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Abstract. We consider the problem of when does a positive entropy topological
system have a continuous factor with strictly smaller entropy. In many cases it is
shown that such small entropy factors exist. On the other hand, classes of examples
are given where differentiable factors must preserve some of the original entropy.

0. Introduction

For measure theoretic entropy, it is well known and quite easy to see that a positive
entropy transformation always has factors of smaller entropy. Indeed the factor
generated by a two-set partition with one of the sets having very small measure will
always have small entropy. It is our purpose here to treat the analogous question
for topological entropy. A topological system (X, T) will be a continuous mapping
T of a metric space X which we shall usually suppose to be compact. A second
system (Y, S) is a factor of (X, T) if there is a continuous surjective map w: X > Y
such that S7 = #T. We will exclude the trivial factor, where Y reduces to one point,
and use factor to mean non-trivial factor.

Basic PROBLEMS. Ifh,,,(T) > 0 does (X, T) have a factor with strictly smaller entropy?

While we do not have a complete answer we have developed a technique for

constructing lower entropy factors which works in some situations such as:

(a) systems (X, T) with only a countable number of ergodic invariant measures - in
particular, uniquely ergodic systems.

(b) smooth transformations of compact manifolds without too many periodic
points - in particular Anosov diffecomorphisms.

For smooth mappings it makes sense to ask about the existence of smooth factors
with small entropy. We shall show that in some cases such as transitive Anosov
diffeomorphisms there is a positive lower bound to the entropy that can be achieved
by a differentiable factor. To explain this a little more precisely let us consider how
one can construct factors.

Let ¢: X = [0, 1] be a continuous function. Then {¢T"} defines a factor which is
a closed shift invariant subset of [0, 1]*. Indeed define ®: X - [0, 1]" by

(@(x)).=e(T"x), n=0.
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If o:[0,11¥>[0, 17¥ denotes the shift,

(ow),=w,,,, n=0
then 0@ =®7, and ®(X) is clearly o-invariant. If there is any factor that has lower
entropy there must be a factor of this type with lower entropy since a non-trivial
factor has non-constant continuous functions which can be pulled back to X. By a
differentiable factor we mean a factor of this type that is defined by a differentiable
function ¢.

A generically chosen differentiable ¢ will have the property that already a finite
number of values of ¢(7"x) serve to uniquely determine x, so that @ is invertible
and cannot lower entropy. Thus a generically chosen ‘measurement’ ¢ made on the
system (X, T) will give the full system. Our construction shows that for continuous
functions this need not be always the case, whereas for differentiable functions, in
some cases, there is a positive lower bound on the entropy that will be observed.

Even in the situations mentioned above, where we do know how to lower the
entropy and make it arbitrarily small, we do not know what the range of values of
h.(S) is as S ranges over the factor (X, T). Presumably it always contains the
interval (0, h,.(x)) but we cannot even prove that it is dense there. Note that for
measure-theoretic reasons there may be no factor with zero topological entropy.
Note too that there are so-called ‘prime’ systems that have no factors [2] and so a
general affirmative answer would imply in particular that there are no positive
entropy prime systems. Discussions with S. Glasner about this possibility gave the
original impetus to this investigation.

Finally, let us conclude this introduction with a special case of the basic problem:

Special Case. X =[0, 1)*, with the product topology, o: X - X the shift, i.e. (ox), =
X,+1, n€Z. Does (X, o) have a finite entropy factor?

While we do not have an explicit reduction of the general problem to this case
it seems clear that a positive answer in this case will shed a great deal of light on
the general question.

After the first version of this paper was completed, Jonathan Ashley showed us
how to show that any non-trivial factor of the one-sided shift on Q=[0, 17" has
infinite entropy. Further discussions with E. Glasner led to a proof of the fact that
if (X, T) is a non-trivial factor of the shift on Q then that shift is a factor of (X, T")
for some power N. This proof relies very strongly on the non-invertible character
of the one-sided shift and appears to shed little light on the invertible case of this
question.

In § 1 we develop the notion of ‘small sets’ that will play a crucial role in the rest
of the study. § 2 contains the basic construction, and § 3 details the cases where it
can be made to work. § 4 contains the lower bound on the entropy of a differentiable
factor and in § 5 with J. Ashley’s permission we give an answer to the non-invertible
version of the special case.

1. Small sets
If the space X is totally disconnected then there is an easy construction of low
entropy factors that exactly mimics what is done in the case of the measure-theoretic
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entropy. Since h,.(T)> 0, there is some non-periodic point, say X,, and thus given
N, there is some closed and open set U that contains x,, such that forall 1=n= N,
T"Un U = ¢. Let ¢ = 1, the indicator function of the set U. Then since U = &,
1y is continuous! Now ® maps X into {0, 1}", and ®(X) has the property that
occurrences of ones are separated by at least N zeros. Thus the topological entropy
of the shift restricted to ®(X) is at most

L

N
since the number of such n-blocks of zeros and ones is at most (,,/y), and Stirling’s
formula gives (*#).

The problem is that when X is connected then ¢ must assume an interval of
values and then one cannot easily control the topological, or combinatorial entropy.
Our solutions depends upon cutting up the space, disconnecting it, by means of
small sets. In effect we shall construct ¢ by means similar to those used when
proving Urysohn’s lemma and arrange to have the change of ¢ take place on a set
which cannot contribute to the topological entropy. It turns out that the following
is the relevant notion:

Definition. A set E< X is called T-small (or simply small if T is understood) if
uniformly in x€ X

log N+(l—%) log (N/(N=1)) (*)

l N
| Llr.r;ﬁzi: 1.(T"x)=0,
explicitly, given £ >0 for some N, and all xe X
] N

Tv-il:lb(T"x)<e. (*#)

If X is compact and E is a closed small set then given £ >0 there is an open
neighbourhood V= E, and an N such that

[
—¥1.(T'x)<e all xeX.
N7

To see this for given £ >0, find N so that (*+) holds. Now for each x there is some
open set V, = E such that

] N
— o <
N?lp'(T X)<Eg,

where V, is the closure of V,. Since T is continuous there is also some neighbourhood
U, of x, such that for all ye U,

1N
—_ (T"y)<e.
N?l"( )<e

Now since X is compact, there are finitely many x;, 1 s i= I, such that X =U,'=, U,
and V= ﬂ,.'_, V., will satisfy our requirements.

It does not seem to be easy to verify directly that a set is small. Luckily, there is
an alternative characterization which gives a useful method to produce small sets.
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ProrosiTiON. A closed set E < X is small if and only if for every T-invariant measure
g, p(E)=0.

Proof. (1) In one direction, the restriction to closed sets is irrelevant. Indeed,
integrating (*+) with respect to a probability measure u, gives

1N 1N
ﬁ?“‘r-"”":JE).: I.(T™) du<e.

If u is T-invariant this implies u(E)=¢ and since £ was arbitrary u(E)=0.
(2) Now suppose that E is closed and not small. Then for some &,, and all N,
there are points x, such that

1 N
ﬁ? 1:(T"xn) = &.

Let py=N"' Ef" 87y, and let p be an accumulation point of the pux's in the
w*-topology. Since for any bounded function f

it follows that u is T-invariant. If now u(E) =0, there would be an openset Vo E
such that

(V)= g0/2.

Since FE is closed there is a continuous function f which equals one on E, vanishes
on X\V and is between 0 and 1 everywhere. Then on the one hand, for all N,

j Fl
while on the other hand
J fdp=p(V)<ey/2

which is a contradiction. a

The example E ={T"x,: n €N} for a non-periodic point shows that a non-closed
set E can be p-null for all invariant measures p without being small.

2. The construction

For this section we suppose that T:X - X is a homeomorphism, x,€ X a non-
periodic point and d a metric on X such that there are an abundance of T-small
sets. Our notation for the ball, annulus and sphere about x; is:

B(r)={xe X:d(x,x,)=r}
A(l)={xe X :d(x,x,)el}, I<[0,+oc) an interval
S(r)={xe X:d(x,x;)=r}.

Specifically, we assume that for a dense set of r’s S(r) is a small set. In the next
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section we shall discuss several situations where this hypothesis actually holds.
Parameters for the construction of a continuous function

¢:X-[0,1]
such that {¢T"} has small entropy, will be integers L,< L, < L,<- - - that control

just how small the entropy will be.
Since x, is not periodic there is some b,> 0 so that

T'B(by)nB(by)=¢ 1=i=L, (1)
S(b,) is a small set. (2)
Since S(b,) is small there is a neighbourhood of it V, and N, such that
) ; 1
AT v & — A
N, Zl: 1y(T'x) I for all xe X (3)
Choose a,< b, so that
A(lao, by)) = V, (4)
S(ag) is a small set. (3)
At this point we can commit ourselves to defining ¢ for x 2 A([a,, by)) as follows:
_J0, xe B(ay)
e {1, x# B(b).

So far, along any orbit {@( T'x)} values that are neither 0 nor 1 occur with a frequency
at most 1/L,, while of the two values {0, 1}, 1 occurs with a frequency at least
(Lo—1)/ L.

Let us denote the interval [a,, b,] by I. The next step will be to find intervals
In=[ae, bao), I, =[a,0, b,] inside I so that:

A(l)u A(L))< V, where V, is a neighbourhood of S(a,)u S(b,)

that satisfies for some N,, (6)
N,
-)% Y 1,(Tx)<1/L, forall xeX (7)
2i=1
and
S(by,), S(a,,) are small sets. (8)

This will enable the next stage in the construction to proceed. Now the definition
of ¢ may be extended to A([bu, a;0)) by setting ¢ equal to } there. As a result of
this, given that ¢(x) equals neither 0, nor 1, it is overwhelmingly probable, with a
uniform frequency that exceeds (L,—1)/L,, that ¢(x)=1.

Next, in each of I, and I, we find a pair of intervals Iy, Iy, < Iy; Io, I, < I, all
of whose endpoints ¢ are such that

S(c) is a small set. (9)
Al v Al v AU ALV, (10)
i f 1. (Tx)<1/L, (11)

N; 3
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and are located as in the following:

We set now

xe A(J)\(A(In) U A(ly,))
xe A(LH)\(A(LL,)u A(lL,)).

Thus values that are neither 0, 1, 1, 4, 2 can occur only with a frequency that is less
than 1/L,.

It should be clear now how to continue this construction. At the kth stage ¢ will
be undefined on 2* annuli, let us denote a typical one by A([¢, d]). By the preceding
steps in the construction S(c) and S(d) will be small sets. Also ¢ will be defined
on either ‘side’ of this annulus to be j/2*, (j+1)/2* for some j=0,1,...,2*". Let
V. be a neighbourhood of these 2x2* spheres such that for some N;,,

1 Niay

Y 1, (Tx)<1/Lis,, allxeX.
N‘.q-l i1

New points ¢, f are now found c<e<f<d so that
(ii) Al e v A([fd])= Vi
(and the same of course for the other annuli)

(i) S(e), S(f) are small sets.

Finally ¢ is defined to be (2j+1)/2""" for xe A([¢, d])\(A([c, €])u A([ £, d])) and
similarly for the other intervals.

In fact we are defining ¢ as a function of d(x, x,) which is of course continuous.
The Cantor-like function of d(x, x,,) that we have defined above is clearly continuous
although not Lipschitz.

It remains to see what kind of upper bound we have on the entropy of {eT"},.z.
Fixing some £>0 in the computation of the topological entropy of {¢T"} is
tantamount to fixing some level in the construction of ¢, say the kth, and replacing
¢ on all of A([c, d]) (as above) by the single value (2j+1)/2""". If this is done,
the error that we make in the value of @ is at most 1/2°7". Now the combinatorics
of the number of possible sequences of values that we see is as follows: Let n be
very large, then the number of distinct n-blocks that can appear is at most

(Gl el @

where &, = 1/ L,, and the typical term 2'(,," ) arises from the values of the 2j +1/2"
which are 2° in number, and they occur (as a totality) with a uniform frequency
dominated by 1/L;.,. For given § >0, the L;'s can be chosen so that () is bounded
by 2** which gives the required estimate.

1
cp(X)={§
-

(i)
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3. Transversality

In § 2 we required an abundance of small spheres. To establish assertion (a) of the
introduction we merely remark that for any x,, and any metric, only countably
many spheres S(r) can carry positive measure for a fixed measure w. Since the
complement of any countable set is dense the argument of the last section can be
carried out in this case.

The spheres need not be exactly at a constant distance from a given point; as is
evident from the construction, perturbations will do. Here we prove that if fis a
C' diffeomorphism of a compact manifold with the property that f has only finitely
many periodic points of any given period, then a generic set of C' embeddings
of spheres of codimension one are small. This proves our assertion (b) of the
introduction.

We recall some of the main and simple features of transversality theory from
Abraham and Robbin [1]. A map f: M - N of differentiable manifolds is fransversal
to a submanifold W< N, if whenever f(m)e W the image of the derivative
T..J(T..M) projects surjectively onto Tj(,.,N/ Ty, W and TS (TjmyW) has a
closed complement in T,.M. (If W has finite codimension the closed complement
follows automatically.)

Transversality of f: M -» N to W insures that f ~'(W) is a submanifold of M. If
f(M)n W= ¢, transversality is immediate and f~'(W) is the empty submanifold
of M.

The next slightly more complicated situation is to consider a map depending on
parameters. :

LEMMA. Let
PxMS N
Suppose g is transversal to the finite codimension submanifold W, then the regular

values of the projection m : P x M > P restricted to g ' (W) are those parameter values
p < P for which g(p, —): M > N is transversal to W.

Proof. If p is not in the i |mage 7(g7(W)), g(p, - )(M)~n W= & so there is nothing
to prove. If (p,m)e g '(W) we need to check surjectivity of the projection of
T.g(p,=)T.M onto T, ., N/ T, W, assuming that p is a regular value of .
Given n€ Ty, )N/ T,y W there is a (u, v) € T, ..,P x M such that the projection
of T(,,,,.,g(u v) equals n. Since p is a regular value of 7 |g~'( W) there is a (u',v")e
Tipm8 (W) such that ¥’ = u. Now (0, v—v’) is tangential to M, T, ,.,g applied to
(0, v—10') is the same as T,.g(p, —) and the projection into TetomN/ T gy W is
unchanged since T, .,g(u, v') € T,,..,W, so n is in the i image. Similarly transver-
sality of g(p, —) to W implies regularity of p.

The next step is to assure that the projection has many regular values, this is
taken care of by Sard’s theorem in finite dimensions, with enough smoothness.
In infinite dimensions one uses Smale’s infinite-dimensional version of this
theorem [6] (and see [1]). To apply the theorem to transversality theory we again
assume that M is finite dimensional, the main point is that P may be infinite
dimensional. a
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THeOREM (Abraham-Robbin). Let P, M, N be C' manifolds and W< N a sub-
manifold where:

(a) M has finite dimension m and W has finite codimension q.

(b) P and M are second countable.

(c) r>max(0,m—gq)

(d) g:PxM - Nis C" and is transversal to W.

Then the set of p€ P such that g(p,—): M - N is transversal to W is residual (and
hence dense) in P. Furthermore, if M is compact this set is open and dense.

We will only apply this theorem when N is also finite dimensional. Note that if
P is also finite dimensional then dim g™ '(w)=dim P+m—gq so dimg '(W)—
dim P=m—q and the hypotheses allow the application of the usual Sard theorem
to the projection taking g~'(W)- P. Thus we may add to the theorem that the
residual set is of full measure.

Now we apply this transversality theory to study invariant measures on
submanifolds.

ProrosiTiON. Let M be a finite-dimensional manifold and V< M a compact sub-
manifold. Suppose that f: M - M is a C" diffeomorphism and j a positive integer with
r>max (jdim V—(j—1) dim M,0). Moreover for given distinct positive integers
My, ..., N, suppose that the periodic points of f for any fixed period n =max,_, ,—, n,
are isolated. Then for an open and dense set of C* embeddings i of V into M in the
C’ topology the map :

(i, fMei,..., ffr0i): Vx-; - X V—>Mx-l- XM

is transversal to the small diagonal Ac M x X M  where A=
{(m,m, - -, m)|me M}.

CoRrOLLARY 1. Suppose that f: M » M is a C' diffeomorphism of the finite-dimensional
manifold M, and that for each period n the periodic points of f of period n are isolated.
Let V= M be a compact submanifold of codimension =1. Then a residual (and hence
dense) set of embeddings i of V into M have the following property: let k be a positive

integer with
( k ) (dim M)
< 5
k-1 dim V

For any distinct positive integers n,, ..., n, ,

i(V)nfhi(V)n---f"i(V)= 6.
Proof. By the proposition we may suppose that for a residual set of embeddings i
that

(i, fMel,..., fM-200): VX-:-X V2 MX-; XM

is transversal to A for all k with

k dim M
—_—
k—1 dimV
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and all the countable number of sequences of distinct integers n,, ..., n,_,. But the
codimension of A=(k—1)dim M and kdim V<(k—1)dim M so the image does
notintersect A. That is to say there is no m € M such that m = i(u,) and m = " (i(v;))
forall i=sj=k-1.

CoroLLARrY 2. Let f, M, V be as in Corollary 1. Then for a residual set of embeddings
i taking Vinto M, the first return map of f on i( V) has no invariant probability measure.

Proof. If there is an invariant probability measure use the Poincaré recurrence
theorem to contradict Corollary 1. 0o

Now we prove the proposition: Let Emb’(V, M) be the C”" embeddings of V in M
with the C” topology. The map ev:Emb’(V, M)x V- M, (i, v) > i(v) is C" and its
derivative at (i, v) on the target vector (h, u) is T;;.,ev(h, u) = h(i(v)) + T.i(u) where
hisa C’ section of TM|i(V) and u is a tangent vector to V at v, see [1, 4, 5). Now
for any n < max,.;~;-, n, we can easily see that the set U< Emb"(V, M) of embed-
dings i such that i(V) contains no periodic point of period n=max,.,.,, n, is
open and dense, for example by noting that ev: Emb’(V, M) x V- M is transversal
to any point m € M so that embeddings which do not contain a particular point in
their image are open and dense. Now we let

ev,:Emb’(V, M) x Vx-;,-x V-’Mx-)--xM

(& vo, - .., 1) = (i(wo), S (i(wy), . .., £(i(1))))).
By the chain rule
nv;ro.A...r,_,)evf(h: Upyenny u/—l)
= (h(i(vo)) + Toi(uto), - - ., Tigef ™ (h(i(v)) + Tty T i(wy), . . ).
Restrict ep, to UxVx---x V. It is sufficient to prove that this restriction is

transversal to A.
Assume that

i(v) =f"(i(vy)) = =f"(i(1;-,)).
Since i(V) contains no periodic points of V of period less than or equal
max;., ;. M, i(te),...,i(y_,) is a set of j distinct points. To show that
Tu..@..‘.;,_,;ev;(TI-W....,,,,-.U xXVx---xV)
projects onto T, i nM X+ X M/ Ty, Jite_nd we show that the element
(»w0.....0:; -—kw,O,...,O)

is in the image of T;;, . ey for any we T, M. Since the i(v,) are all distinct
we are free to specify h(i(vy)) = wand T, /™ (h(i(v:))) = —w, h(i(r,)) =0for I #0,
k and u,=0,I1=1,...,j—1.

4. Differentiable functions

In this section we give a lower bound on the entropy of a factor of an Anosov
diffeomorphism given by a differentiable function ¢, and consequently on any factor
where the quotient map is C'.
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Definitions. Given a function ¢: X - Y, Y metric, wesayaset E < X is §, ¢-separated
ifVx,#x,e E

d(d(x)), d(x;))> 8.
Given in addition T:X - X consider V"= Y x- ;% Y with the sup metric and

G.=(0,0°T,¢eT>,...,0T" "): X>Y"

Let s(n, 8) be the maximum cardinality of a §, ¢, separated set. The §, ¢-entropy
of Tis

1
hs «(T)=1lim sup = log s(n, 8)

and the ¢ entropy of T is
h(T)= ]ai"; hs o (T).

It is simple to see that if ¢:X - I, then the & entropy of T is the same as the
entropy of the factor of T given by ® ={¢+T"} as in the introduction.

Let M be a compact differentiable manifold without boundary. Let f : M > M be
a C' diffeomorphism. Then f is Anosov if there is a Riemannian metric with norm
I I, two reals 0<A <1< u and a splitting of the tangent bundle of M:

TM = E*® E™ such that

(1) Tf|E* = E* and the operator norm || Tf |Ei| <A Vxe M

(2) Tf'|E“= E* and the operator norm |Tf '|EX<u™' VxeM.

The maximum of all such u is called the minimal expansion g,,,.

The bundles E* and E* have f invariant foliations tangent to them, see [3). The
leaves of the foliation through x are denoted W’(x) and W,(x) respectively, and
the open &-discs in the leaf metric around x in these leaves Wi(x) and W¥(x).
From (2) it follows immediately that

(3) fM(Wi(x))=> Wi(f"(x)) forall n.

(4) The W;(x), W;(x) are given as images via the exponential map of Lipschitz
functions with Lipschitz constant one from the & disc in E*(x) to E*(x) or E¥(x)
to E*(x) respectively.

THEOREM. Let f be a C' transitive Anosov diffeomorphism of the compact manifold
M, with minimal expansion ;.. Let ¢: M - R be a non-constant C' function. Then
the ¢ entropy of f is greater than or equal 1o 10g i ;.

Proof. Since f is transitive every unstable manifold is dense. Thus since ¢ is
non-constant D¢ | E* is somewhere non-zero, say at x.

Fix 1< pu < ;. a Riemannian metric £ >0 small, and take a neighbourhood of
x, given as UJ,_ . Wi(y). For &£ small enough there is a constant ¢> 0 such that
forany 0<&=¢ and any ye W(x), W;(y) contains at least ce/ disjoint & balls
around points y,, .. ., V.,(5) and any selection of points z,,..., Z..;15) in these balls
are @, ¢8 separated, i.e. [¢(z;) — &(z;)|> 8.

Lemma 1. For £ >0 small, there is an R>0 with_the following property. Given x,
z2€ M then the R ball around z in W*(z) contains Wi(y) for some yc W:(x).



Can one always lower topological entropy? 545

Proof. For any z€ M, W¥(z) is dense, hence there is a minimum R(z) such that the
R(z) ball around z is £/3 dense. Since the unstable manifolds are continuous on
compact discs in the C' topology R(z) is continuous, hence bounded by R,. Adding
3e to R, gives R.
Proof of Theorem. Beginning with W;(x) we find (ce/8) disjoint § balls which are
¢, & separated. Let n, be minimal such that x™~8= R. Apply f™, each of these
balls contains a W}(y) which can in turn be divided into (ce/8) disjoint § balls
which are ¢8, ¢ separated. Inductively we find (ce/8), ¢, ¢, ; separated sets. Thus
the ¢8, & entropy of f is
P ce log R—log 6
2;0—-’_] log (‘3) and "OST+I

so the ¢8, ¢ entropy of f is
s (log c+log e —log 8) log
~ logR-logé+logpu

letting & -» 0 and taking the limit gives log u.

5. The one-sided shift
Let #:[0,17¥> X be a continuous surjective map with zo = Tw, where o is the
shift on 2 =[0,1]% and T:X - X is a continuous mapping. Fix metrics on {} and
X, and normalize the metric on X so that for some xg€ X, sup,.xd(y, xo) =1.2.
Observe that given any 8> 0, for some N and all weQ, o™V (@) is 5-dense in Q.
Furthermore o ~(w) is the N-cube and is therefore connected. Since = is con-
tinuous, there is some N so that for all @ €Q, #(o™~(w)) is fig-dense in X.
Define now
0 ifd(x,x)=1is
e(x)={d(x,x) =5 if h=d(x,x)=1
1 if d(x, xo) = ;.
Clearly ¢ is continuous, and maps X to [0,1].
Claim. For any xe X, ¢(T “x)=[0,1].
Proof. Since = is surjective there is some we() with w(w)=x Notice that
m(o N(w))<= T ™x, and that #(c~(w)) is a connected set that is j55-dense in X.
It follows that ¢(#(e~~(w))=[0, 1] and a fortiori the same holds for T "x. O
As before we now define
®:X-[0,1]"
by
(x) = (e(x), o(T™x), (T*"x),....).
By the claim, @ is onto and this proves the following theorem.

Tueorem. If (X, T) is a continuous factor of the one-sided shift on [0, 17" then for
some power N, the one-sided shift is a factor of T".
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