
Ergodic Attractors

Charles Pugh; Michael Shub

Transactions of the American Mathematical Society, Vol. 312, No. 1. (Mar., 1989), pp. 1-54.

Stable URL:

http://links.jstor.org/sici?sici=0002-9947%28198903%29312%3A1%3C1%3AEA%3E2.0.CO%3B2-E

Transactions of the American Mathematical Society is currently published by American Mathematical Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/ams.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Sep 19 14:56:22 2007

http://links.jstor.org/sici?sici=0002-9947%28198903%29312%3A1%3C1%3AEA%3E2.0.CO%3B2-E
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/ams.html


TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 3 12, Number I ,  March 1989 

ERGODIC ATTRACTORS 

CHARLES PUGH AND MICHAEL SHUB 

ABSTRACT.Using the graph transform method, we give a geometric treatment 
of Pesin's invariant manifold theory. Beyond deriving the existence, unique- 
ness, and smoothness results by Fathi, Herman, and Yoccoz our method allows 
us to do four things: optimally conserve smoothness, deal with endomorphisms, 
prove absolute continuity of the Pesin laminations, and produce ergodic attrac- 
tors. 

In [FHY], Fathi, Herman, and Yoccoz present an exposition of Pesin's Stable 
Manifold Theorem [PI, P2]. We intended to take up where they left off- 
absolute continuity and ergodicity. To do so, we found it necessary to reprove 
some of their results using graph transform techniques. As a by-product of this 
approach, we are able to show that Pesin's stable manifolds are of class Cr when 
r 1 2 is an integer and the dynamics are only Cr. See $6 .  In $5, we present 
the Pesin theory for endomorphisms. In $4 we establish absolute continuity of 
the Pesin laminations and in $2 we use it to produce ergodic attractors. 

Fix a diffeomorphism of a compact, smooth, boundaryless, Riemann m-
manifold f :  M -, M , and let v E TpM,  v # 0, be given. The growth rate of 
v under is I provided that ~ f "  

Thus, I Tfn (v)l - Inlv 1 when In1 is large. The set of all vectors in Tp M with 

growth rate I ,  E; , turns out to be a linear subspace of TpM. We call it a 
Lyapunov space. It is automatic that the Lyapunov spaces are Tf-invariant: 
T~(E;)= E:, . 

Equivalent to the idea of growth rate is that of Lyapunov exponent. One says 
that x is the Lyapunov exponent of v if 

1
~ ( v )= lim -loglTfn(v)l.

Inl-+w n 
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The vector v has Lyapunov exponent x if and only if it has growth rate 
A = ex  . Generally, we use the growth rate concept. The basic properties of the 
Lyapunov spaces E; are described in 

Oseledec's Regularity Theorem. Given f as above, there exists an f -invariant 
Borel set 9 c M and, for each E > 0, a Borel function Re : 9 + (1 , 00)such 
thatforall W E E ; ,  ~ € 9 ,  and n E Z ,  

(a) $, E; = Tp  M . 
(b) { R & ( P ) ( ~+ e)lnl}-' 5 lTpfn(v)l /Anlvl5 { R & ( P ) ( ~+ &)'"I ) .  

(c) E E 2 R , ~ 'i /  ~n A' = 0. 

(d) ( 1  + el-' 2 R , ( f p ) / R , ( p )  I 1 + E .  
Moreover, 9 has "total probability" in the sense that p ( 9 )  = 1 for every f -
invariant Borelprobability measure p on M , and thegrowth rates and Lyapunov 
spaces are Borel functions of p E 9 . 

(b) means that up to the factor in braces, T f n  is a dilation of An . 
The angle referred to in (c) is the smallest angle between a vector from EpA 

= 

$,,, E; and one from E,"' $,,,,= E; . It is asserted that these spaces stay 
perpendicular, up to the factor R,  , as we iterate along the orbit. (d) means that 
Re is slowly varying along the orbit [K]. Pesin calls the orbits in 9 regular. 
We call the function R, a regularity function. One could paraphrase Oseledec's 
Theorem as: 

Most orbits of f are regular, and over a regular orbit T f n  
resembles the n th power of a square matrix. The resemblance 
is valid modulo a slowly varying fudge factor. 

The proof of this truly remarkable theorem can be found in [0 ,  R, or M2]. 

Definition. The points p , y E M are exponentially forward asymptotic if for 
some C>O andsome A ,  O < A <  1 ,  

The stable set of p E M is 

w ~ ( ~ )= { y  E M :  y is exponentially forward asymptotic with p). 

Clearly, any two stable sets are either equal or disjoint, so 

partitions M . We call W S the stable partition of M . Exponential reverse 
asymptoticity corresponds to n < 0 and the unstable set, w U ( p ), consists of 
all points which are exponentially reverse asymptotic with p . Correspondingly 
we have the unstable partition W U. (We are aware of the abuse of language 
here; it would be more accurate to refer to w S ( p )as the "exponentially stable 
set" but we will not do so.) 



3 ERGODIC ATTRACTORS 

Let B be a regular orbit. If the growth rates of vectors v E T,M are never 
equal to 1 then we say that @ is weak hyperbolic. Its weak hyperbolic splitting 
is EUCBE' where 

The set of all weak hyperbolic orbits is denoted by 2'.When B is a periodic 
orbit, weak hyperbolicity is the same as ordinary (or uniform) hyperbolicity, 
and the weak hyperbolic splitting reduces to the usual one. The same is true if 
B is part of some hyperbolic set. Just as in the uniform case, one understands 
the dynamics along an orbit via the stable manifold theorem. 

Theorem 1: Pesin's Stable Manifold Theorem along one orbit. Suppose that the 
dfleornorphism f for some /3 > /3' > 0 .  Let B be a weak is of class c ~ + ~  
hyperbolic orbit with splitting EU EB ES and let p E B be given. Through f n  p 
pass cl+"discs W; and W: tangent to EU and E' at f n p  such that the 
unstable and stable sets of p are 

Moreover, f overJlows { w;) and underjlows { w,") in the sense that for all 
~ E f ( W ; )  IIW L I  and f (W,")  c W,",,.Z 

In short, th-e weak hyperbolic linear dynamics over B in TM "integrate" to 
give corresponding weak hyperbolic, local, nonlinear dynamics along B in M . 
We are then justified in referring to w U ( p )and w S ( p )as unstable and stable 
manifolds since they are monotone unions of discs and such a union is always 
an injectively immersed Euclidean space [B]. See 3.8 for the proof of Theorem 
1, and also 3.17 for the proof of some center manifold theorems under similar 
hypotheses. In $6 we show how to make /3' = /3. See 6.4. 

Next, we formulate the concept of absolute continuity of the unstable parti- 
tion. Given po E 2 ,the set of weak hyperbolic orbits, we draw small, smooth 
discs D and D' ,which pass near po and are quite transverse to w U ( p 0 ). We 
look at those p E 2' near po whose unstable manifolds have the same di- 
mension as w U ( p o )and which cross D , D' locally. See Figure 1. (The word 
"locally" suggests a lot of the weak uniformity of W U.) These intersections, 
y = wUnD and y' = wUnD' , define a bijection h from a subset of D to 
one of D' ; h is called a WU-holonomy map, h :  y Hy ' .  

Definition. W U is absolutely continuous if its holonomy maps are always 
Lebesgue measurable and transform Lebesgue zero sets of D to Lebesgue zero 
sets of D' . 

Theorem 2: Absolute continuity. W Uand W Sare absolutely continuous. 

Theorem 2 is Pesin's main technical result. See $4 for its proof. As an- 
nounced in [PS2], we use it to produce "ergodic attractors". 
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Definition. An ergodic attractor for f is an f-invariant, Borel set A c M 
together with an f -invariant, Borel probability measure v on A such that for 
some set W c M with positive Lebesgue measure 

(EAi) Each w E W is attracted toward A ,  dist( f "w ,A) 4 0 as n -, oo . 
(EAii) v is f -ergodic. 
(EAiii) For every continuous function 4:  M 4 R and almost every point 

w E W (respecting Lebesgue measure), the Birkhoff average of 4 along the 
positive f -orbit through w converges to S, 4 dv , 

Theorem 3: Existence of ergodic attractors. Suppose that the difeomorphism 
f : M 4 M is of class c''' , p > 0, and p is an f -invariant, Borel, probability 
measure such that 

(i) f has almost no zero Lyapunov exponent respecting p ; i.e., p ( Z )  = 1 
where Z is the set of weak hyperbolic orbits. 

(ii) p induces a conditional measure on the local unstable manifold of p- 
almost-every p EZ, which is absolutely continuous with respect to its natural 
Riemann measure. 

Then, up to a set of p-measure zero, A? is the countable union of ergodic 
attractors Ai , and the ergodic measure vi on A, is the normalization of p . In 
fact, somewhat more is true: the basin of attraction of A, is the union of the 
stable sets of the points in Ai , W = and the Birkhofaverage converges w ~ A ~ ,  
for every w E W'A, . 



5 ERGODIC ATTRACTORS 

Corollary: Pesin's Ergodic Component Theorem. If f preserves Lebesgue mea- 
sure and almost every orbit is weak hyperbolic then, up to a zero set, M is the 
countable union of ergodic attractors. In particular, ergodic attractors exist. 
Remarks. The manner in which p -  induces measures on the local unstable 
manifolds-disintegration-is explained in the proof. See $2. Recall that a 
measure v is absolutely continuous respecting a measure p ,  v << p , if every 
zero set of p is a zero set of v . "Countable" means finite or countably infinite. 

It is always true that M can be partitioned into ergodic components Ca in 
a way that disintegrates the measure p onto the Ca, but in general there are 
uncountably many Ca . See [M2]. For example, if f :  S' -S' is an irrational 
rotation then, up to a zero set, the Ca are the two poles and the uncountably 
many latitude circles. Although f preserves Lebesgue measure, none of its 
orbits is weak hyperbolic. 

One might ask: when is the number of ergodic components finite? In Pesin's 
Ergodic Component Theorem, if Z' is compact then all of M is a single ergodic 
attractor becasuse f is Anosov [M3]. It would be of interest to know in what 
other circumstances the number of ergodic components is finite 

In this section we prove that Theorem 2 (absolute continuity) implies Theo- 
rem 3 (ergodic attractors). Let G* and G be the sets of points p E M such 
that for all continuous functions 4: M -R ,  the three Birkhoff averages 

def 1 
B ( d 9 ~ )= 

exist and are equal. By [P'n], G n G- n G+ = G' is of full p-measure and is 
f -invariant. Also, continuity of 4 implies that G+ consists of whole stable sets 
while G- consists of whole unstable ones. 

The set Z' is the monotone union U,,, Z ( r )  where Z ( r )  = {p E Z :  
no growth rate along the orbit through p lies in the interval [r-' ,T I ) .  For 
any r > 1 , choose E , 0 < E << r - 1 , and determine a regularity function R, 
from Oseledec's Theorem. Define X ( z ,  N)  = { p  E Z': R,(p) 5 N ) .  Since 
Z' = U Z ' ( r ,  N )  has p-measure 1 , Z' can be divided into countably many 
hyperbolic blocks P of positive p-measure: each P is a small subset of some 
Z'(z)  on which R, is bounded. See $3, especially 3.2 and 3.6. 

Take any point po in such a P .  By Theorem 1 (see also Theorem 3.8), 
there exists a neighborhood U of p,, diffeomorphic to a product of discs, 
U x U" x u s ,  and a compact subneighborhood U, of p, such that the U-
local unstable manifolds through points of the closure of P n Uo are graphs of 
maps U" -, with small Lipschitz constant. They depend continuously on 
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p and are disjoint or equal. Dually, the U-local stable manifolds are graphs 
of maps --+ U" with small Lipschitz constant, they depend continuously on 
p , and they are disjoint or equal. This gives a continuous product structure. 
The unique intersection point w i ( p )  n w;(q) need not lie in P , nor even in 
A?, but it does exist if p ,q lie in the closure of P n Uo . See Figure 2. 

Without loss of generality we replace P by P n Uo n G* ,for ~ ( M \ G * )  = 0 
and P n Uo is just a smaller version of P . 

Now we discuss disintegration. It is a kind of Fubini process, valid in great 
generality [B'i]. The local unstable manifold w i ( p )  is a Borel function of 
p E P . (In fact it is continuous). This implies that p disintegrates to measures 
pp on the W i ( p ) ,  p E P [B'i, pp. 58-59]. They are Borel measures and they 
satisfy a Fubini equation 

where S is any measurable subset of UPEpw ~ ( P )and q is the "push ahead" 
measure on P . That is, q(A) = p(U,,, Wi(a))  for measurable subsets A cP . 

To be more accurate, pp depends on w i ( p )  , not on p . To avoid this abuse 
of notation, let us re-index w i ( p )  by its unique intersection with W;(po) . See 
Figure 2. Thus, if y = Wi(p)  n W;(po) then we write W, for wL(p) and 
j i  for-pp  . The space Y c w;(p0) of these y is compact and supports the 
measure q . Let p, be the restriction of p, to Wy n P , and call Y = {y E 

Y: W, = w i ( p )  for some p E P) . In fact, by continuity of Wi(p)  for 
p E P , Y is the closure of Y . The Fubini equation p(S) = Sypy(S) dq holds 
for measurable subsets S c U,,, Wy . 

FIGURE2. The product neighborhood of po 
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Assumption (ii) in Theorem 3 says that p, << p, where p, is the smooth 
Riemann measure on Wy . Consider the subset P, c Wy where the Radon 

Nikodym derivative dp,/dpy is positive. 1 On P, , p, and py are equivalent 
measures. Without loss of generality we may assume that P, = P n W, . For if 
Z is the subset of P on which dp,/dp, = 0 ,  then P \ Z  is a hyperbolic block 
and by the Fubini equation, p (P)  = p(P \Z)  . 

Inside P we produce sets Ei and iterate them to get ergodic attractors as 
follows. Let 9= {P,) and define a relation on 9 according to local product 
structure: 

PYl-PY2if W:(p1) = w&,) for some p1 E PYl. P, E Py2. 

Enlarge - to an equivalence relation by forcing transitivity. See Figure 3. Let h 
project P into W:(p0) by sliding along {Wh(p))p,, . It carries equivalence 
classes into disjoint sets, each of which has positive Riemann measure. For 
p, (P,) > 0 implies p, (P,) > 0 , and absolute continuity of the Ws-holonomy 
map Wi(p)  + W:(p0) (Theorem 2) then implies that pYo(h(P,)) > 0 for all 
P, E 9. Therefore, there are only countably many equivalence classes, say 
E l  , E, , . . . , and p(P)  = C p ( E , ) .  Discard those E, with p(Ei) = 0 .  

Set A, = Saturate(E,) = U,,, f "(E,) . Since E, consists of whole P, 's, 
each of which has positive py-measure, w'(E,) has positive Lebesgue measure 
by absolute Continuity of W S  (Theorem 2); thus, W'A, has positive Lebesgue 
measure, verifying (EAi) with W = WSAi. Also note that A, c A?' since 
E, c P c A?' and A?' is f -invariant. 

-
FIGURE3. The equivalence relation generated by 

In fact, as pointed out to us recently by F. Ledrappier, one can show that Py = Wy by usidg 
the Jacobian estimates in 84. 
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Since E, c G* and G* is f -invariant, A, c G* . For every continuous func- 
tion q5 on M y  the three Birkhoff averages 93'-(4, a )  , 93'+(q5, a ) ,  and 93'(q5, a )  
exist at all points a E A, and are equal. Clearly, by continuity, 93'-(4  ,x )  is 
constant on any Py, and B+(q5, x , )  = 93'+(4, x,) for any x ,  E P,, , x, E PY2 
with Py,-PYZ. Hence, 

For all continuous q5 on M ,9-( 4 ,  a )  ,B+(q5, a )  ,and 93'(q5, a )  

(*) are the same constant function B(q5) on A, . Moreover, 93'+(4, z)  
= B ( 4 )  for all z E wSA, . 

Birkhoff averaging gives a continuous, onto projection 

where Inv( f ,v) are the f -invariant v-integrable functions. Also, 

See [P'n]. Take any y/  E 3'(A, ,v,) where v, is the normalization of p(A, . 
Think of v, as a Bore1 measure on M . Then v can be 3'-approximated by 
a continuous 4 on M .  Since the 93'-image of a dense set of such functions 
is contained in the set of constant functions, the entire 93'-image is contained 
in the set of constant functions. In particular, Inv( f ,v,) = Constants, so f 
is v,-ergodic, verifying (EAii). Since the constant is J ty dv, , (EAiii) is also 
verified. 

The equivalence classes E, exhaust P up to a set of p-measure zero. Thus, 
P is contained in the union of countably many ergodic attractors, and all of 
them are contained in Z . Since Z is the countable union of such hyperbolic 
blocks, and each hyperbolic block gives rise to only a countable number of 
ergodic attractors, we see that, up to a set of p-measure zero, Z is a countable 
union of ergodic attractors. Q.E.D. 

Proof of Pesin's Ergodic Component Theorem. Lebesgue measure, when disin- 
tegrated onto the local unstable manifolds Wy , satisfies dpy/dpy > 0 almost 
everywhere. For the Lebesgue measure of open sets is positive and by the Fu- 
bini equation this must be reflected on most of the Wy . This verifies (ii) in 
Theorem 3. By assumption, almost all orbits are weak hyperbolic, which is (i), 
and so, up to a zero set, Z is the union of ergodic attractors A ,  , A , ,  ... . 
Since M \ Z  is a zero set, the proof is complete. Q.E.D. 

Remark. When dpy/dpy > 0 almost everywhere (as is the case above) only 
one equivalence class E ,  and only one ergodic attractor A arise from each 
hyperbolic block P of positive measure. 

In this section, we investigate the local dynamics along weak hyperbolic orbits. 
We will do so not only along a single orbit (as in Theorem 1 in $1) but also 
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along all the orbits passing through a "hyperbolic block" as described below. 
This lets us avoid many Borelian considerations. It also lets us estimate what 
weak continuity exists in the unstable and stable partitions W Uand W S. 

First, we discuss the meaning of Oseledec regularity. Let T,M = @, E: be 
the Lyapunov splitting along a regular orbit. For any A c R ,  we set E: = 

@ , E According to the definition of regularity, the angle between these 

E: , a ( z )  = min{a(~ :  , E:') : A n A' = 0) is bounded below by R,(z)-' 
where R, is a regularity function. Thus, 

On the other hand, vectors in E: are dilated by the factor in, up to (at worst) 
a slowly growing factor. That is, 

To combine these estimates from several different Lyapunov spaces we use the 
following simple lemma from linear algebra. 

3.1. Lemma. Suppose that n : U3 is a projection of the inner product space 
U into itseg n2 = n .  Let a be the infimum of the angles between nonzero 
vectors in the range and kernel of n . Then ( (n ( l  = csca .  

Proof. Express any unit vector u E U as v + w where v = nu and w = u- nu .  
Clearly, v E range(n) , w E kernel(n) . Call E' = span(v , w) . If dim(E1) # 2 
then v = 0 or w = 0 and 1nu( = 0 or (nu(= 1 respectively. If dim(E1) = 2 
then from Figure 4 it is clear that (v I 5 (sin a')-' where a' is the angle between 
v and w . In either case, /nu[< csca . The reverse inequality is equally easy 
to prove. Q.E.D. 

Now take A = [ a ,  P] and choose an interval [ a ,  b] containing [ a ,  P] in its 
interior. Thus, 0 < a < a < /3 < b < m . 
3.2. Proposition: Growth Control. Given c > 0, there exists a regularity func- 
tion G,: 2 - (1 , m )  such that for all v E E: 

(GC. 1 ) G,(z)-'anlvl < / ~ f " ( v ) l< G,(z)bnlvl, n 2 0 ,  

Proof. Let n" T H M -+ EI be the projection whose kernel is the sum of the 
Lyapunov spaces E' with ,D # A. Since the Lyapunov splitting is Tf -invariant, 
Tf and n* commute. Choose 6 > 0 such that 6 < c , 6 < 1 , a(3S + 1)2< a ,  
p 5 b ( 3 6 + 1 ) - ~ .  Thus, S < m i n { a - a , b - P ) .  Let R , : 9  -+ ( 1 , m )  b e a  
regularity function. If n 0 then for all 11E E: , 
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FIGURE4. The range and kernel of n 

Similarly, if w E E:., , then 1Tf -"(w)l _< 2R,( f dim(~")u-"lzul. Taking 
w = Tfn (v) gives 

Note that the factor (1 + ~ 3 ) ~ "  witharising from the comparison of R,(z12 
R,( f ' z ) ~  is absorbed by changing on to an  because 6 << o - a .  The growth 
control estimate (GC. 1) is then valid with 

The square of the 6-slowly varying function R, is a 36-slowly varying function, 
for (1 + 5 1+ 36 when 6 5 1 . A constant multiple of a 6-slowly varying 
function is also 6-slowly varying. Thus, G, is &-slowly varying, and since it 
is > Rg , it too is a regularity function. If n 5 0 then 6 << b - /3 implies 
(GC.2). Q.E.D. 

When two functions are bounded on exactly the same subsets of their do- 
mains, such as G, and R, are, we say they are comparable. Let us apply these 
ideas to the weak hyperbolic splitting E U  $ ES. For 7 > 1 , let 

X ( r )  = {z E 9:no vector in T;M has growth rate in [r-' . r]). 
Fix 1 < a < r and b = max{supllTfll, supllTf-'ll). Call TUf and TSf 
the restrictions of Tf to E U  and ES. Modulo a growth control function 
G, , the growths of T Uf n  and TS f n  over X ( r )  are controlled by [ a ,  b] and 
[b-' , a-'1 respectively. The E can be taken as small as desired. 

The manifold M comes equipped with a smooth Riemann structure but 
to prove Pesin's Stable Manifold Theorem we need to adapt it to the weak 
hyperbolic splitting EU$ES . We will do so over X ( r ) .  Let ( , ) and I I denote 
the inner product and norm associated to the original Riemann structure. The 
new, or adapted, ones will be denoted by ( , ) *  and ( I * .  They are defined 
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as follows. Choose a constant p ,  1 < p < a < z and write down a series 
definition of the inner product ( , ) *  on T z M  for z E X ( z ) . 

( v  ,v l )*= C p 2 " ( ~ f - " ( v ).~ f - " ( u l ) )  if v ,v 1E E: , 
"20 

( v , ~ ~ ) * = C p ~ ~ ( ~ f ~ ( v ) , ~ f " ( v ~ ) ) 
i f v , v ' ~ ~ : ,  
n20 

( v  ,vl )*= 0 if v E E: , v 1E E: or vice versa. 

3.3. Proposition: Adapted Finsler. The series above converge. The induced 
Finsler I I *  on Tn(,, M is Borel and has the following properties: 

(a)For any E > 0 and any ;E-slowly varyinggrowth control function G ,  there 
exists an e-slowly va ying Borel function Be : Z ( r )-. ( 1  ,oo) that is comparable 
to G and satisfies 

(b) 1 1  TZ f 1 I *  and I 1 TZ f -' 1 l *  are uniformly bounded for z E X ( r ). 
(c) Tn(,) f is uniformly hyperbolic respecting EU CB E' equipped with the 

adapted Finsler I I *  ; i.e .,for all z E X ( r ), 

f 11' < p-' < 1 < p < llTZuf-'11*-'. 

Proof. This is much the same as Proposition 4 of [FHY]. For completeness we 
present the proof anyway. By 3.2 4~-slowly varying growth control functions 
G do exist. The series are dominated by ~ n 2 0 ( P / a ) 2 " ~ ( z ) l v llull. Thus, the 
series converge, the adapted Finsler I I *  exists and is Borel. By 1 1  I [ *  we mean 
the operator norm respecting the Finsler I I *  . If v E E: and z E X ( r )  then 

so [ITSf [ I *  5 p-' . Similarly, [IT'f-'11' 5 p - I ,  verifying (c). I f  v E E: and 
z E X ( z )  then 

The same inequality holds if v E E> The general vector w = v + v1  with 
v E E: and v 1E E: satisfies 

and so 

I W I *= { ~ v l * ~  
1 I $ 2  112 

5 4 ~ ( z ) ~ a l w l / ( ap).+ Iv } -
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As in 3.2, the bound B, = 4 ~ ( z ) ' a / ( a- p) is &-slowly varying since G is 
$&-slowly varying; and Iw I *  5 B,(z)lw 1 . When G is bounded, so is B, . The 
estimate on Iwl* from below is easy: 

since lv l 2  and lvll' occur in the series defining ~v1'' and I v ' ~ *
 ~ 
 . This completes 
the proof of (a). 

Just as in [FHY], we claim 

(*I l l ~ I I * ~  1 1 2  + 5.f 1 211~f 

For if v E E: then 

I T ~ ~ ( v ) I * ~C p 2 n ~ ~ f z f - n ( ~ z f(v))12 IT,/ (v)12+ P ~ I V I ' ~= = 
n20 


< l l ~ , f l121v12+ 41~1'' 5 {2llTZf1 1 2  + 41lvl'~. 

Combining this inequality, the fact from (c) that 1 T f 1 * < p-I < 1 , and 
E" IES respecting ( , )* ,we get 

lTZf  (w)l*' = lTZf( ~ ) l * +~ IT,/ ( v ' ) I * ~< (211$ f  1 1 2  + ~ I I v I * ~+ lv'l*' 

5 {2llTZf1 1 2  + ~ ~ I w I * '  

which verifies (*) and half of (b). The other half of (b) is proved symmetri- 
cally. Q.E.D. 

The next result is similar to Proposition 7 of [FHY]. We give its proof because 
it is exactly here that PesinS extra cl+'smoothness assumption makes an 
appearance. If f is c1but not c'" for P > 0, then 3.4 and 3.5 can fail, 
causing the breakdown of Pesin's theory. See [Pu]. By f we will refer to 
the map f , locally lifted to the tangent bundle via the smooth exponential 
associated to the original Riemann structure, 

[exp 1exp 

M - Mf 

Rescaling ( , ) ,we may assume that expz embeds each Tz M ( R )  , supz 1 1  T z f 1 1  
< R , and 

T z M ( l )  T f z M ( R )  

M f M 

commutes; f, is the restriction of f to T z M .  There is no real distinction 

between f and f ; f is merely the expression of f in the exponential charts. 
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3.4. Proposition: C' uniformity of f . Suppose that the difeomorphism f : M 
-, M is of class c'" for some /? > 0 .  Let e , v > 0 be given. Then there 
exists an e-slowly varying Bore1 "radius function" re: Z ( 2 )  -t ( 0 , l )  such that 
1 l(Df,), - T, f I [ *  5 v , for all z E Z ( z )  and all v E Tz M with Iv I *  I re(z ). 
PROOF.Since f is c'" on M and M is compact, D f  is uniformly 

HMder. There is a constant C such that for all v , v1E T ,M( l )  , 

lI(Dfz),- (Dfz),tIl 5 Clv - vll' 1 

where (Df,),: T,M + T f Z M  is the derivative of f,  at the point v . When 
v1= 0 ,  (Df,),, = T, f since T, exp is the identity. Define e1 < e by 1 + el = 

( 1  + e)' . Replace e by el in 3.3 and let BE, be the corresponding e1-slowly 
varying function comparing the adapted Finsler to the smooth one over X ( z ) .  
Set 

re(z )= fz))"'.(Y /~CB, , (  

It is e-slowly varying by choice of el.  If v E T,M and Ivl* 5 r,(z) then 

Il(~f'), - T Z fl l *  = SUP 
I(Df,),(w) - T,f (w)l* 

w#O Iw I *  
< J i ~ , ( f ~ ) l l ( ~ f ~ ) ,T,f l l  I 2~ , ( f z )c lv l* 'I v- J 

by choice of re .  Q.E.D. 

We extend 3.4 as follows. Let e , v , P , > 0 be given with P I  < P . As 
always, f is c'" , Define el1 by 1 + el1 = ( 1  + elB-" . Thus, 0 < el1 < 
el 5 e .  Let Be,, be the Finsler comparison function supplied by 3.3. Define 
r : Z ( z )+ (0, 1 )  by 

Then r is e-slowly varying and, for v , v1E TZM with Ivl* , lull* I r ( z ), 

To sum up, we have proved 

3.5. Corollary: C1+" uniformity of f . Given e , v , /3 , P I  > 0 with 8' < /3 
and f E c"' , there exists an e-slowly varying Bore1 radius function r : Z ( z )-+ 

(0, 1 ) such that 

The function r-' is comparable to a growth control function for T f  on Z ( r ) .  

Definition. If a growth control function G, is bounded on a subset P of Z ( z )  
then P is called a hyperbolic block for G, . Since P need not be f-invariant 

we are led to consider its saturate, IJ,,, f P . 



14 CHARLES PUGH AND MICHAEL SHUB 

By discarding overlaps and accepting arbitrarily large bounds, we can find a 
countable family 9= {P) of disjoint, Borel, hyperbolic blocks whose saturates 
partition X ( r )  . For each P E 9 there is a radius function rp given by 3.5 

such that II(DfZ), - ( ~ f ~ ) , ,5 V ~ V  v 
I 1 */3' whenever ~vl*, lull* 5 rp(z),l l *  -

z E Sat(P). On P , r i l  is bounded because it is comparable to G, . Redefine 
a Borel radius function r :  X ( r )  -, ( 0 ,  1) as follows. Each z E X ( r )  belongs 
to f (P) for some P E 9 and some smallest I kl ; P and I kl are unique. Set 

r (z )  = (1 + &)-Ik' inf{rp(p) : p E P}. 

Similarly, define G(z) = (1 + & ) I k '  sup{G&(p): p E P )  . Then r and G are 
Borel, &-slowly varying, and constant on P . Thus, 

3.6. Proposition: Hyperbolic blocks. Given E , v , P , PI, f as above, there 
exist an &-slowly varying growth control function G, a countable family 9 of 
hyperbolic blocks for G, and a positive, Borel radius function r :  X ( r )  -+ ( 0 ,  1) 
such that 

(a) The saturates of P E 9 partition X ( r )  . 
(b) On each P ,  G and r are constant. 

(c)If Ivl*, lull* 5 r ( z ) ,  z E Sat(P),  then I ~ ( ~ f z ) , - ( ~ f Z ) , , l l *  
I I */3' .5 vlv-v 

Here is another property of hyperbolic blocks. 

3.7. Continuity Lemma. The weak hyperbolic splitting of TM over the hyper- 
bolic block P extends to a unique continuous Tf -invariant splitting TpM = 

E" CB E h h e r e  P is the closure of P in M . The growth controls along orbits 
through P extend to growth controls along orbits through P . 
Proof. Note that X and 9 may fail to contain P . Let p, -,p as k -+ oo , 
where pk E P and p E P . Since the Grassmannian is compact, we may assume 
that E; and EL converge, say to F" and F S .  By 3.2 

for all unit vectors v E EUlp, G being the value of G(p) on P . Since Tfn is 
continuous, the same expansion estimates hold on F" . Corresponding contrac- 
tion estimates hold on F S . Now suppose that a second sequence pL tends to 

p and the subspaces E;; , E', converge, say to FU' and F" . The expansion 
Pk 

and contraction estimates hold on F" and FS' too. If v is a vector in TpM 
which does not lie in F S  then v = x + y where x E F" , y E F S , and x # 0 .  
As n -+ oo , I Tfn (x) 1 grows more rapidly than an/G while I Tfn (y ) 1 -+ 0 . 
Thus, such a v cannot lie in FS' ; i.e ., F" c F S . Similarly, F' c F" ,so they 
are equal. Likewise, F" = F"' . It follows that F" CB F' is continuous over P . 
Saturating the splitting by Tf -iteration produces a well-defined Tf -invariant 
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splitting over Sat(P) because EU$ESis Tf -invariant, and the growth controls 
persist. Q.E.D. 

It is now an easy matter to find the unstable manifolds through orbits of a 
hyperbolic block P c R(T). We merely work in the adapted Finsler, where f 
appears to be uniformly hyperbolic, and apply the uniform Unstable Manifold 
Theorem. 

3.8. Pesin's C' Unstable Manifold Theorem on Sat(P). Suppose that the dif- 
feomorphism f :  M f, is of class c " ~ ,0 < /3 5 Lip, and r is the radius 
function supplied by 3 . 6 .  For each z E Sat(P) the unstable set w U ( z )  is lo- 
cally the graph of a C 1  map w U  : E:(r(z)) -E:(r(z)) , exponentiated into M , 
and p H WU(p,.) is C 1  -continuous respecting p E P . We call this local unsta- 
ble manifold WU(r). At z it is tangent to E: . Under f , W U ( r )= { ~ : ( r ) }  
overj7ows in the sense that f ( W:(r)) 1W; (r ) . 
Proof. By 3.7 the weak hyperbolic splitting over P extends to a continuous 
splitting EU$ ES over the closure P of P in M .  The growth control and 
adapted Finsler also extend continuously. Let H be the disjoint union of the 
iterates of P , say H = U Pk, equipped with the metric 

if z ,z' E Pk for some k , 
diam(M) if z E Pk, z' E Pklfor some k # kt. 

By definition, Pkn Pk,= 0 for all k # k' even though f 'P n f "P may be 
nonempty. The restrictions of Eu, ES,and I I *  to Pk are continuous. Rescale 
I I *  on THM = U Tp,M asfollows. If u E T z M ,  z E H ,  set Ivl** = lul*/r(z). 
Impose I I * *  on T H M .  (Note that I I * *  depends on E (through r )  but I I *  
does not.) Respecting I I * *  , f, is a C1-uniformly hyperbolic embedding of the 
unit ball Uz . For 

shows that fz is C1-uniformly approximated by Tzf on Uz ; and Tzf is 
uniformly hyperbolic because, respecting I I * *  , it expands E' at least as sharply 
as p / (1+ E) and contracts ES at least as sharply as (1 + e) /p .  The uniformity 
refers to z varying over H . 

The standard graph transform construction of unstable manifolds in [HPS] 
or [S] applies to the collection of embeddings f,: Uz -, Tfz M y  z E H . In 
the standard case one requires that f lifts a diffeomorphism at a compact 
hyperbolic set. Although H is not compact, the lift f is uniformly hyperbolic, 
respecting I I * *  , and that, not compactness, is what counts. 

Here are a few details. Let U: , U: be the unit balls in E: , E: respecting 
I I * *  . Choose a family of C' functions w = { w ~ } ~ , ,  such that w7 - : U:- - U: 
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has Il(Dw,),ll** 5 1 for all z E H ,  x E U:. We may choose the w, to depend 
continuously on z E H in the C' sense. (For example, since EUand ES are 
continuous on H , wz - 0 is C' continuous.) The graph of w, is a trial disc 
DZ; it is a candidate to be W: . Apply f to all the trial discs and cut the images 
down to unit size: Dl , fz = f(DZ)n Ufz . These Dl , fz are new trial discs. Let 
9= {Dz)zEH and = {Dl,,),,, . By exactly the same estimates as in [HPS, 
pp . 40-46; S, pp . 39-44], D lfz is the graph of a C' map f#w, : u;, -, u;, 
with Il(~f#w,),l I * *  5 1 for all x E u;, . We have merely graph transformed 
each and every w, by fz . Therefore, we can iterate, getting a sequence of 
families of discs 9,,, n = 0 ,  1 , . . . . Exactly as in [HPS or S] Snuniformly 
c'-converges as n -. oo . See 3.9 for a closer look at this convergence. 

Note that C' -convergence respecting I I** implies C' -convergence respecting 
I I *  . For when passing from one norm to the other we are merely rescaling by the 
factor r(z) . It is interesting that under such linear rescaling, Cr-convergence 
can be lost for r > 1 . In $6 other means are used to understand the Cr  nature 
of the unstable manifolds. 

Call W: = limn Dn ,, . This limit disc is C' , tangent to E: , and overflows 
in the sense that f (W:) 3 W;,. Respecting I I*, W: has size r(z) . Call 

w;(r) = exp(W;) . Then w:(r) is C' , is tangent to E: , and f ( ~ ; ( r ) )3 
W;(r) . AS a function of p E P , W: (r)  is C' -continuous. 

f expands W: by at least the factor p and so approximately the same is 
true of f on wZU(r). For exp has derivative the identity at the zero section 
and the smooth Riemann structure is comparable to the adapted one by an 
&-slowly varying comparison function. Thus, under f-", points of W;(r) 
are exponentially asymptotic as n + oo . That is, w;(r) is contained in the 
unstable set (see $ 1) of z , wZU(r)c w U ( z ). 

On the other hand, suppose that f -"(q) is exponentially asymptotic with 
z as n -, oo, say at the rate 3," for some 3, < 1 . For small E and large n , 
An < r(f -"z) and so f -" (q) lifts to an f -orbit that is exponentially asymptotic 
with z inside the neighborhoods Uf-,, . By the characterization of unstable 

manifolds in the uniform case, these f-"(q) lie in WfU-nq ; that is, locally, 
wU(z )  and w:(r) coincide. (In particular W: (r)  is uniquely locally deter- 
mined by z and is independent of & .) This completes the proof of 3.8. Q.E.D. 

Remark 1. The corresponding Stable Manifold Theorem follows, in the diffeo- 
morphism case, by considering f -' . For the endomorphism case see $5. 

Remark 2. It is only to get 3.4 that we use f E c'" , P > 0 ,  in an essential 
way. If f is merely C' but the conclusion of 3.4 happens to be true anyway- 
that is, f is uniformly C' respecting adapted coordinates on a slowly varying 
neighborhood of B(p)-then the conclusion of 3.8 holds: f has C' stable 
and unstable manifolds along B(p)  . 
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We need to sharpen 3.8 somewhat. We know that the trial discs given by 
w, = converge ~ ' - u n i f o r m l ~  WU= graph(wu). In fact the conver- f;(w,) to 
gence is exponential in the following sense. Respecting the Finsler I I * *  , f is 
~ ' - u n i f o r m l ~hyperbolic with uniform hyperbolicity rate (1 + &)/p< 1 . The 
proof of the Unstable Manifold Theorem in [HPS or S] produces a contraction 
at this rate. That is, for some constant C , 

(Actually, C = 2 .) These estimates are uniform over all n 2 0 ,  all x E E;(r) , 
all z E H ,and all choices of the initial family of trial discs w, . To sum up, 
3.9. Addendum: Exponential c'-convergence. Let H be the saturate of a 
hyperbolic block. If the graphs of w,: E;(r) 3 E;(r) form a family of c1 
trial discs of slope 5 1 with respect to I I *  then the natural iterated graph 
transform gives a sequence of families of trial discs of slope 5 1 that are 
graphs of maps w, : EU(r)+ES(r), n 2 0 ,  and for all x E E;(r), z E H , 

(b*) II(&,) ,  (hU),Il*- 5 C{(1 +&)/PI". 
Proof. Sinc6 I I *  at z is just the dilation of I I * *  by r(z) , 1 1  I \ *  = 1 1  I I * *  
and (a**), (b**)imply (a*), (b*). Note also that trial discs in (T, M(r )  , 1 I * )  
with slope 5 1 are trial discs in (TzM(l ) ,I I * * )  with slope 5 1 and vice 
versa. Q.E.D. 

In the proof that VUand VSare absolutely continuous, we will need 
to understand the Holder properties of iterated trial discs and the unstable 

FIGURE5. The natural action of DT, on a prospective 
tangent plane 
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manifold. We take some u E T,M(r) , z EH ,and express (Df,), respecting 
the E" $ES splitting as 

A, : E; +EiZ, Bu: E: E;= ,4 

The tangent plane to a trial disc at u can be thought of as the graph of a 
linear map P : E; + E: . Since the slope of the trial disc is 5 1, 1 1  P 1 I *  5 1 
also. The natural action of (DfZ), on such planes is graph(P) I+ graph(Pl), 
where graph(P,) is the (Df,),-image of graph(P) . See Figure 5. A formula 
describing P, is 

P, = TJ,(P) = (c,+ K,P) (A, +B,P)-'. 

See [HPS, S], or 96. By 3.5 and choice of p , both factors have norm I 1, so 
we can iterate, getting Pn :E;, +E;", with 1 1  Pn1 I *  < 1 and 

To apply 3.5 we must assume that f'u E TM(r) , 0 I i 5 n ; i.e., luil* I 
r ( f i )  . If u lies on ~ : ( r )or is very near it then indeed f 'u does stay in 
TM(r) . Now suppose that P' : E; E: represents a second prospective tan- 4 

gent plane. We compare Pn and P: where g r aph (~ i )  = (Dfzn),,(graph(~')), 
u' being some other point of TZM(r). We call uj = fi(uj)  and we assume 
that u: also lies in Tf,,M(r), 0 5 i 5 n .  

3.10. Proposition. 

IIPn -P;II*5 C C p-ilun-i - ~ ; - ~ l * ~ '+ I l - n i l ~  -P1l(* 
I < i < n  

where C is a uniform constant, 0 < p' < P ,  and, as above, p under-bounds 
the hyperbolicity of Tf respecting the adapted Finsler. 

Proof. Omit the subscripts "u " and write 1 1  PI - PI I I *  as 

where Y is the /?I-~iilder constant of Tf respecting I I *  , 0 < P' < P . See 
3.5. Beginning with 1 1  Pn - P,'I\*and applying this inequality repeatedly gives 
the result. Q.E.D. 

3.1 1. Corollary: clip-uniformify of W: . Over the saturate H of a hyperbolic 

block the discs W: E Euare uniformly of class cl+', 8' < p , and the same is 
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true of fn-iterated families of trial discs converging to W U. In particular, each 
~ : ( r )  is of class C1+" . Everything is measured with respect to the adapted 
Finsler. 

Proof. As usual, the diffeomorphism f is assumed to be c " ~ ,  P > 0 .  Let 
w ,  : E:(r) - E:(r) be a family of c"" maps such that D w *  5 1 and 
the PI- older constant of Dw, is uniformly bounded as z ranges over H .  
For instance, we could take w ,  = 0 .  Let 9 denote the family of trial discs 
which are the graphs of the maps w ,  and let g,,denote the f"-iteration of 
9 .  The disc D,, E 9, is f " ( ~ ~ - , , ) ,  becut down to size r ( z ) .  Let w,, 
the map whose graph is Dn, . Let P, , P,' represent the tangent planes at some 
un , u: E D,, . Automatically, f -j(v,) = v j  and f -I(,:) = u; lie in T M ( r ), 
0 5 j 5 n .  By 3.10, 

where P , P' are the tangent planes to Df-., at u = f - " ( u n ) ,  u' = f -"(u:) .  
Since $ expands horizontally more sharply than ,u , we see that \u,-~-21,-, 1 * <-
,u-'lu, -u:\*.  Since Df-., is c"", \ lP -  P'll* 5 Llu-u  I I * p l  5 L\U,-u:\*". 
Thus. 

It follows that w,, con-has uniformly bounded C1+" size. The ~ ' - ~ o l d e r  
stant of Dw,, is 5 {C/(p - 1) + L ) .  By 3.8 w ,  converges C1-uniformly to 

w u .  Therefore w U  is also uniformly c"" . Thus, W: and W: are c"" 
too. Q.E.D. 

Remark. Actually, W: is of class c"' . See Theorem 6.4. 
Theorem 3.8 describes W Ulocally in the adapted norm I I *  , but we can also 

ask how it looks in the original smooth norm I I . The space T,M is split in 
two ways: 

E:BE: = T,M= E:CBE:' 

where EUL denotes the orthogonal complement of E" respecting the smooth 
Riemann structure ( , ) . We will find subdiscs of WZUwhich are graphs of 

maps g,: E:(rl) 3 EtL(r ' )  where r' is comparable to r and the c"" size 
of g, is uniformly bounded. We call them round u-discs of radius r' . This is 
an improvement to 3.8. Although the adapted norm is needed to get the local 
unstable manifolds to be overflowing, the smooth norm can be used to view 
them as graphs. The same will be done for iterated trial discs converging to 
W U. This is a more delicate issue than just changing coordinates. We need to 
use the Holder properties of the unstable manifolds. See Theorem 3.13. 
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It is easier to abstract the situation a little. Let E be a Banach space with 
two equivalent norms and two splittings. Say the norms are I I and I 1' , the 
splittings are El  $ E2 = E = E; $ E; , and xi:E - Ei, ni:E - E: are the 
corresponding projections, i = 1 , 2 .  We assume 

where 1 )  1 )  and 1 )  1 ) '  are the operator norms induced by I I and I 1' . Note that 
(1) holds if ( , ) , ( , )' induce I I, I 1' and El  I E 2 ,  E; I E; . Let B be a 
comparison constant for the norms, B-I 5 I 1111' 5 B . Note that 1 1  1 1 '  I ~ ~ 1 1  1 1 
and vice versa. Set Ei(r) = {v E Ei: JvJ  I r) , and ~ , ! ( r )  = {v E E:: J V J '  5 r) 
for i =  1 , 2 .  

Now suppose that g is a given map El ( r l )  4 E 2 .  Its graph is an El-disc 
G in E , G = {x +g(x):  x E El (r)) . We give sufficient conditions for there to 
exist a map g': ~ l ( r l )  -E; such that 

(2) r; = r1/2B and G contains G' = graph(g'). 

3.12. Lemma. Let splittings, norms, and projections be given that satisfi (1) . 
Assume that E l  = El , although I I and I 1' may be diferent norms on El  . 
Suppose that G is thegraph of a C' map g: El ( r l )-E2 and 

Then there is a unique c1map g': E;(r:) -E; which obeys (2).  Also, 

By l g 1 l '  , etc ., we refer to supx lgl(x)1' , etc. 

Proof. Figure 6 shows us what to do. It is clear that g' satisfying (2) is unique 
and C' if it exists. We define 

FIGURE6. HOW to view the disc G as a disc G' 
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By ( I )  and (3), llDh - id , [ [< 1ln;ll llDgll 5 B ' I I D ~ ~ ~5 4,so by the Inverse 
Function Theorem, we see that h embeds E,  (r ,)  onto a set containing E,( I r , )  . 
Besides, ~ i ~ ( h - l )  = r, , we5 2 .  Since lull 5 r: r l /2B implies IvI 5 Blvl' 5 f 
see that h-I is well defined on E;(r:) . This makes g' well defined and (2) is 
satisfied by construction. Property (4) is immediate. Q.E.D. 

3.13. Proposition: Round and flat u-discs. In the sense explained below, un- 
stable manifolds and iterated trial discs contain round, fairly flat u-discs of com- 
parable radius. 

Given the diffeomorphism f of M and given E > 0 ,  we find E-

slowly varying Borel radius functions r , r': 2' -, ( 0 ,  l )  and a countable family 
9 of hyperbolic blocks P whose saturates partition 2' such that r , r' are 
constant on each P and wZu(r) contains a round u-disc of radius r'(z) for 
all z E Sat(P).  The maps g,: E:(rl) -, E:' whose graphs are these round 

u-discs in Wzu are of class c"" , 0 < p' < p , and if z E f k p  then they are 
fairly flat in the sense that lg,ICl 3 0 as Ikl + m. The radius r'(z) of the 
disc on which g, is defined varies slowly as k + m . 

If D = graph(w) is a trial disc in T,M(r) , p E P , and Dn = graph(w,) is 
its f "-image, cut down to size r (  f "p)  , then, for large n , Dn contains a round 
u-disc G, of radius r'(f np)  , and it too is fairly flat- Ignl,, 3 0 ,  as n --+ m . 
Everything is measured with respect to the unadapted Finsler I I . This family 
9 is probably finer than the one produced in 3.6 for an E-slowly varying growth 
control function. 

Proof. It suffices to consider the set X(T)of weak hyperbolic orbits whose 
growth rates lie outside [T-I , T]. As in 3.3, we choose the constant p , 1 < 
p < T and construct the adapted Finsler I I *  . We may assume 1+E < p . Choose 
any p ' ,  PI', 0 < /3' < /.I" < P .  Next, fix E" and then E' ,  0 < E' < E" < E ,  
such that 

By 3.2, 3.6, there exist a ~ ~ ' - s l o w l ~varying Borel growth control function G,  
an ~ ' - s l o w l ~varying Borel radius function r :  Z ( r )  + ( 0 ,  1 )  , and a countable 
family 9 of hyperbolic blocks P on which G,  r are constant. Fix a P E 9 
and let H = U Pk where the Pk = f k p, k E Z , as in 3.8. By 3.8, 3.1 1 the 

local unstable manifolds of radius r exist and are uniformly c"~"over H ,  
everything being measured with respect to I I *  . That is, w;i.'Uis the graph of a 

1 +P" map w: : E:(r) -, Ef ( r )  such that wr(0) = 0 ,  ( D W ~ ) ,  = 0 ,  and 
is uniformly PI1-~older. Let v 2 1 be its P"- older constant. 

Let B,, be an ~ ' - s l o w l ~  varying Borel comparison function for the Finslers, 
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Choose a constant c > 0 such that for all p E P 

(6) 4B,, (PI 2 
vc 

p"-pl -< 1. 

(6) is satisfiable because, by 3.3, B,, is bounded where G is bounded and G 
is constant on P by construction. (The same cannot be said for a hyperbolic 
block on which an &-slowly varying growth control function is constant. We 
need E' , not E .) Define r, : H + ( 0 , l )  by 

r (P)  being the constant value of r on P . Since r is ~ ' - s l owl~  varying, r, < r . 
Clearly r, varying. w, w: E;(r,),is ~" -s lowl~  Call the restriction of to 
z E H . We want to apply 3.12 to w, where B = B,,(z) ,the two splittings are 
E: @ E: = TzM = E: @ E:' , and the two norms are / I *  , I I .  It is clear that 
condition (1) is met. For (3) we must check two things: lwo(0)l*5 i r ,  and 
~'llh,ll*2 1. Since w0(O) = 0, the first is trivial. Also, Dw, is uniformly 
/?'I-~older, Ixl* 5 r, ,and (Dw,), = 0 ,  SO we have 

By ( 9 ,  (6) we see that B'I ~(h,),(l*5 4 for all k c Z ,and 

From 3.12 we conclude that WZU contains a round disc G, = graph(g,) of 
2radius rl(z) = r1(z)/2B,,(z) and Ig,(,, < B (w,(,, . By ( 9 ,  r' is &-slowly 

varying. Also, for x E ~ : ( r , ), z c Pk ,and I kl -+ co , 

~ ~ l w , l c l5 ~ , t ( z ) ~ { r , ( z )  0+ l ) l l (~ , ) , l l *  ' 
by (7). Hence lg,lcl 3 0 as Ikl -+ co. 

Now suppose that D is a C1 trial disc in TpM(r) and Dn is its fn-image, 
cut down to size r, (f"p) , n 2 0 .  To apply 3.12 to Dnwe check two things: 
lw,(O)l* < $r,(f "p) and B211Dwn(l* 5 $ . By 3.9, (6), (7) we see that 

and 

B ~ I I D ~ ~ I I *i B 2 { l l h n- ~ o l l *+ l l ~ o l l * )  

which converges to 0 as n - co . By 3.12, for large n , Dn contains a round 
u-disc Gn = graph(g,) of radius rl( f "p) , and just as for wo , lgnlc, 3 0 as 
n -+ co. Q.E.D. 
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We also will need to understand the Jacobians of f on trial discs. Ordinarily, 
one only speaks of the determinant of a linear transformation of a vector space 
into itself, T :  V 9 .  But it is also possible to speak of the determinant of 
T :  V -+ W if V and W are finite dimensional inner product spaces. For any 
n vectors w, ,w,, . .. ,w, E W ,  let Q be the parallelotope {Cia iwi :  0 5 
a, 5 1) .  It has a well-defined n-dimensional volume vol(Q) = ~ w ;I ~ w i l .. . I W A I  
where wi = w, ; wi is the component of w2 normal to w, ; . . . , and w; is 
the component of w, normal to span{w, , . . . , w,- ,) = span{wl , . . . , wA-,) . 
Vol(Q) is independent of the order in which the vectors occur. 

The determinant of T : V -+ W is the volume of the parallelotope spanned by 
T(e,) , T(e2), . . . , T(e,) where el ,e2, . . . ,en is an orthonormal basis of V . 
It is well defined and satisfies the usual properties of determinants: det(T) # 0 
iff T is 1-1, det(S o T)  = det(S) det(T) . If one wishes to give det(T) a sign, 
one must assume V and W are oriented and have the same dimension. We 
do not need signed determinants below. 

Now consider a smooth (or c"" ) trial disc D in TpM(r). As in 3.8, 
let D, be f ' ~  v, cut down to size r(  f 'p) , and suppose that for some E 

D , vi = f 'v E TM(r), 0 4 i 4 n . The tangent to f ID, is a linear map 
T f :  T, Di -t Tv1+,Di+, and it has a determinant respecting the adapted inner 
produc; ( , )*  . We call this determinant the Jacobian off 1,
 a t  vi and denote 
it by J*(v,). Let D' be a second trial disc in TpM(r) containing a second 

such point v' . Call q . q' the points where D . D' cross $ and call qi = f'q , 
q; = Tiq' .  See Figure 7. We compare the Jacobians at the various points as 
follows. 

FIGURE7. Iterated trial discs 
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3.14. Proposition: Jacobians. Over a hyperbolic block, the infinite product 
nElJ* (q i ) /J* (4; )  converges uniformly and the finite products 

are uniformly bounded. If (v ,- q,l* and lv: - 4:1* are small and n is large 
the finite product approximates the infinite one. 

Proof. We know that respecting the adapted Finsler, T f  expands E" by a 

factor > p and contracts ES by a factor < p-' . Thus, for 0 5 i 5 n , 


i
14, - 9)' 5 p- 140 - 9;1*5 P - ~ .  

Let the graphs of Q, . Q: : EU-ES represent Tqn(4)and TqA(D:) . Then by 
3.10, 

This quantity is exponentially small; i.e ., 

14, - 4:1* + l l Q ,  - e:u*5 ~ ' ( p - ~ " ) "  

for some constant C' and some p" , 0 < P" < P' . Thus, 
-P" n P' < C~~(p-P'P")n

IJ'(4,) - Jt(9:)l 5 V IC ' (P  ) 1 -

By 3.3, Tf -' is bounded respecting I I* , so J * ( ~ ; )is bounded below and 

for a constant c'" and a P"' , 0 < p"' < p" . This proves that the infinite 
product converges. 

The estimate on the finite product is similar. It suffices to show that 

and nJ*(V;.) 
-

j= I J*  (4;) 

are uniformly bounded as n -+ oo . Since f expands Dj-i by a factor > p , 
we see that I V , - ~  - qj-il* 5 p - i ( v j  - qj (*. Therefore, by 3.10, and the fact that 

D is cl+", 
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Thus, Iv, - q,1* + l(P,- Q,II* < C'lv, - q,(*", and by 3.5, 

- 1  n - j  j9"
~J*(v,)- J*(q,)l* 5 ~ " ( v ,- q,l*''' < ~ " ( ( p  ) ) 

Taking the logarithm of n J * ( v j ) / ~ * ( q j )gives 

for some Bj between J*(v,) and ~ ' ( 9 , ) .  But since Tf and T are 
bounded respecting ( I * ,  the Bi are bounded away from 0 and l o g n  is 

dominated by a convergent series c"'~ ( , u - ' " ) ~. Hence, the finite product 
nJ*(v,)/J*(v;) is uniformly bounded. If (v, - q, I*  and ( I J ;  - q; I* are small 
while n is large then the same estimates show that the finite product approxi- 
mates the infinite one. Q.E.D. 

Now we exponentiate D , D' , v ,etc. down into M and write J (vi )  for the 
Jacobian of Tf restricted to the tangent plane to exp(D,) at exp(v,) ,respecting 
the smooth kiemann structure; similarly for ~ ( v l )  etc. 

3.15. Corollary. On a hyperbolic block, the infinite product nJ(q,)/  ~ ( q : )  con-
verges uniformly and the finite products n,,,,,J(v,)/ J(v:) stay uniformly -
bounded as n -,co . 
Proof. We estimate lJ(qn) - J(q;)l as 5 C{dist(T, .T,',)}' where Tn ,  T,', are 
the tangent spaces to exp(Dn) , exp(~A) at exp(vn) , exp(vL) and "dist" refers 
to the distance in the Grassmannian. For f is of class c"' . Exponential 
coordinates distort distance and norm by a bounded amount; we can estimate 
this distance between tangent planes in the expp chart and be sure of our answer 
up to a factor near 1 . Thus, 

and since E K p - 1, this means that IJ(qn) - J(q;)( converges exponentially. 
Therefore, as above, the corresponding product converges and it does so uni- 
formly over the hyperbolic block. (Note that the constant C" includes the 
value of the &-slowly varying comparison function B, at p and B, is constant 
on the hyperbolic block.) The corresponding analysis for the finite products is 
similar. Q.E.D. 

So far, we have concentrated on the case of hyperbolic orbits, but that was 
mainly for simplicity. Let H be a Bore1 set of regular orbits in M and as- 

for @ c H are always different from some ,? sume the Lyapunov growth rates 
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A,. Dividing H into pieces, we may assume that the Lyapunov exponents are 
bounded away from A. and the pseudo unstable and pseudo stable bundles, 

ps d e fE P ~ U ~ @ E ~ ,E = @ , y A ,  
-

APAO h<Ao 

have constant dimension. Then we renorm T,M as we did in 3.3, using lo 
instead of 1 . We can integrate EPUas follows. First, pull everything back to 
H x X x Y where H x X , H x Y are trivialized versions of EPU, E" . 

Suppose A, > 1 . Then the graph transform method works quite naturally 
when we replace the usual norm of a section by the norm 

s being the fiber component of a section o in Sect that vanishes at x = 0 .  
See [HPS, p . 541. The resulting unique f -invariant section of , interpreted in 
M ,gives the f -overflowing pseudo unstable manifold family WPUtangent to 
E" . It is unique. 

Suppose A. 5 1 . Then no unique family WPUexists, but we can construct 
one locally f-invariant family tangent to E'(U as follows. Take the pull-back 
of f to H x X x Y = E which is defined only on D and globalize it to some 
f : E 3 . Using a slowly varying bump function, it is possible to make f = Df 
near infinity, while the C' difference between f and Df remains small. Then 
follow ihe f-graph transform process globally since f is global. Since T~~f 
contracts, we continue to deal with bounded sections, vanishing at 0 ,  under the 
sup norm. The graph transform produces a unique f-invariant section of.It 

is c1and its image is tangent to H x X at 0 .  Interpreted in M ,  of gives a 

locally f -invariant family of C 1 discs WPUtangent to EPU. The family YPU 
depends on which globalization is chosen and it is not unique. 

If f is a diffeomorphism then the corresponding analysis of the pseudo 
stable manifolds proceeds by looking at f . If f is an endomorphism then 
the methods of [HPS, $51 apply. See also $5, below. 

Next, we state a theorem incorporating these ideas. We assume, as usual, 
that f :  M 3 is a c ' + ~diffeomorphism, 0 < P 5 Lip, and H is a Bore1 set 
of regular orbits. We assume that the growth rates along orbits in H lie interior 
to a fixed set of compact intervals I ,  , .. . ,I, and Il < I / - ,  < . . . < I ,  . The 
notation I < I' means that t < t' for all t E I ,  t' E I' . For example, if H 
consists of just one orbit, we could take Ii to be a small interval containing the 
i th growth rate Ai . Correspondingly, we have a generalized Lyapunov splitting, 

3.16. Theorem. Tangent to each Ei in a generalized Lyapunov splitting is a 

locally f -invariant family of c"" discs = { Wi(z)}z,H. 
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The number P' is positive and depends on the spacing of the growth rates. 
This and the question of higher differentiability of the discs is discussed in $6. 
See Theorem 6.6. If I ,  > 1 then is unique; if II < 1 then is unique. 

Sketch of proof. Fix i and group the Lyapunov spaces E j  as 

According to the preceding discussion there exists a locally f -invariant family 
yPUof c"" discs tangent to E,? . Making the same construction for f 
respecting the splitting 

gives a locally f -' -invariant family WY tangent to E" Local f -'-invariance 
and f -invariance are equivalent. By construction the discs WY and W? form 
flags WY c WY c . . . c wY,and W? 3 WY 3 . . . 3 wIPS. Define W ,  to 

be the transverse intersection wrUn WY . Then W ,  is c'"' , tangent to Ei , 
and = { W , ( z ) ) is locally f -invariant. Q.E.D. 

Let us apply 3.16 to the case of center manifolds. We assume there are just 
three intervals Is < I, < I,, and 1 E I,. Correspondingly, T,M splits as 
E ~ $ E ~ $ E ~ .  

3.17. Corollary: Pesin Center Manifold Theorem. Tangent to EU, EC, ES 
there are locally f -invariant families of discs W U  , W? Thec'+~' , W C  
families W u, W h r e  unique. 

Proof. Uniqueness follows because it corresponds to the pseudo unstable case 
with A, > 1. Q.E.D. 

Finally we remark how this invariant manifold theory extends to flows. Let 
f, be a flow on M . The Oseledec analysis applies to the time-one map 
f ,  of the flow, producing a Lyapunov splitting along most orbits. It is invariant 
under the flow due to its uniqueness and the Chain Rule. Call 

The orbit d ( p )  = { f , ( p ) :  t E R) is weak hyperbolic if EC is spanned by 
the vector field generating the flow. By 3.16, 3.17 there exist unique locally f -
invariant families of discs WuU, WSStangent to EUu, E" . They are called the 
strong unstable and strong stable manifolds. By uniqueness and commutativity 
of the time-t-maps of the flow, one checks that for t > 0, f , ( w U u ( p ) )3 

W U U ( f , p )  cand ~ , ( w " ( P ) )w S S ( f , p )  Hence, 

3.18. Corollary. Along weak hyperbolic orbits of a flow, strong unstable and 
strong stable manifolds exist, are unique, and are of class Crf" . 
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In this section, we prove Theorem 2-absolute continuity of the W Uand 
W Slaminations. Our proof is a modification of what we did in our treatment 
of the absolute continuity of the horocycle foliations for Anosov actions in 
[PSI]. The biggest obstacle here is that the Three Discs Lemma of Anosov [A] 
is not available. Instead, we use an overcovering argument; see 4.1. In fact the 
proof we give below provides an alternate proof of absolute continuity in the 
uniformly hyperbolic Anosov case. 

As usual, we assume the diffeomorphism f :  M 9 is of class c " ~ ,  0 < 
p 5 Lip, and d is a weakly hyperbolic orbit. Through q ,q' E wUp, p E @ , 
draw s-dimensional, smooth discs D and D' transverse to wUp. We want to 
investigate the W Uholonomy map from D to D' . See 5 1 and Figure 1 .  

Let us first make a motivating digression about what we could do if differ- 
entiability and uniformity problems were trivial. Imagine that W Uis a COo 
foliation. Then it induces a smooth holonomy map h :  D  -,D' and we could 
try to calculate its Jacobian at q ;this is exactly what we want to do even when 
W Uis neither smooth nor a foliation. Imagine also that 7 is another COo u-
dimensional foliation whose leaves are fairly near those of W uin the C' sense. 
Imagine that we have been told exactly what are the Jacobians of the holonomy 
maps along the 7 foliation (at all pairs of points q , q' ) and imagine that in 
terms of them we hope to calculate the Jacobian of h . 

Under f -iteration we can expect f "73W Uas n -,co . (This is the utility 
of the graph transform method.) Thus, the Jacobians along f "7, h, : D -,D' , 
can be expected to converge to J ( h ),the Jacobian of h . Another way to express 
J(h,)  is by commutativity of the diagram 

where h, is the uniterated F-holonomy. Thus, 

where qn = f -" ( q ), q; = ho f  -" (q)  ,and J (f -") , J (f ") are the Jacobians of 
the restriction of f -" , f n  to the appropriate inverse image of D or D' . The 
beauty of Jacobians, of course, is that they regulate infinitesimal area-change 
and, being real numbers, they commute. Also, the chain rule for derivatives 
becomes a product formula for Jacobians. 

We have said that it is reasonable to expect J(h,)  -,J ( h ). Thus, to calculate 
J ( h )  we would "only" have to know J (f -") at various points and J ( h o )  at 
qn . This last factor should tend to 1 because, since q, and q; are asymptotic 
as n -,co , the F-holonomy expressed by ho takes place across a shorter and 
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shorter distance. Taking the limit and commuting the Jacobians, one would 
predict that 

In fact, this formula is true in the weak hyperbolic case, but we are going to prove 
something easier-the product above converges and a multiple of it bounds the 
Radon Nikodym derivative of the holonomy. 

First we state and prove a covering lemma that may well be a standard fact, 
since its proof is so straightforward. Let K be a subset of an s-dimensional 
metric space W .  We want to cover K efficiently by 6-neighborhoods-we 
want few of the neighborhoods to overlap. We assume that the neighborhood 
of K is quasi-Euclidean at scale 6 in the sense that for each p E K there exists 
a homeomorphism p from the 46-disc in W' onto a neighborhood of p in W 
such that p(0) = p and p has low distortion: 

4.1. Overcovering Lemma. K can be covered by 6-neighborhoods in W such 
that fewer than 8' of them overlap a t  any point. 

Proof. Let A be a maximal &separated set in K ;  i.e., d (a  ,a ' )  2 6 for all 
distinct a , a' E A and no point p E K is farther than 6 from A . It is a Zorn's 
lemma argument to prove that A exists. Then {W,(a)) covers K and the i d -  
subneighborhoods of the a E A are disjoint. Fix any a, E A and suppose 
that N - 1 of the W,(a) intersect Wd(ao), say a = a i ,  i = 1 , ... ,N - 1 .  
Then W3,(ao) contains the N disjoint sets W,12(a,), i = 0 ,  ... ,N - 1 . The 
image of the quasi-Euclidean homeomorphism p, at a, contains W3, because 
po distorts distance by at worst the factor i.Thus, we get N disjoint sets 
p i 1 (  Wdi2(ai)) ,each of which contains a Euclidean disc A, of radius 3618 . See 
Figure 8. Therefore, N area(D3,/,) < area(D3,), and hence N < 8'. Q.E.D. 

Proof of Theorem 2: Absolute continuity. We prove absolute continuity of the 
WU-holonomy maps. It suffices to do so locally for the c - h o l o n o m y  
maps, P being a single, small hyperbolic block. (By W: we refer to the lam- 
ination of unstable manifolds based at points of P .) For by 3.6 and 3.13, 
" is the union of f 'W: over countably many iterates of countably many 
hyperbolic blocks, and all questions of measure zero are insensitive to count- 
able union. Likewise, global holonomy maps are built up from local ones by 
composition. In particular, we need only deal with hyperbolic blocks contained 
in & " ( T ) ,  the set of weak hyperbolic orbits whose growth rates lie outside the 
interval [T- ' ,TI . 

Choose p and E , 1 < (1 + E ) ~< p < T ,and let I I *  be the adapted Finsler 
supplied by 3.3. By 3.13, applied to f -' ,we may assume that on the saturate 
H of our hyperbolic block P there are defined &-slowly varying Bore1 radius 
functions, r and r' , and ~ s ( r )contains a fairly flat s-disc GZ of radius 
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FIGURE8. Controlled overlap 

rl(z), z E H . The s-disc G, is the graph of some map gZ:E:(rl) - EZL(r') 

and Igzlc,3 0 as lkl -m, z E f k p. 
Now consider p,, E P and draw smooth discs D , D' of dimension s = 

m - u which cross wi0(r)  transversely. Because P is small and W U  is C1-
continuous on P , we may also assume that each w;(r) , p E P , crosses D 
and D' transversely at unique points, say y and y'. We call the union of 
these points y = w;(r) n D , the shadow of on D , and denote it by S . 
The W;-holonomy map is a homeomorphism h : S -S' , y H y' where S' is 
the shadow of W: on D' . (Although S ,S' need not be compact, h extends 
continuously to a homeomorphism from S onto S' .) We may assume that P 
is small enough and D ,D' are close enough together that S , S' are bounded 
away from dD ,dD1. This is what we mean by h being a local holonomy map. 
See Figure 1 in § 1. 

If Z cS c D and Z has (Riemann) measure zero then we must show that 
h(Z) has measure zero in D' . First we show that the neighborhood of f -"S 
in f -"D is quasi-Euclidean at scale 6, , where 6" = i r ' (  f -"p) . The natural 
metric on f -"D is d ( x  ,x') = the infimum of the arc-lengths of C1 paths 
in f-"D that join x to x' , the smooth Finsler I I being used to measure 
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arc-length. We must find low distortion homeomorphisms y, of RS(46,) onto 
neighborhoods of points of f -"sin f -"D as in 4.1. See Figure 9. 

Let b ,  b' be the lifts of D .  D' to T p M ,  b = exp i l (D) ,  D' = expil(D') .  
We think of them as trial s-discs in TpM. When it is simpler, we write r: 

for r'( f -np) , W: for w;-.~ , etc. Call yn = f -"(y) and yn = exp,' (yn), 
where y = W;(r) n D .  Thus, f ( y n )  = Y , - ~ ,  yn E Wnu(r), and IynI* + 0 at 
an exponential rate (1 + &)/p .  Since I I *  is comparable to I I be an &-slowly 
varying function B, , IynI -) 0 at rate (1 + E ) ~ / ~ .Since (1 + e l3  < p , this rate 
is faster than the rate at which the radius r: may shrink. Thus, yn lies in (and 
very near the center of) the fairly flat s-disc Gn c f -"D that is supplied by 
3.13; in particular, nS (y,) E E: (r') where nS is the orthogonal projection of 
T,M onto ES. Let in : RS + E: be an isometry that sends 0 to nS(yn) and 
define y, as the composition 

y, (x)=expnograph(gn)oin(x) ,  xeRS(46 , ) ,  

where Gn is the graph of gn . Since lynl + 0 at a faster rate than 6, + 

0 ,  in(RS(46,)) c E:(r1) . Since lgnlcl 3 0 as n + w , by 3.13, it follows 
that y, distorts arc-length very little. That is, y, has low distortion and the 
neighborhood of f -"sin f -"D is quasi-Euclidean at scale 6, , for n large. 
The same is true of f -"s'in f -"Dl. 

Now suppose that Z c S c D. and Z has (Riemann) measure zero. We 
must show that h (Z)  has measure zero in D' . We write IAl to indicate the 
Riemann measure of a set A ,  if no confusion arises. It is enough to prove that 
there is a constant J such that for any small disc A cD , Ih(A)l 5 JlAl. For 

FIGURE9. Fairly flat parts of ugly discs in M 
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the zero set Z c S can be covered by countably many of such A's whose total 
measure is < E/ J . Then h(Z)  is covered by countably many sets h (A) whose 
total measure is < E ;hence I h ( 2 )  I = 0 .  Instead of h (A) it is more accurate to 
write h(A n S). We assume A is small enough that the disc of twice its radius 
at the same center still lies in D . 

Since the neighborhood of f -"S in f -"D is quasi-Euclidean at scale 6, , 
the same is true for any subset of f -"S ;e.g ., f -" (An S )  . By 4.1, f -,(A n S) 
can be covered by discs Ri of radius 6, in such a way that at most 8S of 
them overlap. We are going to over cover hn (Ri n S,) = R; ,where S, = f -"S 
and h, : S, - S: is the yu-holonomy map, h, = f -" o h o f n  . Note that 
d(w ,h,w ) - 0 at a uniform rate ((1 + E ) ~ / , D ) "where w E f -"S , since P is 
a hyperbolic block. Here, d(w ,h,w) refers to the smooth Riemann metric on 
M .  

Take any Ri , double its radius, call the answer g i ,  and "push it across" 
from f -" D to f -" D' as follows. Let yn = f -"(y) be the center of Ri ,and 
call y: = f -"(yl) where h(y) = y' . Since f -"D and f -"D' contain fairly 
flat s-discs Gn and 6, of radius r: at y, and y:, there exists a u-plane in 
TM whose parallel translates near gi are approximately perpendicular to gi. 
We push along it, from f -" D to f -" D' . The distance we push across is not 
significantly more than the distance from yn to y: , and this is substantially 
less than-the radius of the disc being pushed. During such a short, nearly 
perpendicular push, distance is changed very little. (Shape, on the other hand, 
is changed a great deal.) Thus, when pushed across to f -"Dl , 2, becomes a 
neighborhood of y; , 2: ,  and 2: contains a disc at y: of radius 36,/2. But 
hn(Rin S,) = R: is contained in a disc at y: whose radius is nearly 6, . (The 
radius is no more than 6, +d(idn,h,) where id, : f -"s+M is the inclusion 
map and d(idn ,h,) + 0 at a faster rate than 6, - 0 .) Hence, hn(Ri) cg; . 
See Figure 10. 

Since h, (Ri) c 2;, (2;)  is a covering of f -" (h (A n S)). The volume of 
gi is comparable to that of Ri because pushing across is a smooth operation 
applied to a well-controlled object and doubling the radius multiplies the volume 
by approximately 2S . That is, ~ f f i l / lR i l  is uniformly bounded, say by R . 

Now for n large we estimate xiI f n  (2;)l. By 3.15, the Jacobian of f n  at 
any point of f f i  is comparable to the Jacobian of f n  at a point of 2 ; .  That 
is, J( f n  ,z l ) / J (f n  , I) is bounded, say by J, ,for z E gi, z' E I?: . Thus, 

At most 8' of the f "(Ri) overlap and all of them are contained in the dou- 
ble of A, say 2. Their total volume is at most 8'121 . The volume of 2 is 
approximately 2'1~1 . Hence, 
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FIGURE10. When pushed across, Ri becomes ii and 
2: still covers R: = hn(RinS n ), Sn = f  -"S being the 
nth shadow 

Thus, J = is a constant that compares the volume of h(A)  and A .~ ~ ~ ( 1 6 ) ~  
From the existence of J we know that h is absolutely continuous. Q.E.D. 

The stable and unstable manifold theorems are theorems in the neighborhood 
of an orbit. If f : M + M is not a diffeomorphism we have comparable 
theorems in the neighborhood of a full orbit, i.e . a bi-infinite sequence { x i )E Z 
such that x j  = f J - ' ( x i )  for any j > i . It is not even necessary that f be a 
local diffeomorphism at the xi , that is Tx,f need not be an isomorphism. We 

Actually a stable manifold theorem can be stated for positive half orbits and an unstable 
manifold theorem can be stated for negative half orbits. 
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reverse the order o f  definitions so that we may proceed directly to the stable 
manifold theorem. 

Definition. We say that the full orbit {xi)i,, o f  the endomorphism f : M -+ M 
is weak hyperbolic i f  there is a T f  -invariant splitting Tx, M = E:( @ E:, . A 
constant 0 < A < 1 and for any E > 0 ,  functions A,(x,) such that 

(a)  ( i )  I 	 lv 1 for all and all T,( f n  (v)l < ~ , ( x ~ ) i "  v E E: n t 0 ,  
(a)  (ii) IT,,f -" ( v )  1 < A,(x,)A" lv 1 for all v E E:, and all n > 0 ,  and 

T ~ , 1 is invertible so (ii) makes sense. f n  E:, 

( b )  4 (E i I? E:! 1- < A&&) 
( c )  A,(x,) 5 (1  + E ) " - ~ ' A , ( x ~ ). 

The unstable and stable manifold theorems remain essentially unchanged for 
asymptotically hyperbolic orbits o f  endomorphisms. Here we use c'+('-)for 
p > 0 to mean crfB'for all 0 < p' < /3 . 
5.1. Theorem. Let f : M + M be c'" and {x,}~, ,an asymptotically hy- 
perbolic orbit. Then there are maps 

wS(x , )E C 
l + ( B - )  

( ~ : ( ( r ~ ( x , ) )~ : , ( r ~ ( x , ) ) )  
such that ru , rs are slowly varying functions of xi . 

(i i)  	wru( x i )= expx, (graph w '( x , ) )  is a family of f -overflowing invariant 
discs through xi , f ( wru( x i ) )3 wru(f ( x i ) )  tangent at xi to E:( . Up to 
restriction wrU( x i )  is unique. The points of wrU( x i )  are characterized by 
z E wrU(xi)i f  d ( z  , x i )  < r (x , )  and for j < i 3z j  with d ( z j  , x,) + 0 ,  

d ( z j, x,) < r(x,) and f '- '(z,) = z . In this case d ( z j, x,)A-" - 0 .  
Any family of "trial" unstable manifolds { ~ ' ( x , ) }reasonably close to 
{ wrU(x i )}locally converges to { wrU(x,)} under f n  iterations as n + 

oo . The convergence occurs in the C sense. 
(iii) 	W;( x i )= expx, (graph ws  ( x i ) )  is a family of f -invariant discs through 

xi , f ( W;(x i ) )  c w;(f ( x i ) )  tangent at xi to E:( . Up to restric- 
tion w;(x,) is unique. The points of w;(x,)are characterized by 
z E w,S(x,) i f  d(  f " ( x i )  , f n  ( z ) )< r ( ~ , + ~ )  n 2 0 and in this for all 
case d ( f n(x , ), f n  (z))A-" -+ 0 .  Any family of "trial " stable manifolds 
{ ~ ' ( x , ) }reasonably close to { w ; ( x i ) }  locally converges to {W;(x , ) }  
under inverse graph transform. 

( iv)  If f is Cr for r 2 2 or crfBfor r 2 1 then the stable and unstable 
manifolds are C' and C r+(B-)  

Proof. The proof o f  the theorem is precisely as the Unstable Manifold Theorem. 
The renorming is similarly accomplished. It is irrelevant that T f  IES exist or 
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be bounded. The distances are measured in the max metric in Tx, M . The only 
difference is that graph transform is defined slightly differently for the stable 
manifolds as in [HPS, p . 561. 

This is the graph transform approach alluded to in [RS]. A more general 
theorem for endomorphisms is true for any split in the exponents as for diffeo- 
morphisms but we leave it as an exercise for the reader. An almost everywhere 
stable and unstable manifold theorem is true for endomorphisms as well. This 
is proven by [Ru and Ml]  even in infinite dimensions for compact operations 
and was announced in [RS]. It depends on an Oseledec theorem for endomor- 
phisms; we state a theorem with the functions AE included. We rely on [MI 
and Ru] and follow the notation of [FHY]. It is simpler to work on full orbits so 
we let % = limy Mf be the inverse limit, that is the subset of I IM consisting 

of full orbits. A point in % is a sequence. Let f :  % -+ z be the induced 
map. f is a homeomorphism; it is simply the shift map. If we let II: % +M 
be defined by ~I ({X~)~ , , )  x,, , fIf f fI and fI maps the set of invariant = = 

Borel probability measures for f onto the set of invariant Borel probability 
measures for f . The tangent bundle of M ,  TM pulls back to T% on % 
and Tf extends to ?f : - -


T M  Tf T% 

1 1 

M 
- -i M ,  -

Tf is a continuous bundle endomorphism covering the homeomorphism j' of 
the compact base so ?f is a linear map on each fiber and 3K > 0 such that 
~ l ? f l l < K  forany ~ E G .  
5.2. Theorem. There is a Borel set f c z which has the following properties: 

(i) 	f is invariant under f and has measure 1 for every f-invariant prob- 
ability measure on %. 

(ii) For every m E i', m = (m,),,, there is an integer k and a Tf -invariant 
splitting of the tangent space 

T,,M = E,(m,)$..~@Ek(m,)$F,(m,) 

and numbers 	A ,  (m) > . . . > A,(m) such that 

(a) The E, 3, F, and A 's are Borel measurable functions. 
(b) 	 Tf 1 Ef (m,) is an isomorphism 1 L j 5 k . 

Llogl?fvl=A,(m,) forall O # v E E , ( m , ) .  1 S j S k .('1 	 limn++, n 

(d) l i m i l o g T f n l ~ , ( m , )  = -m. 

(e) If 0 # v, E F,(m,) and there are v, E F,(m,) for j < i such that 

~f'-'(v,) = v, then limj_, $ log v . I  = -m .
J 
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(f) Fw(mi )= K(mi )@ G,(mi) where T,, f " ~ ( m , )  is identically 0 for-

,,tion A, dejined on BA 

some ni and T f  lG,(mi) G, (mi+,)  is an isomorphism. 
(g) 	Given E > 0 there is a Borel measurable function A, : f -+ ( 1  ,oo) such 

that for all m E f 
(i) 	6 ( E j ( m , )  ~ , ( m , ) ) - '  5 A,(mi), a(@;='E j (mi )  F,(mi))- 

1 
5 A,(mi) 

and A, ( m j )  5 ( 1  + &)IJ-"A, ( m i )  . 
(h) Let A E R .  Denote by B, , the subset of f which consists of points 

r?~ such that A,(m) 4 [ A  '- E ,A + E ]  , i = 1 , . .. ,k ( m ). This set 
is f-invariant. For m E B,,, let E; = @A,,, E,(m) and E i  = 

@,,,, 	 E , ( m ) .  Then there exists a real valued Borel measurable func- 
such that for every m in BA ,, 

(i) 	Vv E E;,  Vn 10, ITm0fn(v)II A,(m)lvle
(A-&)n 

, 

(ii) 	Vv E E; , Vn t 0. 1 Tmof -n (v ) [  5 ~ , ( f i ) l v l e - ( ~ - ' ) ~ ,  

(iii) Vn E Z , A,( f n ( m ) )5 ~ , ( f i ) e " ' I. 

We sketch a proof of this theorem, relying on all the linear theory already 
in [Ml or RS]. Let K ( m )  = {v E T , M [ T ~  " ( v )  = 0 for some n > 0).  
This is the "eventual kernel" at m . Thus dim K( f ( m ) )  5 dim K ( m )  since 
Tf ,  : K ( m )-K( f ( m ) )  and in fact K ( m )= (T~( , ,f ) - I  K(f ( m ) )  . If we con- 
sider the set of points such that dim K ( f  ( m ) )  < dim K ( m )  then we see by 
Poincare recurrence that the measure of this set is 0 for any invariant measure 
M . Similarly we let V ( & )= r) Tm-" f ' ( T

m-n 
M )  for f i  E % and n 2 0 .  

This is the ultimate image. V ( m )c TmoM and c ~ ( f m ) ,?P(L) since 
Tmof :  TmoM -+ TfmoM. Now V ( m )  can drop dimension along orbits only 
on sets of measure 0 again by Poincare recurrence and we may suppose that 
FM, = K ( A ) @  V(ri2) . Tf ,  : V ( & )- v(f(li2))is an isomorphism of bounded 
norm and ?f n l ~ ( r ? z )= 0 for some n . Ff ( ~ ( r i t ) )  . Now we may c ~ ( f m )  
apply the Oseledec theorem to the subbundle V = UfisGV ( m )  of 77. For 
every orbit we have a splitting El ( m i )  @ E,(rn,) @ . . . @ Ek(mi )@ G,(m) and 
exponents A,  2 . . . 2 Ak . Now we can make an arbitrarily small measurable 
perturbation to make ?f ( ~ ( r i z ) )-+ ~ ( f m )isomorphisms thus producing an 
exponent for Ff l ~ ( m ) ,  less than Ak . Applying Made Theorems A and Ax+, 
C in the nonsingular case now will complete the argument for (a)-(g). 

As in [FHY]we want to let 

and, finally, A, ( L )= sup(A,(fi). 2,( m ) ). We only have to prove that A, ( m )  
and i t ( & )  are finite in a set of total probability 1 . 
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Let C, (m)  = sup 1 1  T f n &[E: 1 ~e-(~-')'. Since 1 1  Tf 1 1  is bounded, there is a 
constant B > 0 such that C,(A) 5 B C , ( ~ ( A ) ). Thus for b(m) = log C,(m) -
logc,(fm) we have b(m) 5 log B . logC,(m) is measurable, by Lemma 111.8 
of Mafie for any ergodic measure p 

This establishes that A",(&)is finite on a total probability set. 
Now D, (A)  = sup,,, I I Tf-"1 E: 1 le-'"')' defines a measurable function 

by [Ml] since we are i n  the injective case. There is a constant B such that 
~ D , ( f ( m ) )> D,(m) , since 1 1  Tf-' 1 E:I I 5 I I ~f- ( n t l ) l ~ y k l l1 1  Tf I E:I 1 and the 
second factor is bounded. Thus log B > log D,(m) - logD,(f(m)) and we pro-
ceed as above. 

As an immediate corollary we have 

5 . 3 .  Corollary. Let f :  M -+ M be a c'" endomorphism and let p be an 
invariant measure for f with no zero exponents. Then for almost all full orbits 
of f there are stable and unstable disc families which are Borel, vary subexpo-
nentially along orbits and are invariant. 

Proof. Let v be an invariant measure on % which projects to p . It has the 
same exponent; see [RS] for example. 

In this section we generalize the cr-section Theorem of [HPS]; see also [S]. 
Then we read off the corresponding-and sharp- Cr-Pesin Stable Manifold 
Theorem for r > 1 . 

We assume that H is a Borel subset of our manifold M and that h : H +H 
is a Borel bijection. Let 9, be the set of &-slowlyvarying Borel functions 
B: H -+ ( 0 ,oo). That is, 1/(1 + E )  5 B(hp)/B(p) 5 1 + E for all p E H . It 
is easy to see that 9' is closed under sums, positive multiples, convex combi-
nations, and pointwise convergence. Besides, if B ,B' E9, then their product 
belongs to 9, 9 , ,  which we denote by 9:.Clearly, 9: = Be,where 

21 +&I=(1 + & )  . 
It will be useful to consider functions with growth rates 9:") where the 

exponent p depends on r ,the degree of differentiability of the dynamics, and 
p ( r )  = 33r . A handy property of p , whose verification is left to the reader, is 

(1 ( t + 4 + t p ( t ) ) p ( t ) < p ( t + l ) ,  t L O .  

Definition. The Cr-size of a Cr function f ( x )  is I f  I,, = I f  1, + I f  1,  where 

I f l o  = suplf(x)l and I f \ ,  = sup{l lDif~~:1 < i < r ) .  If f = f ( p , x )  for 
p E H then we say that f is of class c,' provided that its Cr-size is 9,-
bounded. That is, for some B E9, and all p E H , I f  ( p  , .)I,, 5 B(p) . The 
domain of definition of f ( p  ,.) may depend on p . 
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Let X , Y be fixed Banach spaces and consider E = H x X x Y as a trivial 
Y-bundle over H x X . Let r ,R E be given. Call 

D = { ( p,x , y )  E E :  1x1 5 r ( p )and I Y  I 5 R ( P ) ) .  

We think of D as a "trivial disc bundle of varying radius". Its base space is 
the "varying product" H x r  X = { ( p,x ) E H x X :  1x1 5 r ( p ) ). 

A section of D is a map a : H x r  X +D of the form 

The function s is called the fiber component of a .  Under the norm 

Sec(D) is complete. 
Let us consider a fiber contraction of D , i.e ., a map F :  D +E making the 

diagram 
D FE=HXXXY 

bH x r X  - H x X  

hH - H 
commute and satisfying 

(a) F ( D ) n ( H x , X x Y ) c D and k = s u p L i p ( F ( p , x , - ) ) < l .  
(b) b embeds each p x X ( r ( p ) )  onto a subset of hp x X which contains 

hp x X ( r ( h p ) ) .  
By "Lip" we refer to the Lipschitz constant. The constant k < 1 is called the 
fiber constant of F . Correspondingly, the base constant of F is 

x ) -a = inf I ~ ( P ,  b ( p ,  x l ) J  
: ( P , x ) , ( P , x ~ ) E H X ~ XI X  - x l l  

The fiber constant ineasures how sharply F contracts the fibers and the base 
constant measures how sharply b expands the base. We do not assume that 
a >  1 .  

Definition. F is an r-fiber contraction, r 2 0 , if it is C,'and 

(2) kcu-S(l + E ) P ( " )< 1 for all s , 0 5 s 5 r , 

r ( r )  being the exponent 3)' referred to above. For any r 2 0, this implies 
that k ( l  + 8 )  < 1 . Note that if E = 0 then the fibers of D are uniformly 
bounded and F is a uniform r-fiber contraction in the sense of [HPS, p .  80 
and S]. 
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We see that F defines a natural map F,: Sec(D) + Sec(D) by 

F,(a) = F o o o b-llHxrX. 

Equivalently, image(F,a) = F(image(a))n D . We call F, the graph transform. 
If F,(a) = a then we say that a is an F-invariant section. 

The following result is the key to $6. It is more general than the c'-section 
Theorem of [HPS] in that the bundle where F is defined has unbounded fibers 
and the derivatives of its fiber component are unbounded as well. It is less 
general in that the uniform assumption ka-' < 1 replaces the pointwise as- 
sumption sup, k X a i r  < 1 . 
6.1. C,'-Section Theorem. An r-fiber contraction has a unique invariant section 

a, and it is of class c,' where 1+ 6 = (1 + E)P(' ). 
Remarks. The fiber contraction F in 6.1 is once less differentiable than the 
diffeomorphism f in $3. See 6.2. Finer estimates would let p be replaced by 

the smaller exponent 22r-1 - 1. 
It will be useful to understand some of the higher order properties of matrix 

inversion. Recall that Inv: sz? '3 is defined as Inv(A) = A - I  where A E d 
and sz? is the set of invertible operators on some Banach space E . It is well 
known that Inv is smooth-in fact, analytic. Let us observe that 

where p ranges over all permutations of (1 , . . . ,s)  and B, , . . . ,Bs are op- 
erators on E . For (D Inv),(B) = -A-~BA-'  and if the above formula is true 
at stage s then by Leibniz' Rule 

which is exactly the formula predicted at the s + 1 stage. In the proof of 6.1 
we use this formula to say that D~Inv is uniformly bounded on the set d ( p )  
of A with l ~ ~ 1 1l - 5 p .  In 6.3 we use 

(3) D~Inv is uniformly Lipschitz on sz? (p). 


It is interesting that (3) does not follow from the Mean Value Theorem, since 

sz? (p) is not convex. To verify (3) one "detelescopes" the difference A-


A - I  . . . B A- -A'-' B A'-' . . . B A'-' into s + 1 terms with a factor of 

p(s) P( 1 )  As) 

A-I - A'-' in place of successive A-I 's. Then one estimates this factor as 
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-A1-lll = I~A-'A'A'- '  -A- 'AA ' - '~ I  5 P 2 1 1 ~ - A'll and gets (3). In fact, 
~ip(D'(1nv ldlp,)) 5 ( S  + 1)!,ust2. 

It will also be necessary to use the Higher Order Chain Rule. For the com- 
position of C' functions the HOCR says 

where the multi-index y ranges over all partitions of {I , . . . , r )  into disjoint 
nonempty subsets y : y ,  u . . . u y, = {1 , . . . , r )  , and v, means (v, , . . . , v,) 
arranged into blocks (v,, , . . . , v,,) where v,, is the block of vectors v, with 
j E y, . The ordering of the vj inside a given block is irrelevant by the sym- 
metry of higher derivatives. Likewise D Y g  is the t-tuple of multilinear maps 
(Dlyllg, . . . , Dlyllg) and its ordering does not matter because D' f is symmet- 
ric. Note the welcome absence of numerical coefficients in the formula; we have 
not collected equal terms. The sum has 5 r r  terms and so 

In the same way, if Q, and R, are composable linear operators depending C' 
on z then by the Higher Order Leibniz Rule, 

Thus, 

( 5 )  IQ, O R , I , ~  5 2 ' 1 ~ ~ l ~ ~ l ~ ~ l ~ ~ ~  
Proof of 6.1. Let r = 0 .  Since k ( l  + E)< 1 , F, contracts the complete metric 
space Sec(D) into itself. The subset of continuous sections is closed and F-
invariant, so the unique fixed point a, of F, is continuous. Since a, covers 
the identity map on H x r X and D has Be-bounded fibers, a, is of class C: . 
But for r = 0 ,  1 + d  = (1 + E )  3 2 1 + E ,  and so a, is of class C: as claimed. 

Let r = 1 . Consider the action of F on prospective tangent planes to the 
image of a,. A plane at z is sent by (DF), to a plane at F ( z )  . Since a, 
is a section, the planes we consider will be graphs of linear maps P: X + Y ; 
i.e ., P E L ( X ,  Y) . We write the derivative of F at z as the matrix 

A Z : X + X ,  B , : Y + X ,
(DF), = B z )

C, K, ' C,: X +  Y ,  K,: Y + Y 

with respect to the X and Y variables. Thus, 

A, + BZP 
( D F ) ~('P") = (c,+ K z P ) .  

Since F preserves fibers of D , B, = 0 and since b is an embedding, A, is 
invertible. Thus, the natural action of F on P E L ( X ,  Y) , considered as a 
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plane at z E D , is P F  : P ++ (C, + KzP)o A; . In terms of bundles, 

commutes and P F  is affine on fibers. It is c'-' and contracts fibers more 
sharply than the constant ka-' < 1,because the minimum expansion of A is 
at least a and IIKzII < k .  

We cannot immediately assert that P F  has an invariant section because F 
is not an appropriate base map. Being part of (DF), , C, is 9&-bounded. 
Choose B E LBt and a large constant c such that 

Consider the trivial disc bundle (of varying radius) 

L = {(p , x ,P )  E H x, X x L ( X ,  Y): 1IPII I cB(p)). 

Like D ,  L has Be-bounded fibers. Define L F  on L by 

L F ( P ,x ,  P )  = (b(p ,x )  ,P F ( z  ,P ) )  , 

where z = a F ( p ,  x )  . Thus, L F  = b x ( P F  o a,) . By choice of c in (7), 

I1$F(zj P)II I [B(P)+ kcB(p)la 
- 1 

I (1 + &)B(hp)(l+ ck) I cB(hp) , 

whenever ( p  ,x ,P )  E L and z = a, ( p  . x )  . Also, the fiber constant ka-l of 
BF obeys (ka- ')( l  + E)P( ' )  < 1 by (2) with r = 1 = s . Thus, L F  is a 0-fiber 
contraction of L , 

Let 7, be its unique invariant section and let tF be the fiber component of 
7, . We claim that t ,  is the derivative of sF , the fiber component of a, , 

This implies that oF is C' . 
We follow the same path as in [HPS]. Consider the set s~c'(D) of sections 

of D whose slope over p x X(r(p))  is IcB(p) . It is closed in Sec(D) . For 
the slope of a section over p x X(r(p))  is just the Lipschitz constant of its fiber 
component. We observe that s~c'(D) is carried into itself by F,. For D F  
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carries any plane of slope 5 cB(p) at z onto one of slope 5 cB(hp) at F ( z ), 
and therefore F never increases the slopes of secants from being 5 cB(p)  to 
being > cB(hp). Hence, the unique fixed point a, of F, lies in s~c ' (D) .  

Next we consider two local sections a ,  a' of D which agree at the point 
( p,xo). We assume they have slope 5 cB(p). Under F, , a and a' become 
local sections which agree at b(p ,x,) = (hp,to).Let A, be the Lipschitz 
constant of s - s' at ( p,xo)  where s  , s f  are the fiber components of a ,  a ' .  
That is, 

I ~ ( P > x )  - s'(p ,x)lA = A, ( a  ,a') = lirn sup xo x+xo Ix - xol 
Let AcO be the Lipschitz constant of the difference of the fiber components of 
F,a and ~ , a '  at (hp,to).Compare them: 

Ate = lim sup lg (a(b- l t ) )- g(af(b- l t ) ) l  

&+&0 I( - (01 


5 lim sup k I ~ ( P , X )  - s f ( p ,  x)l Ix - xol 
X'X0 1~ - x0l lt-tol <- k ~ ~ ~ o - l ,  

where b(p ,x )  = (hp,t )and g is the fiber component of F . Thus, 

(9) At0 5 k a - ' ~ , ~ .  

For any zo = a, ( p  ,x,) , let izobe a local section of D defined in a neigh- 
borhood of xo such that the image of izois an affine plane Azo parallel to the 
graph of tF ( p  ,xo) and passing through zo . See Figure 1 1. 

Call 

A ( ~ )s u ~ { A x o ( d z o  ,= , a F ): xoE X ( ~ ( P ) ) )  
Axo(Azo,a F ) being the Lipschitz constant of dzo-a, at xo . 

Since zF is Be-bounded and a, has Be-bounded slope, A(p)  is a 9&-
bounded function. By naturality of F, , F,(A,) is a c'-local section such that 

FIGURE1 1. The effect of F on d z o  and aF 
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the tangent plane to image(F,Lzo) at Fzo is AFZo . Thus, 

by (9). However, any 9&-bounded function obeying inequality (10) must vanish 
identically. For if A(p) # 0 then ~ ( h - " p )  2 ( k a - ' ) - " ~ ( ~ )and this quantity 
grows too fast for A to lie in . But A - 0 is exactly what (8) means. Hence 
oF is C1  and Do, is 9&-bounded; i.e ., oF is of class C, I . Since p ( 1 )  = 27, 
E < S ,and oF is also of class c,',completing the proof of 6.1 : r = 1 . 

Let r 2 2 .  We are assuming that F is an r-fiber contraction: 

k and a being the fiber and base constants of F . Consider the same tangent 
fiber contraction as above, 

Its fiber constant is ka-' and its base constant is a . Define E' by 

1 + & ' = ( I  + & )
r+l+(r- l)p(r- l)  

To apply 6.1: r - 1 to L F  with E replaced by E' ,we must show 

(11) the cr-I-size of L F  is 9 & ,  -bounded. 

(12) (ka - l )~u-~( l+ E1)A,-1) < 1 f o r a l l s ,  O < s < r -  1. 

It is immediate that (1) and (2) imply (12). To check (1 1) is harder. We 
estimate the c'-'-size of L F  via the HOCR. Since L F  = b x P F  o oj., and b 
is of class c,', it is enough to worry about P F  o % . Since E < E' ,the fibers of 
L are Be,-bounded, and we just need to estimate 1PF o oFI,-, . By (4) we see 
that 

We must estimate IPFI, where P F  = (C, + KzP)o A;' . The HOCR applied 
to A;' = Invo(z rA,) gives 

where y ranges over partitions of (1 , .. . , i) . Now our initial remarks about 
inversion come into play. Since the norm of A;' is uniformly bounded, the 
higher derivatives of Inv are bounded and we see that D'A;' is 9&'-bounded. 
On the other hand, Dt-'(c, + K,P) is 9:-bounded due to the facts that F 
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is of class C,' and P is Be-bounded. (Note that these estimates apply to 
derivatives involving P as well as z .) Thus, by ( 5 ) ,  IPFI, is 9:"-bounded. 
By induction we get to assume that 

Thus, by (1 3) and (1 4), ILFI, is L8~t'p(')-bounded, 0 5 t 5 r - 1 . Taking 
t = r - 1 gives (11). 

Now we can apply 6.1: r - 1 to L F  and conclude that its unique invariant 
section oLF is of class c,'; where 1 +S' < (1+= (1+E ' ) ~ ( ~ - ' )  = 1+S . 
But according to (8),  oLF is just the tangent plane field to oF. Therefore, a, 
is of class c,' as claimed. Q.E.D. 

6.2. Corollary. If the difeomorphism f : M +M is of class C' , r being an 
integer 2 2 ,  then the stable and unstable manifolds of weak hyperbolic orbits are 
of class Cr  . 
Proof. We consider a Cr-' -fiber contraction F which, roughly speaking, is the 
effect of T f  on prospective tangent planes to W" . We show that F satisfies the 
hypotheses of 6.1 and conclude that the tangent plane field on W" is Cr-' -
i.e ., W" is Cr  . 

Instead of dealing with just one orbit, we may as well work with all orbits 
passing through a small hyperbolic block P . As in $3, let ( , ) *  be the adapted 
inner product over the saturate of P and let H be the disjoint union of the 
iterates H = Uf "(P) . Let X = R" and Y = RS with their standard inner 
products. Any two inner product spaces of the same dimension are isometric 
(this is why dealing with norms and Finslers alone is not good enough); let 
i :  H x X x Y + E; $ Ek x T,M be an isometric isomorphism carrying 
H x X to EL and H x Y to E L .  (We identify H x X with H x X x 0, 
etc ., and we assume that i covers the identity on H .) Since P is small, E" 
and ES are uniformly continuously trivial over it. For by 3.7 they extend to 
continuous trivial bundles on its closure. Thus, we may assume that i is a 
homeomorphism of each f "P x X x Y onto Tf, ,M.  (In $3, points in H are 
called " z ";here, they are denoted by " p ",and " z " refers to a point in D .) 

As in $3, let f be the lift of f to TM via the smooth exponential. Using 
i ,pull f back to a map i* f defined on a neighborhood D of the zero section 
in H x X x Y .  That is, 

For notational simplicity we shall call f = i*f and thus speak of f as a 
map defined on D . As with f , we write f (z)  = (f (p)  ,f,(x ,y)) where 
z = ( p  , x , y)  E D .  The norms we use on D will be written 1 1 and ) I  11, but 
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they correspond isometrically to I I *  and I I I I *  in TM . In particular, if we 
express Df as 

then, uniformly over p E H ,  A, is an expansion, KO is a contraction, and 
C, = B, = 0. Choose constants k and a such that sup, llKoll < k < 1 < a < 
inf, m(A,) . (Recall that the minimum norm, or conorm, of an operator A is 
defined to be m(A) = inf{lAv 1 : Iv 1 = 1) . For invertible operators, m(A) = 

I ~ A - '1 1 - '  .) Choose and fix an E > 0 so small that 

As in 6.1, /c(r) = 33r . (Note that the existence of E follows from k < a and 
ka-' < 1 ;we do not need to use k < 1 < a ,  so the proof below can be modified 
to handle the nonhyperbolic case too. See 6.6.) 

By 3.4 there exists a Bore1 radius function r E ge such that D contains 
H x r  (X x Y) and on this subset fp ~ ' s ~ ~ r o x i r n a t e dis uniformly by its 
derivative (D fP), . That is, 1 1  AZ-A, 1 I is small, 1 1  BZ1 1  is small, 1 1  Cz1 1  is small, 
I IK, -KO\ 1 is small. Presently we say how small is small. For simplicity, assume 
H x r  (X x Y) equals D . In fact f is so nearly fiber preserving that it has an 
invariant sektion a,. 

bH x r X  - H x X ,  

where b = n o f o of overflows the base. This section of is merely the local 
expression for wU- wru(p)= i o of( p  x X(r(p)))  , and f-invariance of 9 
means that f o 9o b-' = a, on H x r  X . This follows from f-invariance of 
wU. In fact af is the unique section of slope 5 1 which is f-invariant. By 

3.8 we know that of is C' and c'-bounded. We must prove that of is Cr  . 
In fact, we assert 

(16) of is of class c:, where 1 + v,= (1 + 1 < t < r 

Let t = 1 . Since af is c'-bounded, it is certainly c;,. 
Assume (16) is true up to and including some t , 1 5 t 5 r - 1 . As in $ 3  

we consider the Df -action, Pf ,on prospective tangent planes to the image of 
If P E L(X ,Y) with llPll 5 1 and P represents such a plane at z E DOf. 


then 

P ~ ( z ,P) = (c,+ K,P) 0 (A, + B,P)-' 
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represents its Df -image at f (z) . Clearly, P f is of class Cr-' . We define 
F = b x ( P f  o o f ) , s o  F(p,x,P)=(b(p,x),Pf(of(p,x),P))and 

-
H x r X  b H x X  

commutes. By L ,  we denote the unit ball in L ( X ,  Y) . (In the notation of 
6.1 this F would be called Lf .) We proceed to observe that F is a fiber 
contraction. If P E L,  then 

For I/C,JI, 1IB,II are small while //K,I/ IIA; 'JI  is nearly equal to IIKoll I I A ~ ' ~ / ,  
which is < ka-' . Similarly if P .P' E L,  then 

Finally, (Db), = A, + B, o Ds ,where z = of ( p  ,x)  and sf is the fiber com- 
ponent of o f ,  and so the base constant of F is 2 a .  These three requirements 
( I  IPf (z ,P )1 1  < 1,etc .) specify how small is small-i.e .,how closely we require 
(Df,), to uniformly approximate (D f,), . 

We are going to estimate the c'-size of Pf o 9.This is similar to the 
analysis in 6.1. First we observe that I f  1,  is ge-bounded. For respecting the 
smooth inner product on TM , D' f is uniformly bounded, and thus, 

follows from the comparison of ( , ) and ( , ) *  , B being an appropriate 
element of B e .  The C' size of f in D is the same as the C' size of f 
respecting I I *  . Hence, I f  1,  is ge-bounded. 

As in 6.1, I (A, +B, P)-, 1 ,  is 9:-bounded, 0 5 t 5 r -1. Clearly I C, +K, P 1 ,  
is ge-bounded since 1 1  PI 1 5 1 . Therefore, by ( 9 ,  the c'-size of P f is 9:"-
bounded. But by (4), IPf o ofIt 5 ttlPf ltlofl:, and SO by (16 : t ) ,  

(17) IPf o of 1 ,  is Be.-bounded where 1 + el = (1 + e)t + l + t p ( t )  

By (1) and (15), (ka-l)a-s(l + E ' ) ~ " )  < 1 ,  0 5 s 5 t .  Therefore, by (17), 
6.1 can be applied to F and so its unique invariant section a, is of class c;, 
where 1 +dl = (1 < (1 +e)'-"+') = 1+v,+, . That is, oF is of class c:,+,. 
But oF is just the tangent plane field to of by uniqueness of the former and 
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Df -invariance of the latter and so we have shown that af is c::: , completing 
the proof of (1 6 : t + 1) . Hence, af-i.e ., wU-is C' . Q.E.D. 

Remark. We also showed that the r th order tangent to w U ( p )  varies contin- 
uously as p varies in the hyperbolic block P . For a, is Cr-' over each 
f". 

Finally, we show that wUis of class c'" when f is. To do so, we gen- 
eralize 6.1. This involves dealing with Holder functions that have unbounded 
domain and target-an awkward topic. If I I is a norm and P E (0 ,1 ]  is a 
constant, it will be convenient to write 

Let g (x)  be defined on a convex set and let P E (0 ,1 ]  be given. Consider the 
two conditions: 

(a) Ig(x)-g(x')l/lx -x'lB is bounded for all x ,x' with 0 < Ix -x'l I1. 
(b) I g (x )  - g(x') 1 /' lx -x'l is bounded for all x ,x' with Ix - x'l # 0 . 

Clearly, (b) implies (a). Let us check the converse-in fact the constant in (b) 
is no more than twice that in (a). Assume Ix - x'l 2 1 . By convexity, [x ,x'] 
can be divided into subsegments x = xo < . . . < x, = x' such. that [xi-, ,xi] 
has length 1 for 1 5 i 5 n - 1 , while [x,-, ,x'] has length 5 1 . Then 

- g(x')l I Ig(xo)- g(x, ) l+  . . . + Ig(x,-,) - g(x')l 

H{l + . . . + 1) + Hlxn-, - x'lB 

5 Hlx - x'l + Hlx - x'l = 2H B Ix - x'l 

where H is the bound from (a), proving (b). On the other hand, if Ix -x'l I1 
then (b) is immediate. The bound in (a) or (b) is called a P-Holder constant of 
g .  If g is of class Cr and D r g  has P-Holder constant H then the size 
of g is lglo + lglr+p where 1gIr+,j = lgl, + H .  

Definition. If g ( p  ,x )  is of class Cr+' in x , r 2 0 ,  and if the c'+'-size 
of g ( p  . .) is S&-bounded then we say that g is of class c&'+~.F is a If 
fiber contraction and it is of class c,"' then we say that it is an (r + /@fiber 
contraction provided that 

(18)  ka-"1 + e)'(rfB) < 1 for all s , 0 5 s 5 r + P. 

6.3. c,'" Invariant Section Theorem. The invariant section of an (r + P)-jiber 

contraction is of class c;" where 1 + d = (1 + e)r(r+B). 

Proof. Let a, = id xs, be the invariant section of F and write F as b x g . 

Define 
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(This ,u is different from the p in 523, 4.) Let xl = b - ' ( ~, x )  and xl = 

b-I ( p ,x') . Since b expands more sharply than a , we see that if /x l-xi 1 2 1 
then 

/ x l - x = / x l - x / - 1 / x - x ' 4 pB 
I X - X I / .  

' B  BOn the other hand, if /x l  -x; 1 < 1 then ' / x 1-x: 1 4 a-B / x - x  I 5 ,u /x-x ' / . 
In either case, ~ i ~ ( b - ' )4 ,u respecting ' 1 I : 

- x i /  5 s  B lx-x'l. 


Let r = 0 .  As in [S, p .  461 we use F-invariance of a, to estimate 


An = IsF@,) -sF(x:)l 

where x, = b-"p ,x )  and x: = b-"(p ,x') , Let Hn be the P-Holder constant 
of F over h -" (p )  . Then 

As n -+ oo , knAn+0 because the radius of D is gE-bounded and ( 1 +e)k< 1 
since F is  a 0-fiber contraction. Similarly, since H E A?E and since kp(l+&)< 
1 by ( 1 S), the sum in curly brackets converges, 

Thus, if c is the constant ( 1  + e ) / { 1  - kp(1+ e ) )  then 

for all x ,xl  E X ( r ( p ) ). The same estimates show IsF(h-"p, x)-sF(h-"p ,x l ) /  

-< cHn' 1 ,  - xl/  for all x . x' E X ( r (h-" p)) . Thus, a, is of class c:" and 
6.3 is proved for r = 0 .  

Let r 2 1 .  We know that a, is Cr and DaF is found as the invariant 
section of the ( r- 1)-fiber cont'raction 

bH x , X  - H x X ,  

where LF = b x P F  o aF, and PF(z  ,P) = (C,+ K,P)A; '  . We want to apply 
6.3: r - 1 + P to ILF , so we must estimate its Cr-1+B -size. To do so it is 
convenient to generalize the composition formulas (4)and (5) to the Holder 
category. 
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Suppose that f and g are cr+'functions defined on norrned spaces, r 2 1, 
and Lip(g) refers to the Lipschitz constant respecting '1 1 : 

Lip(g) = sup B l g ( ~ )  - g(x')l
B I X  - x'l ' 

Then 

By (4) it suffices to worry about the P-Holder constant of Dr(f o g)  . Let 
z = g(x) and z' = g(x'). By the HOCR, 

Thus, by (4) 

I f  o gj,+B= I f  o g( ,+ P-Holder constant of Dr (f o g) 

4 r r l f  lrlgl: + (r"' + rr){lf Ir+gIgI:+a}{l + 'Lip(g)) 

which is (1 9). Similarly, if Q, and R, are composable linear operators that 
depend cr+'on z then 

In our case (1 9) gives 

TO estimate IPFIr-l+B, we start with A;' . Recall that d ( p )  is the set of 

invertible A : X +X such that I I A - I  1 1  5 p . By (1 9), 

Now Lip(Az) 4 max{l , Lip(Az), (Lip(A,)'} . For Lip(A,) is the supre- 

mum of the ratios ' 1 1  A, - A,, I ~ / ' I Z  - z'l . If all these ratios are 5 1 then 
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1 . On the other hand, if the numerator is > 1 then the ratio is 
Finally, if the numerator is 9 1 and the ratio is 2 1 then it is 
Thus, 

Combining (3), (22), (23), we get 

Next, I IDJ (CZ + K,P) -D'(c,, -K,, P')II is estimated as 

which shows that the P-Holder constant of D'(c, +K,P) is 9:-bounded for 
0 5 j 9 r - 1 . Thus, 

The next factor in (21) is I U ~ / : ~ ~ + ~. By induction we get to assume that uF is 

of class c;;"' where 1 + d' = (1 + e)p(r-l+') . Th us, 

It remains to estimate 'Lip(uF). By 6.1, we know that uF is C' and since 
it is a section, its Lipschitz constant is 2 1. Call Ax = x - x' and Au, = 

a,( p  ,x) - uF ( p  ,x') . If IAuF I 9 1 then \Ax19 1 and 

'lAuFl/'lAxl = ~ ~ u ~ l ' / l A x l '  9 Lip(uF).5 ~ i p ( a ~ ) '  

On the other hand, if IAuF I 1 1 then 

Consequently, 'Lip(uF)5 Lip(uF). In the proof of 6.1 we showed that uF is 
of class C: , so Lip(oF) is 9,-bounded; i.e ., 

(28) 'Lip(uF) is 9,-bounded. 

Combining (21), (26), (27), and (28) shows that (PF o u ~ ( , - , + ~is 

9,
2+r+(r- l ) p ( r - I+P)+I -bounded. Since b is of class c,"' this implies that 

(29) LF = b x PF o oF is of class C,, r - I+P 



ERGODIC ATTRACTORS 	 5 1 

where 1 + E' = (1 + E)3+r+(r-	 l ) ~ ( r - I + P ). By (18) and ( I ) ,  
r - l+p)(30) (ka-l)a-S(l  + 6 ) ~ '  < 1 f o r a l l s ,  O I s I r - 1 + p .  

But (29) and (30) say that LF is an ( r -  1 +P)-fiber contraction with E replaced 
by E' . By induction and ( I ) ,  its unique invariant section o,, is of class Cs r- 1+/3 

where 1 + 6 = (1 + E ) P ( ' + ~ '  . But 4, is just the tangent plane field to o, and 
so o, is of class c,"' . Q.E.D. 

6.4. Corollary. Ifthe dgeomorphism f : M +M is of class cr+', r +P > 1, 
then the stable and unstable manifolds of a weak hyperbolic orbit are also of class 
c r + B  . (Thus, r = 1 and /3 > 0 or r 2 2 and p 2 0. ) 
Proof. We revert to the notation of the proof of 6.2. Let o f :  H x r  X +D be 
the unique f-invariant section of slope 5 1 . Its image is merely W" viewed 
in the adapted exponential coordinates. Choose and fix an E > 0 so small that 

(31) ( k a - l ) a - S ( ~+ E)'"'~) < 1 for all s , 0 I s I r + p. 
By 3.8 and 6.2 we know that of is c:, where 1 + 6' = (1+ e)r(r' . We want to 

show that of is c,"' where 1 + 6  = (1 +e)r'ri'' . To do so it suffices to prove 
that the ( r  - 1)-fiber contraction F = b x Pf o of is actually an (r - 1+P)-fiber 

contraction with E replaced by E' and 1 + E' = (1 + E)l+r+(r-l)p(r-l+/3) . For 
then by ( I )  and 6.3 applied to F , we see that o, is of class Cs r- I+D . Since 
oF is just the tangent plane field to o f ,  this means that of-i.e ., w"-is of 

class c,'" as claimed. 
Estimating the C r-l+p -size of F is similar to the calculations in the proof 

of 6.3. First, the cr+'-size of f (= i* f )  is its cr-size plus the P-Hiilder 
constant of Dr  f . The latter is found from 

I ~ ( f ~ ) ( J i ) ~ + ' l f l , , '  

since lz - zll* 2 f i l z  - zll implies 

The function B belongs to A?&. Thus, I f  is A?&-bounded. 

Second, we estimate I(Az+ B ~ P ) - 'I r - l + B  just as we did in (22)-(24). It is 

~8&~-bounded. sire. By (20) we Similarly, Cz + K - P  has A?&-bounded 
conclude that 

(32) 	 Pf has A?&'+' -bounded C 
r-I+/3 

-size. 
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By induction we get to assume that 

Finally, since of has slope 5 1 , 'Lip(af) is bounded. Combining (31), (32), 
and (33) via (1 8) we see that 

Since b = n o f o of it follows from (18) and (33) that the size of b 

is Bel + ( r - l ) p ( r - l+p)-bounded. From (34), 

(35) F = b x Pf o af is of class C,, 
r- I+' 

where 1 + E' = (1 + E )
l+r+(r-l)p(r-I+') 

Moreover, from (3 1) and ( I ) ,  

(36) ( k a - l ) a - s ( l + ~ ' ) p ( r - l + ' ) < lf o r a l l s , O 5 s 5 r - l + P .  

(35) and (36) mean that F is an ( r  - 1 + /3)-fiber contraction of L with E 

replaced by 8'. Hence, a, is c,'-'+'and o f ,  wUare c,'"' . Q.E.D. 

The preceding analysis has assumed that the diffeomorphism f is of class 
Cr for a finite r . Now assume that f is C" . By 6.2 we know that the local 
unstable manifold W;(p) of a weak hyperbolic orbit is C' for any r , but the 
radius- p on which this is true may depend on r . By construction, p varies 
slowly-so slowly that Uf -" (wf  ,,(p)) is the global unstable manifold of p . 
See 3.8. Thus, 

6.5. Corollary. Ifthe difeomorphism f is of class C" then so are the unstable 
and stable manifolds along a weak hyperbolic orbit. 

Finally, we analyze the pseudo-hyperbolic case. Let us assume that H is 
an f-invariant Borel set of regular orbits whose growth rates A are confined 
to a fixed set of compact intervals I[< . . . < I, . See 3.17. (In the hyperbolic 
case there are only two intervals, I2> 1 > I, .) According to 3.17, tangent to 

Ei = E' there exists a locally f -invariant family of discs = { Wi(p)}, 
p c H .  

6.6. Theorem. The discs Wi(p) are of class Crtp and are c"' Borel func- 
tions of p E H provided that the dfleornorphism f is c"' , r + P > 1 ,  and 

I,+,< < I,-, for all s ,  1 5 s 5 r + p .  
Proof. This requirement on the intervals is a "spacing condition" on the growth 
rates. By (I)' < I' we mean that tS < t' for all t E I ,  t' E 1'. If i = 1 or 
i = I then only half the hypothesized inequality makes sense. Call I, = [ai ,bi] . 
Fix an i . By assumption, for all s , 1 5 s 5 r + /3, 

I,+,< (Ii)' =+ bi+l < a: , 

(I,)' < I,-, =+ bf < ai-, . 
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Group the Lyapunov spaces E, as in 3.17, 

EP" = El $.  .. 8E , ,  G, = E,,, $ . . . $ E l  

There is a locally f -invariant family of discs yPu= { w Y )  tangent to EY . 
The tangent planes to these discs are located by the iteration of T f  on trial 
tangent planes-i.e ., they are located as the L f -invariant section a, ,. where 
L f = b x (P f o a,.) as in 3.8, 6.2, and 6.4. The base map b is essentially f 
restricted to WY, and so the base constant of L f is the weakest expansion in 
W r  , namely a = a, . The fiber constant of L f is k = b,,,a;' because b,,, 
dominates the largest growth rate in Gi . By the hypothesis that I,,, < ( I , ) ' ,  

we have ka-' < 1 for all s ,  0 j s 5 r - 1 + p .  By 6.3, q1 is cr-lt'. 
Hence, wpUis Crt' . The same analysis applies to f -' respecting the splitting 

where EY = @,,, E, and = @,,, E, since (I,)' < I 1 - 1  * Thus,E* 

wy' is Cria and so is the locally f -invariant transverse intersection W ,  = 

WYn wy' . Q.E.D. 

6.7. Corollary. Over theset of regular orbits, let EU = eA,,E< EC= $,=, E L ,  

and E' = @,,, E? If the dzj6eomorphism f is of class c'" , 1 < r + < m , 

then there exist Cr+' locally f -invariant center manifolds wCtangent to EC . 
Proof. We diGide the set of regular orbits into saturates of pseudo-hyperbolic 
blocks so that on each, the growth rates of vectors in E" and ES are bounded 
away from 1 . Say they lie in I,, I, and I, < 1 < I, . If Ic is a sufficiently 
small interval around 1 then I, < (I , ) ,  < I, for all s , 1 5 s 5 r + p and the 
result follows from 6.6. Q.E.D. 
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