1 +1— /(1 + 0? - 81)/4 as
usual.
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Lemma 1. The map a is a differentiable homeomorphism, a : [0, ] = [0, u,)
where 1y=3 -8, uy=32=% 4 (1)>0, te (0, t,).
Proof. 1t is easy to check that a(0) =0, a(ty) = u,,

' 1 31t
a(t)=—(————3>>0, O<i<t,,
4A\V1i—6t+1° 0

a'(0) =0, a’(lo) = 0. Thus a”': [0, uy] — [0, ¢,] is well defined and
differentiable on the interior.

Lemma 2. Suppose b > 0. The function 5@ = Mstﬁ is monotone increasing
Jor 0<s < 1—‘-5@ )

It is sufficient to show that this function has a positive derivative. We leave
this as an exercise for the reader.

Define
t(l—u)+u

o

We remind the reader that
v(u) = 20" —du+ 1.

2
Lemma 3. The functions (lv/_(::)) and (;,zu“)) are monotone increasing for 0 < u <
1-¥2.

Once again check the positivity of the derivative.
Lemma 4. s(¢, u) is monotone increasing in t and u for 0 < t < 1 and
O<u<l- —2‘@

The numerator increases and the denominator decreases to zero in this range.
Let

‘//(u)za_1 (W—T)) —u
l-u
for 0 <u <u, where u, is defined by u,/y(u,)(1 - u)=1ug.
Note for 0 < u < u, a(s(a(u), u)) = vat=m - The following is straight-
forward.
Lemma 5. «(0) =0, a(u,) <0 and o () >0 for small u>0.

Definition. Let # be the first positive zero of o'(¥) and a = a(#),
7 =0.02207..., a =0.08019667... .
Let G(y,u):wg’l_—u) for 0 <y and 0§u<1—‘/75. Let 5§ =s(a, #) and
G=G(y,n).
Lemma 6. As in Theorem 3 (§1-2) let o = By, B=B(f, L), y=2(f,{). Let

also o, = By, /i’x:ﬂ(f,x)i, 7. = ?2(f, x). Suppose a < a, y<y, u<u
where u =7|x = || and B <. Then

a(u) =
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Proof. _
ala,) _ a(B,G(r, w) _ a(B,G)
» ~  G,u — G
by Proposition 2 of §II-1, Lemma 2 applied twice and the monotonicity of G .
Now
N ). 7
Gy, u) < l-—u)p+|x- —_—
B.G(7, u) o) (( )B + || CII)W(u)(1 -
by Proposition 2 of §II-1 again. This is
(1—u)?*_ (1—u)u> 1
< +
= ( v T Ty ) v@T-a)
by the hypotheses, and is
(1-u)’_ (1—a)a> 1
< — + - — —
( v@ T @ Jv@-w
by Lemma 3. By Lemma 2 a(8,G) < a(s) and thus a(a,)/7, <a(s)/G.
Proof of Theorem 3 (§1-2). By Theorem 1 (§I-2)
a(a,) _ a(3)
—AL <
- G

=s(a,n)=3

llx, =&, Il < by Lemma 6

X

by the definition of 5 and G.

I
|
=

CHAPTER III: REDUCTION TO THE ANALYSIS
OF THE CONDITION NUMBER

Here we give the proofs of the statements in §I-3. Some references back to
that section are inevitable.

ITII-1. THE HIGHER DERIVATIVE ESTIMATE

Our main goal of this section is to prove the estimate on y of Proposition 3
of §I-3 and Proposition 5 of that section. We start with

Proposition 1. Let [ : C"*!' S C bea homogeneous polynomial of degree d .
Then
d
< AN for all x € €™

Proof. Let x € C"*" and y = (||x||, 0, ..., 0). Take a unitary automorphism
U :C"™" « satisfying U™'y = x. Then

) _ U U _ g)

x4 B Iyl

where g = fU™' = Y. b,x" and | g|l = ||f]l by Proposition 1 of §I-3. We
have

d
lg)l |bd,0,...,0|”x”
da d

14 Iyl

=lbs0,. ol <lgl=I71. O
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Proposition 2. If f € 7, then | A(|x]|™)/(x)]| < I/II
Proof. From the previous proposition we know that
-d .
Il 14l < A i=1,...,n.
Just square both sides and sum over .
Proposition 3. Let [ be a homogeneous polynomial of degree d . Then
k d—k

ID"f(xX)(w,, ..., w)ll <d(d—1)---(d—k+ DI IxII" "llw,l- [lw,ll

forall x,w, ecC"".

The proof uses two lemmas.

Lemma 1. Let U : C™*' — ™' be a unitary automorphism, f:C""' = C a
homogeneous polynomial and x,weC™ . Then

D(f o U™ )(U(x))(Uw) = Df(x)(w).
The lemma follows from the chain rule,

D(foU YU(x)=Df(x)U”

1

Apply this to Uw .

Next let F, be the space of homogeneous polynomials ¢S cCand fe€
F, we C"+1 Then Df(x)(w) is a polynomial of degree d—-1in x and
can thus be considered as an element say D f(w) of &,

Lemma 2. [Df(w)ly  <d|flzlwl.

Here the subscripts on the norms are temporary. It is sufficient to prove
Lemma 2 for |w] = 1 by scaling and then for w = ¢, = (1,0, ...,0) by
choosing unitary U with Uw = ¢, and using Lemma 1 together with the
unitary invariance of the norm.

Then since
w) =Y aya,X"° B SRREEE
aO(;éO
we have

(a = Dla,!--a)!
(10740

20! !
=dZ laglla, | %

(100;40
<d’ Zlal —d”f”y

This proves Lemma 2.
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Note considering D? f(w,, w,) asa polynomial in x we have from Lemma 2
applied twice

1D f(w,, wy)llg, < dd = Dllflgllw,l w,]
and similarly by induction:
1D flw,, . wlly, < d(d=1)--(d —k + DIl [, ]| [[w,]l.
Now apply Proposition 1 to obtain the assertion of Proposition 3.
Lemma 3. Let d > k > 2 be positive integers. Then

(d(d—l) (d - k+1)>1/k1>

max FIET

k>1

isat k=2.
Proof. Observe

H d 1/k—1 N d—k
i+ 1 k+1
for 2 < k < d since each of the kK —1 terms in the product is bigger than =X .
Now for 2<k<d— 1 !
owfor 2<k<d-
dd=1)-(d=k+1)\1/(k=1) 12k d—iy\1/(k=1)
(( ) d (I, (%)

T

(dgd—12-~~(d—k2)1/k = =‘%

> 1.

d"(k+1)

Thus
dd-1)---(d—-k+1)

d'"k!

1/k—1

(

is a decreasing function of k.

)

Lemma 4. Let f: cC"™' - C bea homogeneous polynomial of degree d . Then
( ID* f)@w, . ... wy) )W”dew—n
d' x| KA AN w1 - g -2

for every k > 1.

This follows from Proposition 3 and Lemma 3. Recall from the introduction
that D = max(d,) .

Theorem 1. Let f € %, and x € C™'. Then

—1
JA( a7 %) Dt oIl Do -1 D"
KNI =72 T2
Proof of Theorem 1. By the definition of || ||,

Uth*ﬁﬁ””ﬂ”UMb”_< ( 1D £l )
e BASANERETIHE
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- (Z ((dil/z(di _ 1)>k—l ”f;_“>2>l/2(k—l)
- 2 11
D'*D-1)
< — s
We next prove Proposition 3 of §I-3.
For f:C"—-C", xeC",
Yol x) =2/, x)lxll

and by Lemma 4

a

-1k 1/(k—1)
— a | 2L D) il
_ x| RS A AT A (d,-“/2>A<|1x||r“’"“wk(f)“'/“-”
B k>1 k!

k-1 D
2

by Theorem 1. The last is less than u(f, x)D3/2/2 since u(f,x) > 1. This
proves the first part. The proof of the second part is essentially the same.

<maxu(f, x)
k>1

Lemma 5. Let A, B : E — F be bounded linear maps of Banach spaces where
B is invertible, and |A — B||||B”"| < 1. Then A is invertible and |A™"|| <
1B~ /(1= 1B~ |14 - BI).

Proof. |I - AB™'| < |4—-B||IB”"|| so, by Lemma I, §II-1,

1BA™Y)| < : and (147" < B 1BA™"

T 1-|l4-B|IB7|

We next prove Proposition Sa of §I 3. For A#0, A1€C,
—1/2

ug, O =g, O =A@ 1L hpGgy, ©) liAgl
A ™ 4D 1y () gl
e IA@ g ATIDU = Al (O 2IE)T A DAy ()7
by Lemma 5 as long as the denominator is positive. Thus
u(g, &)< 1(/{ O T
— | A(d]?)(f - 2g) || M5t

which follows from Proposition 3, and

/=gl
u(fs O+ )

u(g. ¢ < Tl :
L=D " Smulf, §)

We apply the last inequality to that A for which d,(f, g) = W2l which by

]
hypothesis makes the denominator positive.
The proof of 5(b) is the same replacing x4 by Hppo;. @nd Nen by Null. .
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ITI-2. ANALYSIS OF PROJECTIVE NEWTON METHOD

We give the proof of Theorem 3 of §I-3. Part of this proof is very similar to
that of Theorem 3 of §I-2 in §II-3, where we use the same notation.
For 0<a<ay, 0<u<l-2, let

au, a) = (k(u, mf(%) — k(u, )’ S(a, u)
where

(1+uH)'?
1—u(Qu—u?)/(1 —u)* +22)(1 — u)*/y(u)

For each u let a(u) be the maximum of o such that

K(u, a)=

K(u, a)u
w(u)(l —u)’
Recall that a(t) = 7(¢) — ¢ is defined in §II-3.

(%) a(&)(1 +v21(a)) <

Let ap; be the maximum of a(u) (over u) and u,; the least u such
that a(u) = Ao, -
Lemma 1. Both . and Uproj. Are defined uniquely and are positive. Moreover
approximately
aproj. =.07364..., uproj. =.0203... .

The proof is very close to the proof of Theorem 3 of §I-2 in §II-3. One must
check the monotonicity and boundary conditions of & . We leave the details to
the reader.

Proposition 1. Let [ € i?gd), x, e with x e NC where NC ={+ NullC,
N, = x+Null, Null, = {v e l<C"+‘ | (v,0) = 0} etc. Let ry = LAl
u=rovo(fly,» ). Then IDf(x)ly Df(x)ly |l < where

2\1/2
(1+r5)"

k= 2 2
1 =ry((2 —wu/(1 —u)" + Dun)(1 —u)"/w(u)

where y = upmj.(f, {), n=n(f,L) and as long as the denominator remains
positive.

Proof. For the proof we use a series of lemmas.

Lemma 2. Let L : C"' — C" have rank n. Suppose C"*' = V" ¢ V' as
unitary direct sum where V" has dimension n and V' dimension 1. With
respect to this splitting write L(x +y) = Ax + By, A=L/V", B=L/V".
Let W" be an n-dimensional subspace of C"*" which is given as the graph of
a linear map o : V" - v',

W' ={(x,o(x))|xeV"}.
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If A is invertible and ||A_1Ba|| <1 then L|W" is also invertible and

2 1/-
—1 1+ |o
Ly < el
1—|l47 Ba|l
Proof. We wish to solve the equation

(L W™ 4w) = x + a(x)
where x € V" or

(L|W")(x+0a(x)) = A(v)
or yet

Ax + Bo(x) = A(v).
Inverting A we have
x+ A 'Box =v.

This last equation can be solved for x by (1 - t)_l = 1+t+0+ -,
x=(I+4"'Bo)"'(v) and |lx|| < =g Il Finally since |lx + 0 (x)] <
(1 +[lo®)"?|1x|| , multiplying gives
1+a|H"?
e+ ool < LDy
1 —||A” Ba]|

Lemma 3. Let x € Null({)+{. Then Null  is the graph of ¢ : Null({) — C(IICH)

(w,x=¢)

where o(w) = = (Here C(ﬂgl—l) means the subspace generated by -t e )
Proof. Given w € Null, we want to find g(w) such that (w+a(w)W§|—| ,Xx)=0.

Solving for a(w)
£ = _
<a(w) TR x> =—(w, x)

¢ w)
<"("”)||c|| > (=0 + (4, 0) = o)

but now

and
(w’x)=<w’x_C>+<waC)=<w’x_c>
since x—{eNullg and w € Nullc.

Lemma 4.

I(Df] (X))_lDf(x)x”
- [l x|l = ‘uproj.(f’ x)n(f, x)D.

Proof. Df(x)x = A(d,)f(x) is Euler’s identity and
DSy ()™ A S ()]
[l
<IDSly (x)) 'Ad,]
< M (S5 X)N(S 5 X)D

1/2 —1/2

X% A@ I A el =) £ (0]
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Lemma 5. Let x € NC. Then

D (1w’ (2-u)
(D A1y ()™ DI < I 7 (um (f, On(f, OD + (1_‘;)2‘).
Proof.

DAy, (o)™ D) < II(DfIN (X))"Dle OIIDS 1y () D

Lemma 3, §lI-1. The second term
satisfies

k+1
1D, (E) " DAL = 1D f(C)

(x=0)F

ZD(le(C)

<D A1y () DA + 11 30k + D@l = ¢t

k=1
which by Lemma 4 and summation of the series is less than or equal to

1
€0ty 7 05 0D e ;1)

Now multiply the two estimates together.
Proof of Proposition 1. We apply Lemma 2 with

__('lU,X—C)
oW ==
:
B =D/
A=Df|NC(x)

Thus |g|| < 1y,

I(D A1y, ()™ D x)ClIrg

-1 -1
4 Bal|<||4 Blllall < T

L 2-uwu
< o (Pt O 0+ S0 )y <

where the last inequality is a hypothesis of Proposition 1. O
Proposition 2. As in Proposition 1, let BC By (f1 N0 ) B, = By(fly > x) etc.
Then ’

(1 =w)((1=w)B, +ro) |Z]|
w(u) [

NP .

X y(u)(1—u) IC)°

3 k(1 —wag+u).

T w(u)

B, <k

(ed
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This proposition is a consequence of Proposition 2 of §11-1, and the previous
proposition.

Proposition 3. Let x' € N, where A{' is the zero of fl, associated to x
by Newton’s method on f|, and where x' is one Newton iterate of x. (We
suppose o(f|y , x) =a, < a,.) Then

r X = () —a 1(a,)
CONTT 5( 7o (%) )(”ﬁyo(x)>‘

First we prove a lemma.

Lemma 6. Let &', x' € N_. Let n(x") be the radial projection of x' into the
space N . Then

(a)

!’

- 1) Lo lenr

1€ =@ =x', & —x) (X, é)
(b) If |x =& > |Ix" = &|| then

IIn(x’)—é’||s||x’—é’ll( 1+V2 ||¢“ T “>‘

m(x

Proof. (a) Since (é' -x',x)=0,
117 - € =¥, & - x) = (¥, &)
so to prove (a) it suffices to prove (||§'||2x'/(x' ,EY =& &'y =0 which is im-

mediate.
b)

N A 1€1° AW
) -&1 = [« é+(”é,“2 T )

< “ H X é —X) Xl
B llé 2= —x", & - x)
B - x' é x)
< :||+H e
b 1Y —5 |||||€/—X|| [N
S“x é”+ |(X/,é/>|

1€ = x|l lIx"|
=1 -y (14 LA,
[(x", &
Now we note that

200x", EN 1, &Y+ & XD = I+ 1 = e = &P
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which follows from expanding (x' — &, x' — &'). Substituting we have by
Pythogoras

(IIé — x| I’ ||> a)¢’ - x||2||x’||2
[(x", &) LI+ 1017 = 11X = &1
_ 4" xlP(Uxl” + llx = x'11%)
(llx]I* + ||x x’||2 + x4+l = P = flx = &)%)
24— x|’ (uxu +x = xn)
(2llx|? +||x x'|1%)?
4’ — x| <2(Ilé’—xn>2;

T IxP = xR T [l

substituting above yields

IIn(x')—é'IISIIX'—é'Il( 1+V2 “5“ “"”)

Proof of Proposition 3. Let n(x') be the radial projection of x’ on N,,.. Then
AL

I’ = & _ I (x’) = Ad|

T e
and

-2 < X

I —ag) < H) T

X

by Theorem 1, §I-2. Therefore

m(x) = 2| _ tle) —a, ()
S (”‘fyxllxll)

by Lemma 6 and since [|A{’|| > ||x||, we are done.

After these preliminary results we go directly to the proof of Theorem 3
91-3). So suppose 1 =n(f, {) < i /71 as in the hypotheses of the theorem.
et

a=a(u,., apmj').

We will show
(a) a, La

proj. *
(b) k < R:Eupmj. ) =K,
(©) a,<4a,
(d) Ezrly < a(@)(1 + V2e(@)p (g )1 — ) /R
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First note that (d) with the definition of Qi > Uprg; yields Theorem 3.
Next (a) is a consequence of the bounds on 7, 7, and Proposition 2 of §I-3
Here is the argument for (b). Observe

(i) ryg7 < Upros. by hypothesis and 7 > 1 so ry <u
(11) U=ryy, < ro? < uproj. s
(ii1)

proj. ’

Qi D
pro_| proj. __
rOD/'”’ < D—== =2 uproj.aproj. = uproj.aprojA
7 Y y
by the hypotheses.

Finally note that #(u, «) is monotone in # and «, as long as the denominator
doesn’t vanish.

Part (c) is a consequence of Proposition 2 and (a), (b)
For (d) we have by Proposition 3 that

(*) ”.X _C” < (ax) (1 +\/§T_(_(_1x_)_> )
I« Yox 0x
By Proposition 2 y - )
0f X
Yor S (1 —w) ICI
so by (ii) and the monotonicity of «, TOED) 1 ) and the hypothesis that Yor $7
we have
You < k(aproj. > 7proj. )7 IIll)gllI
'//(upmj,)( Upro. )
Let
= S
!'Il(uproj.)(1 - uproj.)

Then by Lemma 2 of §II-3 and the assumption that o, < «,

a(a,) <0(BOXH(?))
Yo . HO)

By Proposition 2

B H ) < k(1 =u)((1=w)B, +1y) Ky s Upos )7 ‘
Then B, <a,.. /7 by Proposition 2 of §I-3 and the hypothesis that n u__. <
o /7 . Also by hypothesis r,y < Uppoi. - Thus by Lemma 3 of §II-3 and (b)

BOXH(?) < &(uproj. ’ aproj.) =a.

By Lemma 1 of §II-3

a(By H(7)) < a(a).
Thus

a(a,) < a(a)
Yo H®)




494 MICHAEL SHUB AND STEVE SMALE

x|l
As a2 1,

K(aproj. ’ uproj.) _

7o) 2 W(uproj.)(l - uproj.)

and we have

alay) _ W@ () (1 = thyry)
yOx B )_nc(aproj. 4 uproj.)

(%)

Now we consider the term 1(a,)/7,, - By Lemma 2 of §II-3 t(bs)/s is also
monotone increasing in s and t(¢) is monotone in ¢ by Lemma 1 of §II-3.
Thus as above

yo —  px(e roj. > U, m'.)
~ Y (g (Tt )
since y > D'/? 2 1, K(o s Upg) > 1 and Wty J(1 — Uy ) < 1 the
denominator is > 1. Hence 7(a,)/7,, < t(@). And
T
(% * x) (1+\/§%x—)> < (14 V21(a)).
0x

Multiplying (**) and (* x x) and substituting in (x) finishes the proof of (d)
and hence the theorem.

CHAPTER 1V: CHARACTERIZING THE CONDITION NUMBER

IV-1. THE PROJECTIVE CASE u=1/p

In this section we prove Theorem 1 of §I-4. We begin with the same notation
and a preliminary proposition.

Given two n-dimensional complex vector spaces Vi, V, with Hermitian
structures and a linear map 4 : V; — V, we define the Frobenius norm of
A, || A|lp as ||[M||. where M is a matrix representation of 4 with respect to
any orthonormal bases of V| and V,. By the following standard lemma, | 4|/
is well defined. *

Lemma 1. Let A, V|, V, be nxn matrices with V|, V, unitary. Then ||V, AV, .
=4l

Let 0# x € C"*'. Let LX(C"“L1 , C") be the subspace of linear maps vanish-
ingat x. Let .7, C Zd) be the subspace of maps f = (f;, ..., f,) of the form
fi(z) =z, )" Jx, x)" "L, and L=(L,, ..., L,) € Lx(c"“: C"). Let
D, : #, — L(C"',C") be the derivative f — D _f. Recall V, = {f €
Zd) | f(x) =0}. For f € IA/X, D, f(x) = 0 since f is constantly zero on
the ray through x. Thus we may consider D_: ¥V, — L (C"',C"). Let
G, ={feV, |D.f=0}.

* |||l is the same as the Hilbert-Schmidt norm (trace(4™ 4))"/* .
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Proposition 1. (a) IA/X in the Hermitian direct sum £, & G, .
— —(d. -
(b) For he Z_, ||All = 1A, [1x]l ™) DA () gyl -

For the proof of this proposition we prove two lemmas.

Let u:C""' = C"' bea unitary transformation and # : IA/x — IA/ux the

induced isometry a(f) = fou™".

n+1 n+1

Lemma 2. Let u:C - C
(@) a(L)=<2,,,
(b) a(G,)=G,, .

Proof. (a) Let f€.Z, so

be unitary. Then

d,—1
z, x)%
f=(.fi"~"fn)9 f;(Z)=< >d_|L[(Z)’
{x, x)%
with L=(L,,...,L,)e L (C"",C"). Butthen Lou ' = (Ljou™",..., L o
u"')e L, (C',C" and fou ' =(fiou"", ..., fou"") where
-1 d—1 d~1
fow' =2 o= A o
(x, x)™ (ux, ux)%

:;ns shows (%) Cc %, ,butas &' =u”"', (&) CcZ and a(ZL) =

u(b) By the chain rule, D(fo u_l(u(x))) =0 iff Df(x)o u~' =0 which holds
iff Df(x)=0.
Lemma3. Let Le L (C"',C") and f(z) = (f|(2), ..., f,(z)) where f(z) =
((z, )7 (x, )% L,(2). Then
(a) Df(x)=L,
(0) A1l =A@ 1l ™) D) g -

Proof. (a) f(z)=A((z, x)%""/(x, x)* " ")L(z) so
_ (z, x)%"" )T
Df(x)v = A(D((x, x)d'_l )(x)v)L(x) +A<(x, x>d.—' >L(1 )
=0+ L(v).

(b) Let u be the unitary transformation mapping x to |/x|le, .
By Lemma 2

—1
fou =h=(h1,...,h”)
where
Zd'_l n
(z) = —2 , z=(z s Z,)
! d—1 j=J 0° n
[ B[ —
and where
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Thus
1 2
1A =1f ol = ?;§;|xu—5d
ol G T T3 N
= 1A ™) Ll
by Lemma 1.

Proof of Proposition 1. (a) D_:V, — L (C"*', C") is linear. The kernel is G,

by definition, and D, : %, — L (C"“Ll (C") is an isomorphism by Lemma 3(a).
Thus V_ is the d1rect sum of <, and G_. We need only check they are
orthogonal. As ijlx = ,?; and Glx =G, for A€ C, 4 +#0 itis sufficient to do

this for [[x|| =1 and by Lemma 2 for x = ¢, . In this case ,?;0 fys-n )
and

Zau J
If g=(g,...,8,) and g(e,) = 0 then g,(z) = Zaijzizg’_l+za a, z® where

a=(ay,a,...,qa,) and oy <d;—2. Then

D(;aaza)(eo) =0

where oy < d, —2. Thus for Dg(e,) = 0 all the a; = 0. This establishes the

orthogonality.
1(b) is Lemma 3(b).

Proof of Theorem 1. First we prove that Fiprog.( f,x)> 2 57 :Let (g,x)eX

be such that p(f, x) =dp(f, g) = ﬂﬁﬁ’i and let f — g h. Flrst we claim
that 1 € £ . By Proposition 1

h=hg, +h; , hy €2, ,h; €G_,
and |A| > ||hy | with equality iff 4 =h,, . Since D h; =0, D(g+h, )(x)
Dg(x) and (g+hG ,x) €X' but dp(f, g+hg)< ”h_f I/I1/1l. Thus ||A] =

||hy|| and h=h,,
That ge X' n Vx means that D (f — &) is singular or

A 0D (f - h))
is singular. It follows that
dp (@] P 1x1 DS () g, > S)

—12 —(d,—1
< A 21X DACx) gy Il = ]



COMPLEXITY OF BEZOUT'S THEOREM. I: GEOMETRIC ASPECTS 497
by Proposition 1. By Proposition 1 of §I-4
—1/2, _—(d,=1)
Al "“lixll )D (X)) = Al

and hence u, . (f,x)> T‘Ih_ILIl ( f' - Now we prove the opposite inequality

,Upmj,(f, x) < Hi—X)

Suppose [[(A(d; I1x| ™ “T)D S ()l ) Il = K- S0ty (f 5 X) = KIS
Then by Proposition 1 of §I-4 there is a lmear map B : Null — C" such that
— d,— — _
AP Df (), — B) € S and A ||| 4y, = L,
Extend B to B:C"' — C" by making B(x) =0 so B e LX(C""Ll ,C"). Let
Ei be the ith coordinate of B and h = (h, ..., h,) where
d—1 =
hy=((z,x)" [{x, x))B;(z).
By Lemma 3(a) Dh|Nqu = ElNulIX =Band f—heZn V.. By Proposition 1
Ikl = £ and p(f, x) < i =

K

[Sm—

1 _ 1
KITT = Ty (730

IV-2. BOUNDS ON ZEROS AND THE AFFINE CASE
We first prove Proposition 2 of §I-4. It follows immediately from

Theorem 1. Let f € #, and x #0¢€ C"™ with f(x)=0. Then

d(f 5, < '” °|'| 1@ 1.

For the proof we first construct a perturbation H € %{d). Let H(z) =
f(x)((z x)d"/(x X) ") be the ith coordinate of H where fl is the “highest
order homogeneous part” of f;. Precisely f (z) = fi(z)|z0=0 or yet ﬁ consists
of the sum of monomials of f, which do not contain z,. Note that we have
immediately that H(x) = f(x) sothat f—-HeZX,.

The theorem is thus a consequence of

Lemma 1. Under the hypotheses of Theorem 1
Ixol 5172
H| < —=|d."" f.
14 < ol £
Proof of Lemma 1. Using unitary invariance of the norm it is easy to see that

I1H |l =

AC <|f,-<x>—f}<x)|>
TR N B

_ Xl 1g(x)]

T

where z,g(z) = f,(2) —f}(z) and degree g is d, — 1. Thus by Proposition 1
of §III-1, [[H,I < (Ixol/lIxIDIlgIl -

Thus for Lemma 1 and Theorem 1 it is sufficient to prove
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Lemma 2. ||g|* < d,«”ﬁ“z-

Note that all the terms of f(x) = 32,4 a,x” where a, = 0 have been

subtracted off by f; , and the coefficients of g are the remaining a, with «,
reduced by one, i.e.,
a
Z Aag+1,..,0)% -

lal=d;~1

2 2!
e S A VTl

lal=d,~1

Therefore

and

s 2(a0+1)'a'
A2 D0 ey —ar
1

la|=d,— 1 !
2 2
so [lgll" <d4|lflI”. O
We proceed to the proof of Theorem 2 of §I-4.

Lemma 3. Let x,& € C"' such that (x, &) # 0. Let g ¢ S Null, and
n :C"™ o Null, be the orthogonal projections. Then
7, 7 (X))l

e = | )

and m.(x) is orthogonal to Null_NNull, .

Proof. me(x) = x— <()f: ?f Now if w € Null, NNull, then (x, w) and (£, w)

are both zero, so (7,(x), w) =0 and 7 (x) is orthogonal to Null, NNull, .
Let v = m(x).

(v, x)
2

T (v)=v- . x)

Note that (v, x) = (v, v) since v == (x). Thus 7 (v) =v - (||v||2/||x||2)x

2
ol = Iz, ol +

4|| I

and

2 2 2
Il vl” _y _ ell” _ lx =l

by Pythagoras

[o]l? x> fx]f?
2
= l'é’ﬁ—z“f)h—z by the definition of v.
X

Lemma 4. Let x,& € C"' such that (x,&) #0. Let T ct o Null, be

the orthogonal projection. Then ||(m; | Nullx)'l | = %%—”g% )
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Proof. Let v ,...,v,_, be an orthonormal basis of NullxﬂNullé. Then
Vysenns Uy n.&/llz &l is an orthonormal basis of Null, and v ,..., v
n & is an orthonormal basis of Null . Let

n’
3% S
éx

U_Zav +a"+1||nn Ak

Then

N 1/2 - " (&)
lv|| = (Zlail ) , me (V)= Zaivi T, [T

i=1

and

n 2 2\1/2
L 2 gy Pl
I @l = (laf + 2Rk
i=1

Iz &l
2 2\ 1/2
(=2 4 EI R
= Zlail + 1,4, )
i=1 |<X, f)|

by the previous lemma. This is less than or equal to 'llfxl ,l g)lll (llv]]) with equality
ifall @,=0 for i=1,...,n, a,, #0. O

Proposition 1. Let A4 : C"™!' = C" be linear. Suppose A(E) =0 and A | Nullé
is invertible. Let x € C"*" such that (x,&) #0. Then A | Null, is invertible

and
a1 Nt~ < FoLEE A a7
Proof.
1(ANull )" = ||(4 | Null,) o 7, | Null,)~'|

-1 -1
< [I(m | Null, ) [ll1(4 | Null) ]
and the previous lemma finishes the proof.

Theorem 2 of §I-4 now follows from Proposition 1. Let

A =Ad""HaEl D re)

and x =¢,. Then |x||=1 and (x,¢) =¢;.
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