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BOUNDARY BEHAVIOR OF INTERIOR POINT
ALGORITHMS IN LINEAR PROGRAMMING*^

NIMROD MEGIDDO* AND MICHAEL SHUB^

This paper studies the boundary behavior of some interior point algorithms for linear
programming. The algorithms considered arc Kannarkar's projcctivc rescaling algnriihm. the
linear rescaling algorithm which wa.s propased as a variation on Karinarkar's algorithm, and
ihe logarithmic barrier technique. Tlic study includes bolh the continuous trajectories of the
vector lields induced by these algorithms and also the discrete orbit.s. It is shown that, although
the algorithms are defined on the interior of the feasible polyhedron, they actually dL-termine
difTerentiable veetor lield.s on the closed polyhedron. Conditions are given under which a
vector field gives rise to trajectories that each visit the neighborhoods of all the vertices of the
Klco-Minty cube. The linear re.scaling algorithm sati.-ifies these conditions. Thus, limits of such
trajectories, obtained when a starting point is pushed to the boundar>-, may have an exponen-
tial number of breakpoints. It is shown that limits of projectivc rescaling trajectories may have
a linear number of Mich breakpoints. However, projective reseating trajectories may visit the
neighborhoods of tinearly many vertices. The behavior of the linear re.scaling algorithm near
vertices is analyzed. It is proved thai all the trajectories have a unique a.symptotic direction of
convergence to the optimum.

1. Introduction. Interest in interior point algorithms for linear programming was
revived by the work of Karmarkar [Kar]. In this paper we sometimes refer to
Karmarkar's algorithm as the projective rescaling algorithm. This reflects the property
that the algorithm moves in the direction of the gradient of the objective function after
a projective scaling transformation has been applied. A variation on this algorithm,
which was proposed in various forms by many people' (e.g.. [Bar, CaS. VMF]). is
called Ihe linear rescaling algorithm, refiecting the property that a linear scaling
transformation is applied before the gradient step is taken. The projective and the
linear rescaling algorithms were shown in [GMSTW] to he related to the logarithmic
barrier function technique using Newton's method. In this paper we study the behavior
of all these algorithms. We consider both continuous and discrete versions of the
algorithms. Our main interest is in the boundary behavior of these algorithms. We
study the differences among the different algorithms through their behavior near
boundaries. We first introduce the algorithms and the notation to be used later.

Interior point algorithms for linear programming usually update a point .v, interior
to the feasible polyhedron P, by moving along a straight line in the direction of a
vector V(x) defined at x. The new point depends of course not only on the direction of
Vi-x) but also on the step size which is assigned at v. Thus, the new point can be
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represented in the form .x' = x + a(x)V(x\ where a(x) denotes a real number that
determines the step size. The iteration formula defines a transformation of the
polyhedron P into itself. We are concerned with the properties of this transformation,
or the vector field itself, near the boundary of P. We denote the boundary of P by dP.
In this paper we usually consider the linear programming problem in standard form:

Minimize c^x

{SF) subject to Ax = h.

where A e R'"'"' (m ^ «). h e R'" and c, Jt e R".

1.1. The linear rescaling algorithm. Following the description of [VMF], the
algorithm is stated with respect to the linear programming problem in standard form.
It is assumed that a point .v" is known such that -4.v" = h and .x" > 0. Given a point
X e R", we denote by D = D{x) a diagonal matrix of order n whose diagonal entries
are the components of x. We frequently denote D = D,, to emphasize the dependence
on X. Let x £ R" be any point such that Ax = b and x > 0. The algorithm assigns to
the point x a "search direction", that is, a vector ^ (whose norm is not necessarily
equal to 1) which is computed as follows. Consider a transformation of space
T^: R" -* R" given hy T^iy) = /)"'>'• I" 'he transformed space, the direction TJ =
T^i^) is obtained by projecting the vector Dc orthogonally into the linear subspace
[•q: ADT\ = 0}. Thus, -q is the solution of the following least-squares problem:

Minimize \\Dc - 7)\\~

subject to ADT) = 0.

Assuming A is of full rank, the solution is

^^y^] Dc.

In the original space, the linear rescaling algorithm assigns to a point x the vector

DC.

to define a search direction. We note that since the problem is in the minimization
form, the new point has the form JC - a(.x:)^/(.v) where a(x) is positive.

1.2. The projective rescaling algorithm. Following [Kar]. the algorithm is stated
with respect to the linear programming problem given in the following form
("K.armarkar"s standard form""):

Minimize c^x

subject to Ax = 0.,
{KSF)

e\\ = 1,

where/4 e ^ c - i>x"(i ^ m ^ «), A, c G /?" and e - (1 \f& R". In the original
statement of the algorithm it was assumed that Ae = 0 so the point .x" = e/n is
interior relative to the linear subspace [Ax = ^]. We do not use this assumption in our
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analysis. It was assumed that the optimal value of the objective function is zero, but
the algorithm is well defined without this assumption. Lei A denote the matrix

Let .Y G R" be such that Ax = 0. e'x = 1. and x > 0 and continue to denote
D = D(.x) = Diag(.v). The new point is computed as a function of x as follows.
Consider a transformation of space

T;: R" -> R"

given by

Thus. TJx) = e/n. In the transformed space, the direction -q^ is obtained by project
ing the vector Dc into the nullspace of the matrix

Thus.

The nullspace of the matrix ^equals the intersection of the nullspaces of the matrices
AD and e'. However, e is orthogonal to every row of AD since ADe = Ax = 0. This
property implies that TĴ  can he obtained by projecting on the nullspace oi AD and
then projecting the projection on the null space of e^ (see Appendix C). It follows that
the search direction in the transformed space is given by

Dc =[l- lee^j[l - DA'^iADWy'AD] Dc.

The search direction ^^ in the original space is obtained as follows. The algorithm
moves in the transformed space from the point e/n to a point of the form

where p is a certain positive constant. The step in the original spaee is thus given by
the vector u = T~\q) - x. The inverse transformation is given by

Letting

V =
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we have

u - —;—T - A- -
•nnle-Dv] ' I

Let us ignore the size of the step, and consider just a vector ^^ in the (opposite)
direction of w:

Note that x^e = 1. so we have

[D - xx''][l - \ e e ' ' \ = /> - \ x e ' ' - xx'' + ^ x x V = D -

Thus, the algorithm assigns to the point x the veetor

M'y'] Dc,

to define the search direction. As in the case of the linear reseating algorithm, the new
point has the form x - a(x)^^(x) where aix) is positive. Note that ^^ is well defined
even without the hypothesis that the minimum of the objective function is equal to
zero.

1.3. The barrier function technique. The logarithmic barrier technique considers
the nonlinear optimization problem

Minimize f^(-v) = c^x -

subject to Ax = h,

x> 0,

where fi > 0 is a scalar. If x*ifi) is an optimal solution for SF{fx). and if A*(jti) tends
to a point .v* as /i tends to zero, then it follows that A* is an optimal solution for the
linear programming problem (SF). Consider the problem {SF(^)) where ju is fixed. As
explained in [GMSTW], the Newton search direction ^̂  at a point ;c is obtained by
solving the following quadratic optimization problem:

Minimize jo^^^F{x)v + (vF(x)) v

subject to Av = 0, where

VF{x) = c — \i-D~^e and V'^Fl.v) = fiD~^.

Let w^ denote the vector of Lagrange multipliers. The vectors v^ and w^ must satisfy
the following system of equations

O
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Let 1],. = D^^fiv^. Thus,

AD, O

It follows that

is the vector field corresponding to the fixed value of fi. It was noted in [GMSTW] that

In this paper we study the boundary behavior of the above interior point algorithms
for linear programming. We study both the continuous trajectories of the vector fields
induced by these algorithms and the discrete sequences of iterates of a point given by
transformations of the polytope to itself. (In both cases we sometimes refer to these
trajectories as orbits.) In §2 we show that, although the algorithms are defined on the
interior of the feasible polyhedron, the vector fields actually extend continuously to the
whole closed polyhedron. This is true even when the problem is degenerate. In §3 we
provide conditions under which a vector field gives rise to trajectories that visit the
neighborhoods of all the vertices of the Klee-Minty cube. The linear rescaling algo-
rithm satisfies these conditions. Thus, limits of such trajectories obtained when a
starting point is pushed to the boundary may have an exponential number of
breakpoints. It is shown that limits of projective rescaling trajectories may have a
linear number of such breakpoints. Projective rescaling trajectories may visit the
neighborhoods of linearly many vertices. In §§4 and 5 we consider the behavior of the
linear rescaling trajectories near vertices. We show that all the trajectories have a
unique direction of convergence to the optimum. This direction is given by the vector
of the reciprocal values of the reduced costs of the nonbasic variables at the vertex. In
§6 we prove the differentiability (over the closed polytope) of the vector field underiy-
ing the logarithmic barrier technique with a fixed parameter, assuming nondegeneracy.
The linear rescaling algorithm is a special case. In §7 a similar result is proven for the
projective rescaling vector field. §8 analyzes the boundary behavior of the discrete
linear rescaling algorithm. The unique direction of convergence is proven for this case
too. In §9 the boundary behavior of the discrete version of the projective rescaling
algorithm is studied. The limiting behavior is characterized in terms of reduced
problems where the feasible domains are faces of the given polyhedron. In Appendix A
we describe the behavior of the linear rescaling algorithm on the unit hypercube. We
show that each ascending sequence of adjacent vertices can be approximated by a
trajectory. In Appendix B we consider the projective rescaling trajectories on the unit
simplex. We show that certain trajectories visit all the vertices. Also, there are
trajectories starting from the center and visiting the centers of linearly many faces of
the simplex. Appendix C proves a lemma on orthogonal projections. In Appendices D
and E we present similar results on the barrier function technique in inequality form.
In Appendix F we include an extension of §2. proving the differentiability of the linear
rescaling vector field on the closed feasible polyhedron. We also represent this
derivative in terms of projections on nullspaces.

2. Interior point algorithms continuously extend to the boundar)- As seen in §1,
the central feature of the interior point algorithms under consideration is a projection
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of a certain vector on a certain subspace. In this section we study the behavior of the
resulting vector as the current point of the algorithm tends to a boundary point.

Let A denote any fixed matrix of order m X /i. Lei /V = (1 n} and let /̂  and
I2 define a partition of A', i.e., N = /[ U /j and l^n I^= 0. Let A, denote a
submatrix of A consisting of the columns of A with indices in /, {i = 1,2). Similarly,
for any n-vector v, let i\ denote the subvectors of v consisting of the components of (;
corresponding to the sets /, (i = 1,2). Let D{v) denote a diagonal matrix whose
diagonal consists of the components of v. Let c denote any fixed M-vector and let c,
and c, denote its subvectors as defined above.

Given x, a step of the linear rescaling algorithm amounts to the evaluation of the
orthogonal projection of a vector D{x)c on a linear subspace L ( A ) = L(x\ A) =
{y: AD{x)y = 0}. We are interested here in the behavior of this projection when A-
tends to a limit point x. The interesting case is when some of the components of x are
zero. Let / , denote the set of indices j for which x^ ¥= 0. For simplicity of notation, we
assume x^ > 0 ( / e /,) but this is not really necessary for the argument. If Jc is a
feasible point then of course this condition holds.

The orthogonal projection of D{x)c on L(x) is equal to the point in Hx) which is
closest to D{x)c. Thus, it is the solution of the following optimization problem (where
the decision variables are the components of y):

Minimize \\D(x)c ~ y\\^

subject to AD{x)y = 0.

With the notation introduced above, the latter is equivalent 10

Minimize ||/)(.v,)f, - >',||^ +

subject to /4i/)(;c,)>', + / ^ ^ ^ ( A ' , ) . ! ^ = 0-

Let us denote this projection by i'{.v). and also let r,(.v) and v^l.x) denote the
restrictions to the sets of indices /, and Z,, respectively. Obviously, if .v tends to v
then the point D(x)c tends to the point D{x)c. The distance between D(x)c and
v(.v) is always less than or equal to | |D(A)C| | since the origin is in the linear subspace.
It follows that the point _V(A) is bounded while x tends to .v. Since .v, tends to zero,
the vector A2D(x2)y2i.x) also tends to zero (since y2(x) is bounded). Observe that the
point >'i(x) is the orthogonal projection of the point D{x)c on the affine subspace

Consider the point-to-set mapping 0 that takes every x e R" to $ ( A ) . First, recall
the definition of a continuous point-to-set mapping:

DEFINITION 2.1. Let Î' be a point-to-set mapping that takes points x e R" to
subsets 4'(.v) of R"'. The mapping î  is continuous at x if for any sequence { A * } .
converging to a point Jc, the following is true

(i) for any convergent sequence {;*). where r* e ^(x''), necessarily 2 = fim z^ e

(ii) for any point z' e ^{x), there exists a sequence {z*} converging to z' where
' e *(x^).

PROPOSITION 2.2. The mapping 0 ( r ) is continuous at x.
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PROOF. Let {x*} be any sequence converging to x. By assumption, ^, > 0 and
X2 = 0. Notice that $ ( J ) = {ir. /*,/)(.VI)H = 0}. Obviously, condition (i) is satisfied
since A-,D(.X2 ).V2(-̂ '*) tennis to zero. In other words, the set Q of all limits of sequences
{M*}. such that «* e ^(x''), is contained in the subspace 4)(jc). It is easy to check
that 12 is a linear subspace. which is in a sense the limit of the affine subspaces $ (A-^) .

The dimension of Q is the same as the common dimension of al! the <i(.v^)'s for A-
sufliciently large. This dimension is obviously equal to |/i[ - rank(y4i). On the other
hand. O(^) is a linear subspace of the same dimension (since Xj > 0). It follows that
<P(x) = 2 and this completes the proof.

PROPOSITION 2.3. / / .Y lenjs to x (where .?, > 0 ana' x. = 0) then the point .v',(.v)
tends to the projection o//)(.Vj)f| on the linear .subspace 4>(jc).

PROOF. Given the interpretation of the orthogonal projection as the closest point,
the proof is immediate.

COROLLARY 2.4. The limit of the orthogonal projection of D(x)c on the p
[z: AD{x)z = 0} is equal to the orthogonal projection of D{x)c on the subspace
[z: AD(x)z = 0}.

PROOF. It suffices to show that y2ix) tends to zero since the orthogonal projection
of £>(^)conto {z: D(x)c = 0} is of the form (_Vi(Jc),O) and since ^^^(jt) tends to >i(jt)
by Proposition 2.3. Assume that >2(JC) has a limit point y^ =^ 0. (It obviously has
some limit point by the boundedness of |1 v(:t)||.) Then \\D(x)c - (y^ix), >'2(-̂ "))IÎ
tends to \\_Dix)c ~ (y^(x),O)f + Wy^W^ 'On the other hand, letting y]ix) =
D '(_A-,)/J(JC,)>i(.v), we have that \\D(x)c - iy,ixlO)\\ tends to ||/)(.v)f -
(>i(x),O)||. Together these imply that for x sufliciently near to .Y,

\\D{x)c - (y,(.x). y,{x))\\ > \\D{x)c - {M--<)-O)\l

However, (j?,(x),O) G {Z: AD(X)Z = 0}. Thus we reach a contradiction to the fact
that ( v,(x), y2(x)) is the orthogonal projection of D(x)c onto {r: AD{x)z = 0}.

The vector ^ = ^(x) assigned by the linear rescaling algorithm to a point x can be
described as ^(x) = D{x)y where v is the projection of the vector D{x)c on the
subspace [y: ADix)y = 0}. Thus, we have the following proposition:

PROPOSITION 2.5. Suppose x e R" satisfies Ax = b, has positive components, and
tends to a point x such that x^ > 0 and Jc, = 0. Then the vector ^{x) of the linear
rescaling algorithm at x > 0 in the problem (Sf) tends to the vector ^(x,) assigned by
this algorithm at x^ in the problem

J - Minimize cjz

subject to A^z = b, •

The argument for similar results about the projective rescaling algorithm and the
barrier function technique are essentially the same:

PROPOSITION 2.6. Suppose x G R" satisfies Ax = 0 and e'^x = 1, has positive com-
ponents, and tends to a point x such that Jcj > 0 and x^ = 0. Then the vector iAx)
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assigned by the projective algorithm at a point x > 0 in the problem (KSF) tends to the
vector ^p{Xi) assigned by this algorithm at x^ in the problem

Minimize cfz

subject to A^z = 0.

PROOF. We have ^ = LC-v) = [D - .xx^]y where y is the projection of D(x)c on
the subspace {z: AD(x)z = 0} and the proof Follows easily.

PROPOSITION 2.7. Suppose x G R" satisfies Ax = b and has positive components,
and tends to a point x such that .v, > 0 and x, = 0. Let fi > 0 be fi.xed. Then the vector
V {x) assigned by the Newton logarithmic harrier function method at x > 0 in the

problem (SFifx)) tends to the vector V^ix^) as.signed by this algorithm at .v, in the
problem

Minimize cjz — fi 2_^ \n z-

subject to A^z = h,

z > 0.

PROOF. The vector K^(JC) assigned to x can be represented as D{x\y' — y") where
y' and y" are the projections of D{x)c and /ue. respectively, on the subspace
{z: AD(x)z = 0). The argument about the vector y' is the same as in Proposition 2.5.
The argument about the vector y" is similar. The vector e is a sum e = e' + e" of
vectors where e] = 1 for j e I^ and e'/ = 1 for j G / , . The projection of the vector e"
on the subspace [z: AD{x)z = 0} is bounded so D{x) times il tends to zero.

3. Interior point algorithms and the Klee-Minty cube. Some variants of the sim-
plex method require exponential numbers of pivot steps in the worst case. The first
examples of such behavior were provided by Klee and Minty [KM]. The "tilted cube"
described in their paper is a very useful construct which we also use here.

The H-dimcnsional K.Iee-Minty cube is defined by the following inequalities:

V ^ x^ ^ I — V.,

{KM)
j = 2 n ) .

where u is any positive number less than k. The associated linear programming
problem is to maximize the value of x,, subject to the set of inequalities (KM). It can
be verified that the maximum is attained at a unique point, namely, the vertex
iv,v^ p''-\l - P").

If .V is a vertex of the (KM) cube then obviously each .v, equals either the lower or
the upper bound implied by the values of the other components of .v. This suggests a
correspondence between vertices of the (KM) cube and vertices of the unit cube. Thus,
we use a (0, l)-vector i ' = (y , , . . . , i'n) to describe the vertex x of (KM) where
Xi = (1 - v^)p + u,(l - c), and for every _/' > 2, x, = (1 - v,)vx,^i + c / l - i'X^_i).
We say that v is the characteristic vector of the vertex x. Some simplex variants visit
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all the vertices of (KM) (or an analogous construct) in a nice order which can he
dcscrihed. inductively, as follows. The case n = 1 is trivial (ihe two vertices are the
numbers P and 1 - v). Let o \ . . . , v"' be the sequence of characteristic vectors of the
vertices of the ( H - 1 )-dimensional (KM) cube in the order they are visited (m = 2" " ' ) .
Then the 2'" vertices of the «-dimensional (KM) cube {{u\Q),(v\ 1), j = 1 , . . . , m)
are visited in the following order:

Faces of the (KM) cube can be easily described by the characteristic vectors. Thus, a
(/-dimensional face O is described by n — d equations of the form v' = e\ where
e' e {0.1}. We denote the relative interior of a face 0 by 0. It is interesting to note
that every face 0 has a unique point .v*($) where the value of JC,, is maximized over
4». We call this point the optimal point of 0.

We shall later consider the vector field induced by the linear rescaling algorithm on
the (KM) cube. However, we first discuss the subject in a more general context. Let us
identify the linear programming problem

Maximize c^x
[P)

subject \o AxT^ b

with the triple (A, h, c). We are interested here in algorithms thai can be described by
vector fields as follows. The underlying vector field A is defined for quadruples
(A-; A, b, c) where A e R"""', b e R'" and c, Jt e R", such that Ax > b. The vector
field assigns a vector y = A(jic; A, b, c) G R" such that A{x + ,v) > b. The vector field
describes an iterative algorithm defined by .x*^' = A* + \{x\ A, b, c).

We need our algorithms to be defined in a slightly more general context. First, the
algorithms extend to minimization problems in the obvious way that the direction
assigned in the "minimize c^x" problem is the same as the direction assigned in the
"maximize —c^x" problem. Also, we assume the algorithm is defined for affine
objective functions c^x + t^ and the vector field is independent of the constant £(,.
Similarly, if an inequality is given in a more general form, d'x + S ^ g'x + y. then
the algorithm converts it into {d — g)^x ^ y — 8.

The vector field A and the algorithm A will be referred to Interchangeably. Concep-
tually, the discrete iterates of the algorithm approximate the solution curves of the
vector field A. We now state conditions on the algorithm A which are needed for
establishing "long" paths In the (KM) cube. The corresponding linear programming
problem is nondegencrate. Thus we need these conditions to hold only for nondegener-
ate problems.

1. Reversibility. The algorithm is called reversible if, when the obj«;tive function
vector is multiplied by — 1, the direction of movement from x is reversed:

A{x;A,b,-c) A ( x ; A,b,c)

\\Mx;A,b,-c)\\ \\M.x;A,b,c)W

In other words, the directions computed by the algorithm in the minimization and the
maximization problems (with the same data) are precisely opposed to each other.

2. Independence of the representation. First, this condition includes all the assump-
tions listed above with respect to the extensions of the algorithm to problems in the
minimization form and inequalities in nonstandard form. In addition, we require the
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following: (I) The vector field is invariant under permutations of the set of inequalities.
In other words, if ^ is a permutation matrix then

Mx:QA.Qb,c) = \{x\A.b.c).

(ii) The vector field is invariant under "affine scaling automorphisms" in a sense as
follows. Consider an affine transformation of R". T(x) = Mx + q. where M is
diagonal. Denoting the new variable v = T(x) (^o x = M \y - q)). the problem (P)
is transformed into

Maximize c^M~^y

subject to AM'^y ^ b + AM~\.

Thus, the quadruple {x\ A, h. c) is transformed into

{x'\A',b',c') = {Mx +

A translation A.v maps to a translation Av = A/A.v (since y + Ar = M(x + A.v) +
q). Suppose the new problem (A', h'. c') is the same as (A. />, c) up to permutation of
the set of inequalities (that is, there exists a permutation matrix Q such that A' = QA
and b' = Qb), and up to changing the sense of the optimization from maximization to
minimization or vice versa, that is. c' is in the direction of ±c. In this case our
condition requires that the direction assigned in the transformed problem to the
transformed point be equal to the transformed direction assigned to the original point
in the original problem. In other words,

A{x';A\b',c') = MK{x\A,b,c).

3. Continuity. The vector field A is continuous at every x such that Ax = b.
4. Invariance of faces. The vector A(jt; A,b,c) is tangent to any face * of the

feasible polyhedron such that .v e "t, is equal to the vector field of the problem
restricted to the face, anj satisfies (l)-(3) on the face. Note that this condition
necessitates that A(jc; A, b, c) = 0 if x is a vertex.

5. Convergence. For every bounded face O of the (nondegenerate) feasible polyhe-
dron which contains the optimal vertex and every .v" G 6, the orbit induced by the
vector field A at x converges to this optimal vertex.

DEViNrriON 3.1. A vector field A (or. equivalenlly, an algorithm subject to the
interpretation given above) that satisfies the conditions of reversibility, independence
of the representation, continuity, invariance and convergence, defined above (in
nondegenerate problems), will be called proper.

Note that by the reversibility assumption, the orbit induced at a point .v" e <i>
(where O is bounded) by a proper algorithm, converges at one end to a maximum
point and at the other end to a minimum point of the face '^. Also, the restriction of ;i
proper algorithm to any face of the feasible polyhedron i.s itself a proper algorithm.

LEMMA 3.2. / / A is a proper algorithm then all the orbits induced by A on the ( KM)
cube are symmetric with respect to the hyperplane H = {.v e R": x,, = {). More pre-
cisely, if IT is one such orbit then a point x = ( x . . . . . . x,y is on IT if and only if the point
X = ( J : , , . . . , X , , _ I , 1 - .v,,)^ is on tr.
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PROOF. The given problem is

Maximize .v,,

vx,_. <A- ^1 - vx,_, (J = 2 n).

107

Consider the transformation of reflection with respect to the hyperplane H. that is,
.v,, = 1 — A',,. Let .Y = (A'I -^,,-1-1 ~ •'^,,)'- Tie alline transformalion is given by
the matri.x

l\
M =

1

and the vector q = (0 , . . . , 0.1 )^. The substitution x,, = 1 - x,, transforms ihe original
problem into the following:

Pi)

Maximize 1 —
P ^ Xt

PX__, « 1 -

1 - V

which is equivalent to

Minimize
r

i ' -v ,_ ,

vxn-\

\ - V

- I'.v.

The latter is simply the minimization problem with the same data as in ( P^). Let A,<.v)
denote the direction assigned at any point .v in the problem (P,) (i = 1,2.3). By the
properties of independence of the representation and reversibility.

Also.

By reversibility,

Thus,

Note that M ^ = W so

= - A / 'A,

n-\)
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In particular, if x„ = ^ then x = x and we get (A,(.v))^ = 0 for 7 = 1 « - I. It
follows that the point sets of the orbits through x and x coincide, and also if time is
reversed in the upper half of the cube, then the orbit starting at A- and the one starting
at X reach the hyperplane H at the same time, hitting it perpendicularly.

We are now ready to state a theorem on long paths.

THEOREM 3.3. Tf A /.v a proper algorithm then for every c > 0. there exists an orbit IT,

which is induced by A on the (KM) cube, such that for every vertex v of the culte, the
distance between v and the orbit tr is less than e.

PROOF. We prove the theorem by induction on the dimension of the cube. The
theorem is trivial for « = 1. Consider the general case n > 2. Consider the restriction
of the {KM) problem to the "ba.se" of (he cube, that is, the face C> characterized by
the equality A,, = vx,,_ j . Thus, the problem of maximizing x,, on *!> is equivalent to the
problem of maximizing x„ _, on *, that is, the [KM) problem in dimension n - 1. It
follows by the induction hypothesis that for every e there exists an orbit IT', that lies
completely within the base 4>, such that the distance between any vertex of 0 and 77' is
less than e. Given € > 0, let y denote a point in O such that for every vertex v of the
base <1). the distance between c and the orbit through y is less than c. If x is an interior
point of the {KM) cube which is sufficiently close to y then, by continuity, the
distances between the orbit through x and all the vertices of the base are each less than
€. Moreover, by the symmetry proved in Lemma 3.2. the point x = ( x j . . . . , x,,_,,
1 - X,,) also has the property that the distances between the orbit through x and all
the vertices of the "ceiling" (that is, the face characterized by the equality x^ = 1 -
"A:,,^!) are each less than c. However, these two orbits are actually the same by Lemma
3.2 and this completes the proof.

It is easy to see that, for e sufficiently small, the path (whose existence was proven in
Theorem 3.3) visits the c-neighborhoods of the vertices of the cube in ascending order
with respect to the «th coordinate, so in a certain .sense it approximates the behavior of
the simplex method. It is also interesting to note that not every ascending sequence of
adjacent vertices can be approximated by an orbit of the algorithm. The latter follows
from the symmetry property since the sequence of visited vertices of the base
determines the sequence of visited vertices of the ceiling. Interestingly, on the regular
unit hypercube every ascending sequence of adjacent vertices can be approximated by
an orbit of the algorithm. This is shown in Appendix A.

We now show that the linear rescaling algorithm is proper. The linear rescaling
algorithm was stated originally for problems in standard form. We now recast it in
inequality form and prove it is proper. For problems in the form (^) we can do one of
two things:

(i) We can introduce surplus variables s = Ax - b constrained to be nonnegative.
We then eliminate the x variables. Assume without loss of generality that

where B ^ R'""' is nonsingular and N & R^"'~"^^". Represent s = (Sg,s^.) and
^ = (bg, bf^) accordingly. Thus, x = B'^bg + .v )̂ and the problem is

Maximize c^B'^Sg

(^s) subject to NB'^Sg ~ 5,v = b^ ~ NB-^b^.
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It can be verified that if (x'; A', b\ c') is obtained from {x\ A, b, c) by a general affine
transformation as above, then both these problems have the same representation in the

( , )
{ii) We can develop an analogous algorithm, for problems in inequality form, based

on similar principles. This is included in Appendix D. The search direction is then
given by the vector

V = v{x) = where

bj.

We now prove that the algorithms outlined in (i) and (ii) above are actually ihe same.

PROPOSITION 3.4. The vector v = {A^D;~A)'h' is equal to the vector u assigned at x
bv applying the affine rescaling algorithm in standard form to the corresponding problem

PROOF. Let Dg and D^ denote, respectively, the diagonal submatrices of D of the
orders n x n and (m - n) X (m - n) corresponding to B and N. The direction A.v in
the space of the s variables is obtained by projecting the vector (D^B V.O) e R'"
orthogonally into the nuUspace of the matrix (NB-^Dg, -D^,) e y^f^-'OX'"^ and then
multiplying the result by £>,. Thus As = {Asg, Aŝ y) is the solution of the following
problem

Minimize

• ' subject to

This is equivalent to

Minimize WD

Thus

+

= 0.

.?a||= +

+ B'^ Asg = 0 or

Since

it follows that

which completes the proof.

PROPOSITION 3.5. The linear rescaling algorithm, applied to problems in the form
(P). is proper in the sense of Definition 3.1.

PROOF. In view of Proposition 3.4, we can rely on either form of the algorithm for
proving the required conditions. Reversibility is trivial to verify. Independence of the
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represen ta lion follows from the fact that the vector s = Ax - b h invariant: ihu.s,

Continuity and invariance of faces were proven in §2. Appendix D contains analogous
proofs for inequality form. We now con.sider the convergence of linear rescaling
trajectories. Firsl. note thai the objective function is monotone increasing along
trajectories. Thus, all the accumulation points of a trajectory must have the same
objective function value. Moreover, if v is neither a vertex nor an optimal point, the
objective function strictly increases along any trajectory in a neighborhood of .v. By
continuity, this implies that the only candidates for accumulation points are vertices of
the feasible polyhedron and optimal solutions. In §§4 and 5 we analyze the behavior of
the .trajectories near vertices (see also Appendix E). It follows from our analysis that
interior trajectories cannot accumulate in nonoptimal vertices, and. therefore, if there
is a unique optimal solution, all the interior trajectories converge to it.

Interestingly. Theorem 3.3 does not apply to the projective rescaling algorithm. Two
requirements of Definition 3.1 are not satisfied. First the reversibility requirement fails.
Recall that the algorithm has to be applied to the problem in the form {KSF) with the
additional requirement that the optimal value be equal to zero. The transformation
that takes a problem into this form when we wish to reverse the sense of the
optimization causes a change in the direction of search which is, in general, not the
reverse direction. Second, although the invariance of faces holds, convergence within a
face is not necessarily to the optimum of the face, unless the face contains the globiil
optimum of the problem. The reason is that the projective rescaling algorithm induces
paths that converge within faces to optima of a "reduced" potential function. More
precisely, let

P = {.V e R": Ax = O.e^x = 1. A- ^ 0}

denote the feasible polytope and for 7 c A' = {1 /j ] let

(pj = P n { . v e R " . x ^ = O , j € J ]

denote a face of P. Every nonempty face * , of P contains a ccnier, namely, a point cj,
where the reduced potential function i/zyCx) = \J\c'^x - Zj^j In x^ is minimized over
*/ . If the minimum of c^x over ^j is zero then paths through the interior of * ,
converge to such a minimum of cOf. The latter lies on the relallve bi>Lindary of the face
unless the linear function is constant on the face. If the minimum is not zero, the point
qj is interior. A detailed discussion of these issues is given in §7.

We now consider the vector field V^{x) given by the Newton logarithmic barrier
function method with a fixed ju. This vector field Is initially defined for ^ > 0. It is
obviously not proper since convergence is to the optimum of the nonlinear approxi-
mate objective function rather than the given linear objective function. Recall that
y^ix) has a limit as /i tends to zero and. moreover, the direction of the limit K,(.v)
coincides with the direction assigned by the linear rescaling algorithm ^,(.v) (see
ICJMSTWl). Thus, the vector field V,,{x) is proper. It follows that although ('^.(.T) is not
proper, it has "long" paths if /i is sufficiently small. More precisely.
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PROPOSITION 3.6. For every e > 0. there exists « ^,, > 0 such that for every fixed ju.
0 < /x < ju,,, the vector field V^^x) on the (KM) cube has solution paths that visit the
^-neighborhoods of ail the vertices.

4. The behavior of the linear rescaling al^forilhin near vertices. Consider ihe linear
programming problem in standard form (SF). Lei H denote the square matrix of order
t}}. consisting of the first m cohimns of A. We a.'isume B is nonsingular and B~^h > 0.
ln other words.. 5 is a nondegenerate feasihie hasi.s. Let N denote the matrix of order
m X (n ~ m) consisting of the last n - m columns of A. We denote the restriction of
any n-vector u lo the first m coordinates by v^, and its restriction to the last n ~ m
coordinates by v^^. Thus, the objects c^. Cf^, Xg and .v^ are dellned with respect to the
vectors c and x. Recal! that D = Dix) is a diagonal matrix (of order n) whose
diagonal entries are the components of the vector x. Also. D^ and D^ are diagonal
matrices of orders m and n - m. respectively, corresponding lo the vectors ^^ and ^ v

In the transformed space, the direction TJ = 7',(^) is the solution of the following
least-squares problem:

Minimize \\Dc - T)||^

subject to ADT] = 0.

This is equivalent to

Minimize +

subject to BDgT)w +

In the original space. $ = Di), so the problem is

Minimize \\D^s - t^a'^sf +

subject to fi^g -I- N^f^ = 0.

Eliminating ^^ by the substitution ^^ = -B 'A'^A

= 0-

obtain an equivalent problem:

Minimize + + \\D^-c^. - Z>,v'fvll'-

A vector ,̂v is an optimal solution for the latter if and only if the gradient of the
objective function vanishes, that is.

= 0.

Equivalently.

We now consider points x in the neighborhood of the vertex v(B) determined by B,
that is, Vj(B) = (B-^h)j for j=\,...,m. and iv(fi) = 0 for y - m + l n.
Obviously, if A- tends to v(B) then .V;̂  tends to the positive vector B~*h and .Vy tends
to 0. Note that the coelficient matrix of the latter system is

I + = I +
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which tends to the identity matrix as x approaches v{B). We thus have

PROPOSITION 4.1. The nonbasic part of the search direction is

The basic part of the search direction satisfies |||,,||

Notice that the vector c^ = c^ ~ N''B~^Cg is precisely the "reduced-cost" vector
associated with the basis B.

We lirst provide some intuition about the behavior of trajectories near vertices based
on the description of the asymptotic vector field. More rigorous arguments will be
given later. Consider the orbit induced by the (asymptotic) vector field ^ at a point .v
in the neighborhood of v{B). The underlying diilerential equations are i = ~c x'
{J = m + \— ,n), whose solution obviously is

Recall that x^it) is determined by x^it), namely, A^C/) = B~Hb - Nx,^(t)). Notice
that v{B) is the unique optimal solution of the linear programming problem if and
only if for every j \ J = m -\- \,..., n,Cj > 0. U this is the case then the trajectory x{t)
converges to viB). Moreover, as / tends to infinity, the direction of Xff(t) tends to the
direction of the vector

1

Note that we obtain a unique asymptotic direction near a vertex corresponding to each
face containing the vertex.

5. More on tbe trajectories near vertices. Here we rigorously carry out the
analysis suggested in the last section of trajectories near the optima! vertex. It is
convenient in this section to assume the vector field is real analytic even ihough this is
stronger than what is actually required. We now examine the behavior of the solution
curves of the equation x = -x^ + o(|lJt||^) where x e R" and we denote .v' =
(xj -v,-̂ )̂ . It is convenient to express x in polar coordinates. We start with a
slightly more general problem and follow Gomory [G].

Let F: R" ^ ^" be a real analytic vector field defined in the neighborhood of the
origin. Consider the differential equation .v = F(x). Let S""' = {A- G R": \\X\\ = 1)
denote, as usual, the unit sphere in R". A nonzero vector A- e R" is represented in
polar coordinates by a pair (o. «) where a = a(x) = \\x\\ and u = u{x) = x/a. Thus,
the vector x can be expressed as a product x = au where a e /?^ and u G R" with
ll"ll = l.

Consider a solution path x = x{t) of the equation x = F(x). The polar coordinates
of a point along the path are also functions of /. so we denote in short a = a{t) and
M = u(t). We shall represent the equation x = F(x) in polar coordinates. The polar
coordinates pairs {a,u) are of course points in i? + x 5""' . We shall obtain an
equivalent vector field on a neighborhood of {0} X 5"" ' relative to R^X S"^\

First,
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SO

da^ ^ x^x ^ r.

Also, '•

SO

Since F is real analytic, it follows that F(jc) = I ^ o F^(x) where for every /
(/ = 0 ,1 , . . . ) , F,{x) is a homogeneous polynomial of degree i. In our case. F{x) =
— x^ + o(ll^li") where F is real analytic so F^^ and Fj are identically zero. Whenever
there exists an m ^ 2 such that for every / < m, F^ is identically zero, we have

Similarly.

We have obtained a vector field which is well defined in a neighborhood of (0) X S" ^
relative lo ^ , X 5 " " ' . In fact, if we divide by a"'"' we still obtain a vector field on the
same neighborhood and the orbits of the new vector field are the same as those of the
old one (in R ,X S" '). Note that ihe sphere {0} x S"" ' is invariant in the sense that
the flow induced by the field on this sphere remains in the sphere. Thus, we may
con.sider, instead, the following equations:

^ = u^F(o«) = «'"f; o'-̂ -̂ /̂̂ Xw), and

As a vector field this can be written in the form

V{a,u) = [u^ t o—^'FAu). t o
\ ( - • IH I — in

{for o > 0) and

The latter is just the projection of the homogeneous equation x = F,,,(-x) into the unit
sphere. The projections of the solution curves of the homogeneous equation are
solution curves as computed above. The derivative of (̂  at a point (0, u), where
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l'''(0. u) = 0. is the following:

/ «''/;„{«) 0

\f,,..,{u)- [u'F^,,,[u)]u D,,{FJu)- [u'FJu)\u)

We now return to our special case where m = 2 and

and will study the behavior of orbits on the sphere (0) X S"~'. Consider the equation
.V = -.V". that is, X, = -x^ (i = 1 n). If x° > 0 then by integration, the solution
is

and the /th component of the curve through A" is given by

If .x" == 0 then obviously x^{!) = 0. For every ; and j (1 ^ i. f ^ n) if x", Xj > 0 then

lim 411 = 1.

These orbits project to orbits on the sphere.
We now study the zeros of the vector field

, w) = (0, K ( » ) - \u%{u)]u) = ( 0 . - W - + [u'u-]u).

I he solutions of the system

f'iO.u) = 0 . u G S'[ '. u > 0,

are the nonnegative solutions of the system

n).

It can easily be verified that a solution u oi this system is characterized as follows.
There exists a j (\ ^j ^ n) such that J components of the vector // equ:il 1 / ^/J while
the rest of the components are zero.

The forward or i^-linUt points of an orbit u{ I) are those points H" such that there is a
sequence of reals /, tending to infinity with w(/,) tending to w". Backward or a-limit
points are defined by letting /, tend to - x . We see from the discussion above that the
u-limit points of V{Q. u) are precisely the 2" - 1 zeros of (̂ (O. ti). The same is true for
o-limits as well. If we let t be negative then x,it) becomes infinite at / ^ 1/-^". thus
the projection of this orbit to the unit sphere kills any coordinate x^ with x\\\l\ If the
maximum of the coordinates of u" is achieved by j components then the «-liniit of the
orbit u{t) through M" has the corresponding j components equal to 1 / y7 and the rest
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of the components are zero. This establishes the following proposition:

115

PROPOSITION 5.1. The only a- and u-limit points of ihe vector field K(0, u) on 5 " " '
are the zeros. •• . •

We have

0
u''F,{u)]u

To understand the stability properties of the zeros on the sphere, we calculate the
eigenvalues of DV{0. ti). Since it is lower irianguiar. the eigenvalues of DV{0. u) are of
two kinds: (i) the number -u'tr, corresponding to a. and (ii) ihe eigenvalues of the
matrix

-u' + \u r..i'

corresponding to u. The first eigenvalue is then

The other eigenvalues are those of the operator D,^{-u^ + {X.
tangent space to the sphere. Suppose that u e S"~^ is such that
thai u^ # 0. Then for every o tangent to the sphere at (0. (/).

u) defined on the
= y for all k such

Thus for an eigenvector v

u = 3YL(U,(. ' ,)H = 0.

1

"77
{Df)v = V,

where the sign is positive if the corresponding component of u is zero.
Thus, D,y has a component repelling from each facet o£ the positive orlhant in

which u lies. Each vertex of S"~' is a source. Each zero of D^y that lies on an edge has
one stable eigenvalue and the corresponding eigenvector is tangent to that edge. Each
zero that lies on a two-dimensional face has two stable eigenvalues and their corre-
sponding eigenvectors are tangent to that face, and so on.

Eor each zero u' of V{0. «), define W"{u') as the sel of those points u whose a-luiiit
is equal lo u'. and define W'{u') as the set of those points « who.se w-Iimit is equal to
u'. Note that IV^u'] is the interior of the face in which u' lies. We now define a
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pre-order on the set of zeros of K(0. w). We write u' > u" if there is a nonstationary
orbit whose a-Iimit is «' and whose w-limit is w". This pre-order has no cycles since the
dimension of the set W^{u') is strictly increasing along a chain in the pre-order. For
any fixed time i, let 4>,{u) denote the point on the orbit at time /. assuming it starts at
H at time 0. The transformation <̂ , is called the time t map of the flow. For the proof of
the following proposition the reader is referred to Chapter 2 in [Sh]:

PROPOSITION 5.2. There is a time /„ > 0 and compact .sets

0 = A / Q C A/, c • • • c M^-^i = S V ^

such that
(i) For every /. M, is the closure of its interior.
(ii) The difference A/, \ A/._, contains one zero, denotedz\ of V(0. u).
(iii) The image ^ , /M,) is contained in the interior of ihe set A/,.
(iv) The intersection of the iterates ^^iM,) {that is. q applications of ^), for q ^ 0, is

equal to the union of the sets )V"(z') over all j < /.

The construction described in Proposition 5.2 is called a filtration. We are now ready
for the proof of the following proposition.

PROPOSITION 5.3. Suppose x = V{x) = -x- + o(||.v||-) is a real analytic vector
field defined on a neighborhood of the origin in R". Suppose that for every .x ^ 0 and
every i such that x, = 0, also (K(.v)), = 0. Under these conditions, there exists an € > 0
such that if x^* > 0 and l|x"l| < e then the .solution curve «^(/) = 4>^4t) of the equation
X = V(x) is defined for all nonnegatire values of t. Moreover, as t tend.s to infinity, <}}(t)
lends to the origin tangent to the line (A.-, = • • • = x,,}.

PROOF. If .v > 0 is suHiciently close to the origin then da/dt < 0. This implies that
</),'i(0 is defined for all nonnegative / and <^,M(0 -^ 0. Consider the vector field V and
ihe corresponding < ,̂<i(r). The liltraiion described above can be fattened lo a filtration
of a neighborhood of {0} X Sf^ in [0. /) X 5 ' r ' since da/dt < 0. Thus every point
tends to a zero. The stable sets of zeros in the boundary .stay in the boundary since the
boundary is invariant. Thus the orbit of any interior point tends to ihe point
(0.(1/vW)£'). It does so with a definite limiting direction (see IH] on C' linearization
for contractions). This implies that the projected curve in the A-variable is tangent to
the ray through e al the origin.

Note that throughout this section we used differentiability only up to second order.
In the context of linear programming, Proposiiion 5.3 translates to the following:

PROPOSITION 5.4. Given a nondegenerate linear programming problem in standard
form, .suppose we express the linear rescaling .search direction vector field i/ in terms of
the nonha.sic variables at the optimal vertex as in Proposition 4.1. Then anv interior
solution curve is tangent to the vector

1 ]

at the origin where the vector ( c^^ , c",,) is the reduced cost vector.

The di.screte analog of this fact was observed experimentally by Earl Barnes.
Subsequent to this analysis Megiddo [Me2] found diH'erent behavior for a class of
differential equations related to the barrier method.
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6. Differentiabilitj' of the Newton barrier function method. We continue lo con-
sider the problem in standard form (Sf) and represent the new point given by the
algorithm at a point x,

x'= X + a{x)V{x).

We say that the system (A. b) is nondegenerale if for every x such that Ax = b, the
submatrix of A. consisting of the columns with indices / for which x^ # 0, has rank m.
The feasible polyhedron P is the set of all the solutions of the system {Ax = b,
X > 0}. We denote the interior of P by P.

PROPOSITION 6,1. For a nondegenerate system {A^b\ the matrix
constitutes a well-defined real analytic mapping from the affine flat Ax = b into /C"^"'.

pROOi\ The mapping that takes a nonsingular matrix to its inverse is real analytic
by Cramer's rule. Thus, we need only show that the matrix AD~A^ is invertible at
.V e /* even when Xj = 0 for some j ' a . Suppose, without loss of generality, that
A-j X ^ 0 and x^^-^ = •• • = x^ = Q {m ^ p ^ n). Write A = (B, N). where
B e R"'^p and A' G f^mxtr,-p) ^^j ^ ^ ^^^ ^j Since

D} 0

O O

it follows that

which is invertible since BD.^ has maximal rank by the nondegeneracy assumption.
Obviously,

This completes the proof.
We now recall that the Newton barrier vector field corresponding to a fixed value of

ju is

1̂ ) ADA{D^C - fie).

PROPOSITION 6.2. For a nondegenerate system (A. h),
(i) The Newton barrier vector field V^,{x) is well defined for every x & P and /x > 0

and. moreover., at every .such point it is real analytic.
(ii) / / X is on a face $ of the polytope P then the vector V^^ix) is tangent to 0. In

particular, if x is a vertex then ^ J / A ) = 0.
(iii) If X is on a face <t> then V^{x} coincides with the Newton barrier vector field {with

the same n) which is associated with the restricted problem on the face: • ;

Minimize c^x

subject to Jt e $ .

PROOF. Claim (i) is obvious in light of Proposition 6.1 and the formula for V^^. For
claims (ii) and (iii), suppose (without loss of generality), as in the proof of Proposition
6.1. that JC,, .V # 0 and Jt̂  + i = • • • = A,, = 0 {m < /> < n), and let x also be as
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there. We have

>!/), = {BD^ O).

Denote c = {c,, — c^,)^ and e = {e^ e^,)^. We now have

D:C
Ds =

O
and

D.fxe

O

On the other hand,

Substituting the right-hand sides of these equalities into the formula for V^ we prove
(ii) and (iii).

RLMARK 6.3. The nondegeneracy hypothesis implies thai at a vertex x of the
polytope the matrix B is invertible. Thus

-1

and the matrix

is the zero matrix.
We now compute the derivative of V^ at a vertex x.

LEMMA 6.4. Let

Then

PROOF.

:{h) = D,, - 1M^.D,

Since D^D,, = D,,D^. we have

- D,, -
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PROPOSITION 6.5. At a vertex x, y^,'{x) = -\il.

PROOF.

Since M^ = Q {see Remark 6.3), and h is tangent to the polytope (so Ah = 0), it
follows that

7. Differeiiliuhilitv of the projective rescaling vector field. In this section we
develop results analogous to those of the preceding sections. We work in Karmarkar's
standard form (KSF). We assume nondegeneracy of the matrix A (not the entire
matrix A of the linear system of constraints) in the sen.se that for every ,Y in the afiine
subspace L = [Ax = 0. e^x = \ ]. the suhmatrix of A. consisting of the columns with
indices / for which x^ ^ 0. has rank HI. The polyhedron P is the set of all the
solutions of the system [Ax = {), e^x = \. x ^ 0}. The following proposition is essen-
tially the same as Proposition 6.1.

pROPOStTtON 7.1. For a nondegenerate problem, the matrix (AD^A'^)'^ constitutes
a well-defined real analytic mapping from the affine fiat L into R"'^"\

Recall that

^^ = i^{x) -[D- XA-n[/ - DA'-iAD'A'') ''AD] DC.

Analogously, we have

PROPOSITION 7.2. For a nondegenerate problem {A, h),

(i) The direction 1^ is well defined for every x e /* and., moreover, at every such point
it is real analytic.

(ii) / / X is on a face 4> of the polytope P then the vector ^^ is tangent to ^. In
particular, if x is a vertex then ^Ax) = 0.

(iii) Ifx is on a face ^ then ^p(x) coincides with the vector ^^ which is associated with
the restricted problem on the face:

Minimize c^x

subject to X ^ ^.

R£MARK 7.3. Recall that the vector field ip(x) is well delined even without the
assumption that the optimal value of the linear objective function equals zero. Thus.
the ^^ vector for the restricted problem on the face is defined this way and the
restricted problem is not transformed into the form KSF with optimal value iero.

Let . . .

T — = [y -
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Thus,

Notice that the logarithmic barrier vector field V^ix) is well defined even when ^ is
negative. The following proposition was first pointed out in [GMSTW].

PROPOSITION 7.4. / / the barrier parameter fi is chosen as a function of the point x.
tiyx) X T\x}., men c^v-ij '^(KJV-*^

PROOF. If jii(x) = X^T(X) then (see Remark 7.3)

V^{x) = DT{X) - fiDe = Dr{x) - JLIX = ^^(x) .

PROPOSITION 7.5. For a nondegenerate problem. at any vertex x.

dx ~ ^ ' • ' ^ ' •

PROOF. Since VAx) is differentiable in (x, fi), the vector I<.,v)(-v) is differentiable

ddx dfi. dx dx

Since f^(jc) is identically zero (as a function of /i) at any vertex,

- ^ = 0 and -^ = -^= -^{x)l

by Proposition 6.5.

8. The discrete version of the linear rescaling algorithm. In this section we
con.sider a specific choice of a step size in the linear rescaling algorithm (as in [Bar]).
Given an interior point x, the algorithm determines a new point .V,(.v) as follows

where 0 < p < 1 is a constant. The choice of p guarantees that A'(x) is in the interior
of the polytope (see [Bar]). It has been proven [Bar. VMF] that for nondegenerate
problems, for any interior point A, X"{X) converges to the optimal solution. In this
section we study the asymptotic behavior and extensions to the boundary of this
discrete algorithm. Nondegeneracy in this section means (i) for every feasible solution
X, the submatrix of the matrix A. consisting of the columns corresponding to nonzero
coordinates, is of rank m. and (ii) every face of the feasible polyhedron has a unique
optimum with respect to the objective function vector c.

LEMMA 8.1. Suppose the problem is nondegenerate. Let {x''} be a sequence of
interior points converging to a point x on the boundary of P. Let J denote the set of j\s
with Xj ¥= 0. Under these conditions, for every j € J. the ratio ^/(A:*)y/(Xy )^ converges
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to a finite limit. In particular, for every} ^J,

lim 7— = 0.

PROOF. Recall that

Thus.

and the lemma follows from the fact that the matrix (>l/)^^t/I'')"' extends continuously
to the closed polytope.

Lei's denote

THEOREM 8.2. Suppose the problem is nondegenerate. Then
(i) The vector fieid V,{x) extends continuously lo ihe boundary of the polytope and real

analytically at any point which is not a vertex.
(ii) On any face <i? of the polytope P, the vector field V, coincides with the vector field

associated with the restricted problem on the face O. In particular. V,{x) is tangent to
each face that contains the point x and vanishes at vertices.

(ui) The iteration x' = X{x) = JC - py,{x) extends continuously to the boundary of
the polytope.

(iv) The iteration X takes any face of the polytope into itself and is in fact the iteration
of the problem restricted lo the face.

(v) Ifx lies in the face $ then, as q tends to infinity, X\x) converges to the minimum
of the linear objective function relative to the face 4>.

PROOF. By Proposition 2.5. i, extends continuously to the closed polytope and
vanishes only at vertices (see §2). By Lemma 8.1 ||D7^^/II has the appropriate limiting
value on any face. This establishes (i)-(iv) except at vertices. The difference in the
values of the objective function is

) - x) = --^M,{x)YUx),

and this is negative provided x is not a vertex. Therefore, the only possible accumula-
tion points of iterates are vertices. The remaining claims will follow from local analysis
of the linear rescaling algorithm at vertices which is discussed below. It is convenient to
represent the points in the neighborhood of a nondegenerate vertex in terms of their
nonbasic components at a nondegenerate vertex. Let us also use N to denote the set of
indices of nonbasic variables. If j e N, that is. x̂  = 0 at the vertex then by Proposi-
tion 4.1
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Conlinuily at vertices follows from this formula. It is clear that if x is in the relative
interior of a face * and the iterates converge to a vertex of O then all the t~, (/ e A')
must be positive (assuming nondegeneracy). Thus, the vertex is a minimum relative
to * .

To study the asymptotic behavior of iterates near a nondegenerate optimal vertex,
we express the mapping X(x) in terms of the nonbasic variables alone. Recall that ,Y;̂
denotes the restriction of the vector x to the nonbasic variables. For every J e Â . we
have

Since the basic variables are afRne functions of the nonbasic ones, we are reduced to
studying the asymptotic behavior of A';̂  near the origin. We first change variables. Let
V, = c,x, for / G Af, and let ,v =

PROPOSITION 8.3. The change of variables y) = c,x, conjugates X^ to Xj^ where for
J e Â ,

in a neighborhood of the origin.

The mapping Ây 'S not differentiable at the origin, but its directional derivatives
aJong rays exist. As in the case of the vector field (see §5). it is now convenient to study
Â ^ in "polar coordinates". For convenience, assume without loss of generality that
Â  = { 1 , . . . , n - m} so A'v is a mapping from a neighborhood U of the origin in R" "'
into /?"""'. A vector y e R" '" can be expressed as a product y = au where o ^ 0 is a
scalar and u e R"-"' is a unit vector. Of course, a is just ||.vi| and if v =̂  0 then
" = >'/ll>'ll- If .1̂  ^ 0 then « G 5"!""'"'. In these polar coordinates X\ is expressed as

W{a.u) = iV^ia.u) =

ia\\u-p{\= (a\

where w = {wf...., M,,_,,,)'^ and a is sufficiently small. Let

be defmed by

Z{a,u) = \a\\u- pu\ ^-^\u-
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PROPOSITION 8.4. For any p. 0 < p < 1, there is an r > 0 such that W^ is defined on

[0. r ] X S ' l ' " ' and

» .̂([0. r] X 5r ' "" ' ) ^ [0- H X Sr'"" '-

Moreover, the function values and the derivative of W and Z coincide at (0. w), that is,
Z(0. w) = »f'(0, u) and Z'(0, u) = W '̂(0. u).

PROOF. All the assertions follow from the expression for W above and the chain
rule for dilTerentiation.

The map Z seems simple as it maps rays to rays. The ray determined by a unil
vector u is contracted by the constant factor ||H - pu~\\. This contraction constant is
minimized at the unit vectors e' (i = 1 n ~ m) and nmxitnized at e/ \/n - m
where ils value is 1 - p / V" - '« • We will show that (0, e/ ]/n - m ) is an uttractor for
both Z and W. However, we do not know yet the precise domain of attraction of this
point even for Z. Let G: 5'^'"' -» ST ' be delined by

II"-P"ir

so G is just the second coordinate of Z.
It is not known whether every interior point of S"'~' tends to e/ ^n - m under the

iteration of G.

PROPOSITION 8.5.

Z' 0, e\ =

1 - O

1 -

and hence (0, e/ ^jn ~ m) is an attractor for both Z and W.

PROOF.

Z' 0. e\ =

1 -

G'

O

I
and

G'{u)u =
\U -2pD\cY[u- pu^\ ,

- lpD^)v - 7:75 (" -
Ju - pu'll - ||» - P«

Thus, at e/ 4n - m with iv tangent to 5+""'" ' ,

m - p
w.
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PROPOSITION 8.6. There are a neighborhood t/, of the origin in ftV'" and a
neighborhood U^ c £/, of the intersection of U, with the line {c,x, = • - • =1 v \
such that

(i) The set U^ contains a definite angle at the origin.
(ii) For every jc e t/j,

for all i and j .
(iii) There exist constants AT,, /Tj > 0 such that

< KJ\ -KM-

for all X and q > 0.

PROOF. We need only prove the comparable facts for X^i y) and a definite angular
wedge around the diagonal (>i = ••• = y.,_J. Let U, be a neighborhood of
(0. e/ /« - m ) consisting of points attracted to (0, e/ yjn - m) under W. that is. for

lim = (0,

The set of points in R"-"" corresponding to U^ contains an angular wedge about a
small piece of the line {y,= ••• =^„_„,}. Moreover, since the contraction rates
^ , T " ^1^ ^^^ eigenvalues of ^ K ' ( O , e / v V ^ ) are stronger along the sphere (0) X
S""'^ than along the line through e / / n - m, any orbit Wiv) becomes tangent to
the ray and the asymptotic rate of convergence to zero is the rate along the ray. This
type of argument can be found in center-unstable manifold theory in [Sh].

piven a point x in the interior of the polytope and an optimal point .x*, let

fl/(x) = Iimsup-log|)A"?(x) - x*\\

be the asymptotic rate of convergence to the optimum. We have shown

COROLLARY 8.7. For a nondegenerate problem.

for a nonempty open sel interior to the polytope.

Barne.s [Bar] shows that
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for any interior point x. It is still an open question whether

in - m

for all X interior to the polytope.

9. The discrete version of the projective rescaling algorithm. In this section we
analyze the boundary behavior of the discrete iteration of the projective rescaling
algorithm. The linear programming problem is considered in Karmarkar's standard
\ovm (KSF):

Minimize c^x

subject to Ax = Q
{KSF)

e'^x = 1,

where c, x e/?", A e ^'"^« and e = (l 1)^ G R \ Let

ii ^ {.vG /?": Ax = 0},

5 = {x e R"\ e'^x = l .x > 0) and

P = fl n 5.

We denote the interior of the feasible doniain by P, that is, ? = P n (x e K": x > 0}.
The algorithm assigns to any point x e P a new point y(x) defined as follows. Recall
the matrix A from §1 and the vector

For simplicity let us denote 7j(x) - TJ^(X). A unit vector. u(,v). in the direction of
T)(x) is given by

The underlying projective transformation at an interior point x is the following:

Obviously, TJ^x) = e/n. In the transformed space the algorithm moves from the point
e/n to the point

Y'{x) = -e ~ yru{x) where

1
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and y is a constant which was originally chosen in [Kar] as \. In the source space the
new point y{x) is equal to the inverse image of the point y\x) under the transforma-
tion 7",:

For Ihe sake of simplicity we replace r = 1/ ^ln{n - 1) by r = l / « and call the
resulting vector Y(x) = Yy{x). It follows that

In this section we assume nondegeneracy in the following sense. For any feasible point
X, the submatrix of A. consisting of the columns with indices / such that .v > 0, has
rank m. We also denote by T(X) the orthogonal projection of the vector D^c into the
nullspace of the matrix AD^, that is,

LEMMA 9.1. Suppose [x") is a sequence of interior points converging to a boundary
point x" e 3P, Let J denote the sei of indices j .such that .Y" # 0 (7 # ;V). Under these
conditions, if the prohlem is nondegenerate, then

lim ( T(.V'')) , = 0
"-• oc

for every) C J and, moreover, the limit

lim ^—~

i

exists for every j € J.

PROOF. First, note that by the nondegeneracy assumption the matrix
tends to the matrix {AD}<A^y^ as v tends to infinity. Now, we have

so
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The latter tends to

COROLLARY 9.2. Suppose the problem is nondegenerate and the optimal objective
function value equals zero. Under these conditions, if x ^ P is such that c^x > 0 then
T)(.s:) ¥= 0 and hence the mapping Y(x) is smooth at x.

PROOI. Suppose x is a feasible point such that i)(x) = O^Recall that 7j(.v) is the
orthogonal projection of the vector D^c into the nullspace of A. This implies that ^]{x)
is also the orthogonal projection of the vector D^c — (c^x/n)e into the nullspace of
the matrix AD^. Thus, there exists a vector c such that

Suppose first that x G P. In this case we have

and therefore both c and (c^x/n)D^ 'e induce the same linear functional on P. The
vector D~^e is positive which contradicts the assumption that the optimal value is 0.
Now suppose that .v is a boundary point and let J denote the set of y's such thut
Xj > 0. For every / € J we have

which is a contradiction.

LFMMA 9.3. The vector e is orthogonal to -r}(x).

PROOF. By definitions, ijix) is in the nullspace of e^ if x is in the interior, and
hence for every x in the polytope.

For every J c: N = {\ n).. let us denote i.^ = (x e R": x^ = 0 for / ^ J).
Thus, Lj is a linear subspace of dimension \J\. The set J also determines a face of the
polytope; <J>̂  = L^ O P. Let e'' denote the vector consisting of l's in the positions
corresponding to J and O's in all the other positions. We are interested in restrictions
of the linear programming problem to faces of the polytope P. Spccillcally. the
restricted problem corresponding to the set J is ihe following:

' Minimize cK\

subject to X e fpj.

This restricted problem gives rise to a new vector field T]J{X) on the face <I>; by
ignoring the vanishing coordinates (that is. those with indices not in J). Thus,
T}j(x) G Lj. The T vector for the restricted problem is the same as the T vector for the
original by Proposition 7.1 and §6;

.-^v
yj{x)=r{.x)-
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and r)(x) may be written as the sum

of mutually orthogonal vectors since e-' is orthogonal to TIJ(X) by Lemma 9.3 and
and yjjix) lie in Lj which is orthogonal to e^^-^. So we have

LEMMA 9.4.

LEMMA 9.5.

+

LEMMA 9.6. If the prohlem (KSF) has a unique minimum, with nonnegative mini-
mum value, then for a nonoptimal point x,

(i) UWW < c'x
(») lln(^)|| + ||7j^(x)|| < 2c^x, and
(iii) \\i){x)\\ - Uj{x)\\ > \{\/{n - \J\) - l/n)c''x.

PROOF. Inequality (i) implies inequality (ii) by Lemma 9.4. The equality of Lemma
9.4 divided by the inequality (ii) implies inequality (iii). Inequality (i) was proved in
[Blu] and we provide here anotber proof. Tbe point

i 1 t .

is in the interior of the polytope defined by

^y = 0.

= 0,

The objective function (£>^c)^v is nonnegative on this polytope with equality only
possible at the optimal vertex since every point in this polytope is a positive multiple of
a point in D^ '/*. Thus we have

Now, T){x) equals the projection of ihe vector D^c into the intersection of the
nullspaces of the matrix AD^ and the vector e^. Thus

(n \7- 1 { \ ~ (^(-y)) TT(^) _ ||7j(jc)||^
"Nt-^)!! n||7j(jf)l| «||i?(x)|l"

This implies the claim at interior points x. By continuity the claim (i) holds on the
closed polytope and hence (ii) and (iii) follow.
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Suppose sliil Ihat the problem has a unique optimal solution. Consider the vector

DJ'ix) = ]-X - „ ] ,,,g,7)(A-).

Obviously, for any real M T̂  0.

DJ'ix) MDJ'ix)

It follows from Lemma 9.5 that there is a real number M such that

For 7 ^ ^. it follows from part (iii) of Lemma 9.6 that

It thus follows that the point MD^'ix) lies on the line segment between x and
•̂  - iy/\\'^.i(x)\\)D^yi{x) and thus Y{x) lies on the line segment between .v and Yjix),
where y,{x) is the point assigned by the algorithm when the problem is restricted to
the face Oj.

Let us denote by K (̂-v) the transformation resulting from q iterations of Y, that is,
' \\ ) i^))
Given a face *y that does not contain the global optimum, let A' denote the

submatrix of A consisting of the columns j such that / e J, and similarly let c', x'
and e' denote the corresponding subvectors of c, A- and e, respectively. The problem
(KSF) restricted to the face ^j is the following:

Minimize (c') x'

subject to A'x' = 0,
KSF,)

The vector r}(x) defined above for problem (KSF) Is well defmed for the problem
(KSFj), where we denote it by •qj(x). We associate with the face % a reduced potential
function

defined only for interior points of the face. We denote the interior of the face Ô  by

THEOREM 9.7. Suppose the linear programming problem (KSF) is nondegenerate and
ihe optimal objective funclion value is 0. Under these conditions

(i) The transformation Y(x) extends continuously to the boundary of F, leaving each
face invariant.
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(ii) If X lies on a face $y then y{x) lies on the line segment between x and the point
Yjix) which is assigned hy the algorithm when (he problem is restricted to the face ^,.

(iii) For every x ^ P, the limit \(x) = lim^_^y''(jc) exists. Moreover, if 0^ is the
smallest face that contains x then \ (.v) is precisely the minimum of the reduced potential
function with respect to the face 0; .

(iv) The mapping y(x) is smooth at every x ^ P except, perhaps, at the optimal
vertex of (KSF).

(v) Every nonoptimal vertex is a local repeller.

PROOF. The continuity of Y{x) at the optimal vertex follows from the convergence
of Karmarkar's algorithm. Il remains to analyze the vertex behavior and the iterates
Vix). Let JC be a nonoptimal vertex. Let

Since e^x = 1 and x e R'\ it follows that ||A-|| < 1 and hence by the Cauchy-Schwarti
inequality that |.V^TJ(X)1 < ||?j(-ic)|| so < (̂.x) is well defined. Moreover, by Corollary 9.2,
^{x) is positive and differentiable away from the optima! vertex. Thus,

Consider the derivative dY/dx. Since ip{x) = 0 at any vertex, we have

dY{x)

By Proposition 7.5, for any vertex x.

By Lemma 9.8 below, ju(jc) > 0 at a vertex. Thus,

and hence x is a repeller (a source; see [Sh]).

LEMMA 9.8. If x & P is such that i^ix) = 0 then n(x) = X'^T(X) > 0 with equality
holding only at ihe optimal vertex.

PROOF. We have from

that

tf Xj = 0, by Lemma 9.1, (T(X))^ = 0. Thus, all the nonzero components of T(X) have
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the same sign as fi(x). by Lefnma 9.3,

so e^T(x) = c^x ^ 0 and hence ix(x) ^ 0.
We now return to an analysis of the iterates Y''(x). In the following lemma we

consider faces of the polytope P which do not contain the optimal vertex.

LEMMA 9.9. The zeros of the vector field TJJ(X) in 4>̂  are zeros of the gradient vector
field of the reduced potential function ^j(x) in ^j.

PROOF. AS in Corollary 9.2. iiij(x) = 0 if and only if the vector

is orthogonal to the nullspace of A'. The gradient of the reduced potential function is

{c') x'

so the gradient is zero if this vector is orthogonal to $>. Since the two vectors are
multiplies of each other, they are simultaneously orthogonal to 4>y.

Now it is not hard to see (as in [Kar]) that if Vji^) # 0, then the value of the
potential function at any point y =^ x in the line segment between x and Yj(x) is
strictly less than its value at .r, i.e.. ^pj(y) < ^j(x). This is true because Karmarkar's
proof is valid for all constants strictly between 0 and y and these points generate the
line segment. Suppose x G * ; where ^j does not contain the minimizing vertex, so
f̂ .v > 0 on ^j. The function ^j(Yj''(x)) decreases in value and by compactness the
sequence {Yf(x)] has limit points in 4>j. Any Hmit point must be a zero of rty. for if
q^ -» X) and Yf'(x) -* Jt" and ijy(jc") # 0 then ^j(Y(x°)) < ^j(x^). For q^ suffi-
ciently large ypj(Yf'^\x)) < >//j(.v").butthen the subsequent iterates of Yf(x)(q > q_)
cannot return to a small neighborhood of .v" where ip takes on values greater than
^jiY'f-^\x)). Since \pj has only one critical point in 6^. any x in 6^ tends to this
point. If ^j contains the minimizing vertex. 6 ; has no critical points of }pj and by a
similar argument as above Yfix) tends to the minimizing vertex as q tends to infitiity.

Appendix A. The linear rescaling algorithm applied to the hypercube. Consider the
general linear programming problem on the unit cube

n

Maximize Vc.jc..

subject to 0 < .Ŷ  < 1 (7 =

Let f = (c'l t^,0,0 0)'' & R-". The standard form of the problem is to maxi-
mize ĉA" (x G R^") subject to Ax = e, where the underlying matrix is

(1 1 ',
A =
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and (? = (!, — \) ^ R". Lti Xj = \ - x^ (J = \ n) and let us restrict attention to
vectors of the form A- = (.v -v,,, x^ x,y G R^". We denote by D a diagonal
matrix of order 2n whose diagonal entries are x^,..., x^, .Xj,..., x^. The vector field
associated with the linear rescaling algorithm assigns lo a point .v the vector

= D-c -

Now,

H -r ..V,

- - A- Y'

and

It follows that

. . 4 ,

2 , — 1 • • •

xt + .v,

xtc.

We now have the expression for ihe vector field:

v2 r - 2
XJ T XJ

XC

C. =
x~

X .,.\ ..L.

2 1 — '

-v: + .v:

n).

It is interesting to examine the orbits in this vector field. Fortunately, the underlying
ditlerential equations are separable. For every j {) = 1, - -., »),

j + xj'

11 follows that

^7 + 1 = <•>

The solution is given implicitly by

1 1
C where

C.=
\~x,{Q>)

It follows that for every J {j = \ n) the function Xj = x^{t) is monotone increas-
ing or decreasing as c^ is positive or negative, with Xj( - oo) = 0 or x^{ - oo) = 1 and
XJ{QO) = 1 or and x^(oo) = 0. respectively. Suppose, for simplicity, that c = (1 , . . . , ! )^ .
It is easy to verify that for every c > 0, if C, - Ĉ  > 2/t then there exists a lime / such
that .v,(/) > 1 - e while Xj{t) < €. Consider any permutation (/, /„) of the
indices <1 n). For simplicity of notation, let us assume though that (/̂  /„) =
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( 1 , . . . , n). Suppose we choose the initial point x(0) to be of the form x^ = x°(fi) =
(S. S~ S")^ where S > Q. For every c > 0. there exists a 5 > 0 such that the orbit
through the point .v"(fi) visit.s the vertices (0 0)^.(1,0 0)^(1.1.0 0 ) ^ . . . .
(1 1)^ in this order. Note that there is a one-to-one correspondence between such
permutations of the set of indices and ascending paths of vertices of the hypercube.
Thus, the following is true:

PROPOSITION A.I. For any linear programming problems on the unit hypercube. every
ascending path of adjacent vertices can he approximated by an orbit in the vector field
induced by the linear rescaling algorithm.

Appendix B. Projective rescaling trajectories on the unit simplex. We consider
linear programming problems on the unit simplex A, that is. problems of the form

Minimize c^x

(5 ) subject to ê A- = 1, •

where e = (\ 1)^, c, x e R". Furthermore, to simplify the statement of the projec-
tive rescaling algorithm, we restrict attention to those problems in which the optimal
value of the objective function is zero. Let x be any interior point, that is. x e R'\
X > 0 and eKx = 1 and let D = D^ = Diag(A-i jc,,). Obviously. De = x.

The projection of any vector v e iR" on the subspace {z: e'^z = 0} is equal to

V (e\j)e.
n * '

The search direction is derived as follows. The interior point x determines a projective
transformation 7]̂  defined by

Thus, T^{x) = e/n. The search direction in the image space is computed by projecting
the vector Dc on the subspace {z: e'^z = 0}. This projection equals

DL {e^Dc)e

and also

Thus, in the image space the algorithm moves from the point e/n to a point of the
form

where / > 0 is a certain scalar. The inverse image of such a point is equal to
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Now subtract x as in §1 to find a negative multiple of ^p, which is proportional to
— D\- + {e^D^c)x. In other words.

PROPOSITION B.I. The search direction is at x is a multiple of

A useful interpretation of the search direction is as follows. Imagine the vertices of
the simplex (that is. the unit vectors e^ e") are repelling. Suppose the force at x
that pushes away from e' is proportional to xjc^. Then the direction of the resultant of
these forces is the search direction at v. In particular, if t- = t*' = (1,0 0) ' then for
every x (x > 0, t'^r = 1). the movement at .v i.s away from the point e\ This means
that all the trajectories are straight lines, namely, starting at an interior point .v, we
move along the line determined by .v and e\ away from c'. until we hit the face where
the first coordinate vanishes. The following proposition generalizes this observation.

PROPOSITION B.2. Suppose the objective function c has the form c = (c^ r^,
0 0)^ where fi,...,c-i > 0 (A' < n). Let A" he an interior point of the simplex.
Under these conditions, the trajectory induced hy c, starting at x^, has the following
properties:

(i) For every i, j > k, for any x along the path.

and, moreover, the path hits the point

1
n

(ii) The projection of the path on the set of the first k coordinates is the same as the
projection on the first k coordinates of the path starting at (x" ^J,ri'-A + i ̂ ,") ' where
the problem is

Minimize c^x^ + ••

subject to .i"i -f • • • +J*:̂ 4 I = 1,

X, ^ 0.

PROOF. It is easy to verify the claims by looking at the differential equations
defining the path;

X, = X, (i = k + 1 n).

Let us denote by z* an ^-vector in the unit simplex, consisting of O's in the first k
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positions followed by equal coordinates in the last n - k positions. Thus.

^. ^ = ^ ( 0 , 0 . 1

and so on. The next proposition asserts that there exist objective functions that induce
on the simplex trajectories that visit the neighborhoods of all the points z' (i =
0,1 n - I).

PROPOSITION B.3 . For any 5 > 0, there exists an objective function vector c (c, > 0.
/ = 1 , . . . , « - 1, ĉ  = 0), such that in the problem (S), the trajectory starting at the
center z" visits the 8-neighborhoods of the points z ' , . . . . z"~^ and then hits the optimal
point 2 " " ' = e".

PROOF. Let 5 > 0 be any number. Consider first ihe problem (5) with the
objective function vector c" = e' = (1,0 ,0)^. With this vector, starting at z". the
trajectory hits the point z^ Let us now consider an objective function vector of
the form <r' = (1, <,0 0)^, where e > 0. With the vector (•\ starting at z^, the
trajectory hits the point z^. However, by continuity, there exists an e'l such that the
trajectory will also visit the 5-neighborhood of r ' , provided c < t,. Let us now set
c = ĉ  where 0 < Cj < i^, so c^ = ( l ,ei ,O,. . . ,0)^. Suppose, by induction, we have
defined

c * = ( l , £ , , e 2 £^.0 0 ) ^ {k<nA-2)

as an objective function vector such that with c*, the trajectory starting at r", visits the
6-neighborhoods of the points z \ . . . , z* and then hits the point z*^^ Consider now
an objective function vector of the form c*" '̂ = {1, Cj c^. c.0 0)^. where c > 0.
With the vector c*^', starting at z". the trajectory hits the point z*. However, by
continuity, there exists an i^^^ such that the trajectory will also visit the fi-neighbor-
hoods of the points z', z ^ . . . , z*^\ provided e < e^^_,. We now set « = £̂  + i where
0 < ^k^i < € / . . ! ' s o

Our proposition follows with k = n — 2.

COROLLARY B.4. For every S > 0. there exist an objective function vector c and an
interior point of the simplex, x, such that the projective rescaling trajectory induced hy c,
.starting at x, visits the 6-neighborhoods of all the vertices of the simplex.

PROOF. First, for any c > 0, consider a projective scaling transformation, T^ defined
by

Every face of the unit simplex is invariant under 7,. It is easy to verify that when e
tends to zero, the point z' tends to the vertex e'^^ (i = 0,1 « - 1). It follows
from Proposition B.3 that for every c there exist objective functions inducing trajec-
tories that visit the neighborhoods of the points 7i(z') (/ = 0,1 n). This implies
our claim.
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It is easy to see that the arguments used in this appendix actually suffice for proving
a stronger result:

PROPOSITION B.5. Let P & R" be any convex polyhedral set of dimension n and
suppose .¥ G /* is any nondegenerate vertex. Under these conditions, there exist n pairwise
di.stinct points x^ , x" ^ P. belonging to faces of decreasing dimemions which contain
X. such that for every fi > 0, there exists an objective function vector c that satisfies the
following:

(i) ihe vertex x maximizes the function c^x over P, and
(ii) the projective rescaling trajectory through JC' visits the ^-neighborhoods of all the

points J*:\ . . . , JC".

Appendix C. A lemma on orthogonal projections. The following lemma is a special
case of Corollary 1 in [P]. We thank L. D. Pyle for giving us this reference.

LEMMA C.I. Let A e ^"' '^" and B e R'"--""' be matrices such that AB' = 0. Under
these conditions, the orthogonal projection of any vector v G R" on the interaction of the
mdhpaces of A and B can be obtained a.s follows. First, project v orthogonally into the
nullspace of B, and then project this projection orthogonally into the nullspace of A.

PROOF. Without loss of generality, assume A and B are of full rank. Let

Since AB^ = 0, it follows that

0 BB'

Also, since AA' and BB'' are nonsingular (even positive-definite), CC'^ is nonsin-
gular. The orthogonal projection of v into the nullspace of C is given by
[I - C'^{CC'^)-^C]v. It follows that

' B.

On the other hand, the sequence of projections stated in the lemma results in the vector
[1 - AT(AA''')-U\\1 - B'(BB^') ^B]v. The lemma now follows since AB^ = 0.

Appendix D. On the general barrier method in inequality form. In this appendix we
consider a more general barrier function technique, wliere the barrier function is not
necessarily the logarithm function. We also work here with the linear programming
problem in the inequality form

Minimize c'^x

subject to Ax > b

where >l G /?"""' is of full rank. We assume the feasible domain is of full dimension.
The barrier function method works with a related function

1 - 1
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where A, denotes the /ih row of the matrix .4, ^ is a positive parameter which is
driven by the algorithm to zero, and g{0 's a strictly convex function over the positive
reals (g"ix) > 0 for x > 0) such that g ( | ) tends to infinity as | tends lo zero. The
common choice, which was discussed throughout this paper, is g($) = - I n ^.

The Newton barrier function technique amounts to taking a Newton step with
respect to the problem of minimizing f{x). followed by an update of the value of fi.
Let X be a point such that Ax > b and let Z)/ denote a diagonal matrix of order m:

'{A,x - b,) g'{A^,x - bj).

It is easy to check that the gradient of / ( x ) is

Vf{x) = c + fiA^D^e

where e = 0 l ) ^ e /?"'. Let ;

The Hessian matrix is thus

Hf{x) = (lA^D^'A.

The direction given by Newton's method is the same as the direction of the vector

v = Hf^ v / = (A'^D;^'Ay\c + ixA^D^e).

So far we have not specified the choice and update rule of fx. Consider first the case
where jx is taken at its limil. that is, we set [x to zero after the Newton direction has
been computed. In other words, v = (A^D^'A)^^c.

REMARK D.I. We note that with g(^) = - In | this choice of n yields the analogue
of the linear rescaling method for the problem in inequality form (see also [GMSTWI).
The latter can be seen as follows. Given an interior point .v, consider the ellipsoid

In other words,

E= {r.\\D;'{Ay-b)-e\\^}}.

The direction c corresponds to moving towards the minimum of the function c^y over
E. Thus, consider the following optimization problem with respect to (;:

Minimize c^{x + v)
I. "

subject to | | D ; ' [ ^ ( - ^ + '0 - ^1 - e\\ = 1.

Since D~^{Ax - b) = e.. it follows that this problem is equivalent to

Minimize c^v

subject to \\D^ Ui!|| = 1.
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However, we are interested only in the direction of the vector v, so we can write the
following set of equations for the optimality conditions: {A''D^r-A)v = c. This implies
our claim that the choice /i = 0 yields the analogue of the linear rescaling algorithm.
Notice how the linear rescaling algorithm is simplified when the problem is posed in
the inequality form rather than the standard form.

We now return to general barrier functions g and consider the limiting behavior of
the direction

v = v{x) = {A'^D;'A)~^C

as the point .x approaches the boundary of the feasible domain. Recall ihat the matrix
A is assumed to be of full rank and the diagonal entries of D^' are positive. The vector
V = v{x) is the solution of the system {A^D^'A)v = c. An equivalent system is
obtained by defining Ĥ  = D"Av:

= c.

Let R = R{x) denote the following diagonal matrix:

R = Pile

The equations that determine v and H- are the optimality conditions of the problem

Minimize II.RwII'̂
(O(.v))

subject to A\' = c.

For an interior point x, the optimal solution is unique, w = w(x). The optimization
problem ((O(.v)) is well-defmed but the solution is not necessarily unique. Suppose .v
tends to a boundary point x. Let us assume that the function g(|) that underlies the
barrier method is convex, twice continuously difTercntiable, and g"(f) tends to infinity
as ^ tends to zero. Since g"{Q) = oo, the matrix R tends to a finite limit R (with some
diagonal entries equal to zero), which we denote by Rix). Assume, without loss of
generality, that for / = 1 I, A^x > h,, whereas for / = / + 1 m, A,x = h-. Let
us rewrite the optimization problem in the form

Minimize ||/?^H-'||- + \\R-w-\]^

subject to Afw^ + AW^ = c,

where the indices 1 and 2 correspond to the first / and the last m - I rows of A,
respectively, and describe submatrices accordingly. Denote the optimal value of the
optimization problem {0{x)) by/(j:).

PROPOSITION D.2. \\m^^-J{x) = f(x).

PROOF. First, for any H- such that A'^w = c,

f{x)^\\R{x)w\\\
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and hence

limsup/(.v)

Let w be an optimal solution for (0(x)). It follows that

limsup/(-v)

Second.,

fix) = \\R\x)w^x)\\^ + \\

It follows that

liminf/(x) >

and ||/?'{X)H''(;C)]| is bounded in a neighborhood of x, since f(x) is. This implies that
w\x) is bounded in a neighborhood of x. Now, let w* be any accumulation point of
w\x) as x tends to Jc such that

Obviously.

This finally implies our claim.

PROPOSITION D . 3 . The vector R{x)w(x) converges as x tends to x.

PROOF. Let L denote the set of all vectors w' e R' for which there exists a vector
^2 ^ /?" ' - ' such that A^w^ + A\w^ = c. Let us denote by H-^X) the unique solution of
the following optimization problem {in terms of w^):

Minimize ||y^'( Jcju-'H^
{0,{x))

subject to H'' G L.

Since RHX) = 0.

f{x) = \\R\xW{x)\\\

On the other hand, for any x we have w^{x) G /.. so

\\R\x)w\x)f >\\R'{x)w\x)f = fix).

Since Rix) tends to R{x\

\\taix\i\\R\x)w^ix)f > fix)
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From Pr(.)position D.2 it follows that

fix)

This implies that ||/i-(.Y)M'-{.Y)|t- tends to zero, so R\x)w'^{x) converges to zero.
Moreover, it now follows that ||/i'(-v)»''(-v)||' converges, and its limit is necessarily
equal to fix). Any accumulation point of w\x) (as JC tends to x) is an optimal
solution to (O,(A-)). However, the latter has a unique optimal solution. It finally
follows that w\x) converges to M'(.V). This completes the proof.

The behavior of the direction of vix) as x approaches a boundary point is
summarized in the following theorem.

THEOREM D.4 . Suppo.se the function g ( 0 's convex, twice continuously differentiate,
and g"(^) tends to infinity as ^ tends to zero. Under these conditions, the vector field
V = vix) extends continuously to the boundary of the feasible domain. Moreover, the
direction of vix) tends to a direction parallel to any face 0 as x approaches *.

PROOF. In Proposition D.2 we showed that, as x tends to x, the vector Rw tends to
a vector of minimum norm relative to R. Thus. (D^')~^w also tends to a finite limit,
and Av tends to the same. Since A is of full rank, v converges to a limit. Moreover, for
every / such that A^x = /),, (/); ');, 'u; tends to zero so. necessarily. A,L: tends to zero.
Obviously, this means that the direction of v tends to a direction parallel to the face
that contains the point .v in its interior.

Theorem D.4 generalizes to any fixed value of fx. The direction v is given in general
by the equation

where d^ = D^e. Let

u = D^'Av

We now have an equivalent system

A''u = c.

With R denoting the same matrix as above, the equation.s that determine v and u are
precisely the optimality conditions of the problem

Minimize \\\Ru\\^ + ni[(/); ') \i'X^<

subject to A^u = c.

We first observe the following:

PROPOSITION D . 5 . Suppose g ( 0 "' a real-valued function satisfying the following
conditions:

(i) ,i?{ )̂ is differentiable in an open interval (0, «).
(ii) g(i) tends to infinity as i tends to zero,
(iii) the derivative g'H) is monotone.

Under these conditions, the ratio gii)/g'ii) tends to zero with ^.
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PROOr. Since g' is monotone, ,?' tends to — x at 0. Thus, g is monotone
decreasing, and hence invertible, in a neighborhood of 0. For >• near 0. let ; * denote
the smallest value such that giy*) = iSi)')- Obviously, y* > y. Since g is convex and
difierentiable.

Thus.

It suffices to show that y - y* tends to 0 with y. Now pick .v,, and define x,
(0 ^ .V, ^ .\,_,) by g(x,) = 2g{A",_i) for / ^ 1. Obviously, the sequence {,v,} is
monotone decreasing and converges to 0, so x^_2 — Jf, tends to 0. If r lies between x,
and .v,_i then >* lies between .v,_i and .v,.,. It follows that

y* -y <x,._2-x,,

which tends to 0. ' '̂
The asymptotic behavior of the direction of v in the general case is summarized as

follows:

THEOREM D . 6 . Suppose the function g(^) is convex, twice dijferentiahle continuously,
and g"{i) tends monotonically to infinity as ^ tends to zero. Under these conditions, the
vector field

v = v{x) = (A^D;'A)~\C + fj.A'^d'^)

(where fx is fixed) extends continuously to the boundary of the feasible domain. Moreover^
the direction of v{x) tends to a direction parallel to any face $ as x approaches 4>.

PROOF. By Proposition D.5 and our assumptions about the underlying function
g{i). the vector d = (D^')~^d' tends to a (inite limit and. moreover, if A^x — b, tends
to zero then also d, tends to zero. As in the proof of Proposition D.3. it follows that
here the vector Ru approaches a finite limit and hence the vector Av = R~u + ^id
approaches a finite limit. Moreover, it also follows that the direction of v tends to be
parallel to the face as before.

Appendix E. The behavior of the barrier method in inequalit\ form near vertices.
Let us now consider the behavior of the general Newton barrier algorithm (ior
problems in inequality form) in the neighborhood of a nondegenerate vertex. Let V
denote any nondegenerate vertex of the feasible polyhedron and suppose, without loss
of generality, that the first n constraints are tight at V. Let B denote the (n X «)-
submatrix of A consisting of the first n rows. Thus, B is nonsingular. Also, let N
denote the submatrix consisting of the other m - n rows of A. Let /)^, D'^\ D'^ and
Z>v denote the square submatrices of Z),' and D^' corresponding to the indices of B
and N as suggested by the notation. Obviously,

A^D^'A = B^D'B'B + N'^D'f^N.

When the point x tends to the vertex V, the diagonal entries of /)," tend to infinity
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while those of D;J tend to some finite limits. It follows that

= ( / + B \Di;)-'B-'^N'^D'^Ny'B-\D's') ' B ' ^

so (^^Z); '^)" ' is asymptotically equal to fi"'(Ofi')"'fi"^.
Consider the approximate field in the neighborhood of the vertex V. The underlying

differential equation of the approximate field is the following:

e\.

We gain more insight if we change variables as follows. Let s = Bx - b^. The problem
in terms of s is

Minimize C'B'KK

subject to AB~ ^ ^ b - AB' Hy^.

Let c = B~'^c. Also, note that s = Bx. It follows that the differential equation in terms
of s is the foiiowing:

Note that

so

Under our assumptions about the function g, the dominant term in the latter is
-l^iD'^'y^Djfi. Interestingly, when g{i) ^ - ln(^) this has a very simple form:
- Di ^') ' / ) ^ = s. This shows that for any fixed /i > 0, if x is sulficiently close to the
vertex V then JC is repelled from V.

Appendix F. Differentiabilin of the linear rescaling vector field. In this appendix we
prove the difTerentiability of the linear rescaling vector field on the entire feasible
region. Thus, we have here another proof of the continuity already proven in §2, We
use the same notation as in §2.

We consider points x in P = [x: Ax = b, x ^ Q], where the problem is to maxi-
mize c''x. Suppose the point x tends to x. Denote A' = { 1 , . . . , n ) . Let /, denote the
set of indices ; such that .x, > 0 and let /^ = Â  \ 1^. Let A,, i = 1.2. denote the
submatrix of A consisting of the columns with indices in /,. Let R^ and R^ denote
the subspaces of R" corresponding to the sets Z,. / , . Also, for any ^-vector .v denote by
x' a subvector corresponding to /,.

We use the following notation:
E = {y: Ay = 0}; this is a fixed subspace in R".
c—The objective function vector; this is a fixed vector in jR",
E-i = E n R^\ this is a fixed subspace in R".
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F—The orthogonal complement of E^ in £; also fixed,
7],—The orthogonal projection of D^c into D^^E, eventually extended continuously

to /•;
F^—The orthogonal complement of D~^E-^ in D~^E,
T]/.' —The orthogonal projection of D^v into F^.
We wish to show that D^t]^ is dilVerentiable as a function of the point x even al

boundary points x of P. We will show below that £>̂ T)/,- is differentiable with zero
derivative on the boundary, and that T}^ tends to zero as x tends to x.

PROPOSITION F.I. For every K > 0, there exists a neighborhood N^ ofx such that for
all interior points x e N^ and u G D~^F, ||w^|| ^ A^||«'||.

PROOF. Since E n R^ = f j , we have F r\ R^ = 0. Thus, the angle between any
vector in /" and any vector in R^ is bounded away from zero. In other words, there
exists a constant C > 0 such that, for u = («', u^) e F, C|lu^|I > |1«'|1 (with equality
holding at w' = u- = 0). It follows that for every x > 0.

min f X • / e A )

lim rT- = CO.

(Note ihat min(x^: y ^ /,} tends to a positive limit whereas max(xy: j ^ iz] tends to
zero.) This implies our claim.

PROPOSITION F.2. Given K > 0, let Nf^ he a neighborhood of x satisfying the
condition of Proposition FA. Let x G A'ĵ  be an interior point, lei w = (w', w^) G D^^F,
and let u be a unit vector in D~ '£j. Under these conditions,

PROOF. Since u^ = 0. we have

By Proposition F.I.

and this completes the proof.
For any flat M <z R" and any w G R", let n(H-; M) denote the orthogonal projec-

tion of w into M.

PROPOStTiON F.3. Given K > 0, let A'̂ , be a neighborhood ofx as in Proposition FA.
Let I denote the dimension of F^. Under these conditions, for every w G D~^F,

-; D-%
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PROOF. Let f»' w'l be an orthonorma! basis of />,'£,. Then, by Proposition
F.2,

Recall that f,, is the orthogonal complement of D~'£j in D^ '£, so

since w e D^ ^F. This implies the rest of the claim.

P R O P O S I T I O N F . 4 . Under the conditions of Proposition F.X for every f = ( / ' . / - )

P R O O F . There is a point e = e(f) e D^ % such that f+e(f)& D^ ^F. Thus by
Proposition F.2

and since / and e{f) are orthogonal. Proposition F.3 gives

PROPOSITION F . 5 . The orthogonal profection U(D^c: FJ tends to zero as x
to X.

PROOF. Let {/' /^} be an orthonormal basis of F,. We represent the subvec-
tors of / ' corresponding to the sets /^ and I^ by / " •" and / " " ' , respectively. We have
for every /

By Proposition F.4, there exist constants A:, and C,. both tending to zero as x tends to
Jc, such that

||/"'''||</CJl/"-^>[| and | | / " ' " | | ^ C , .

We now use the Cauchy-Schwartz inequality to estimate

Thus, {D^cyf tends to 0 as x tends to x and

tends to zero.
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Let Tip 1/; denote the orthogonal projection of D^c on D'^-Ei. Then TĴ , i,.-^ is real
analytic in a neighborhood of .v. Thus the vector iĵ . = 7}/, + TĴ  Î ^ extends continu-
ously to the boundary point x with TĴ ., = 0. Note that at a boundary point x, T}^ is the
orthogonal projection of /),it' into D^iEi. Now.

D,.T), = D^T)p + Z),7j/j >£i a n d

^x^F^ = A'n^;, + D^zrjfr^,

From the proof of Proposition F.I and Proposition F.4,

C mii\{xj:je I^]

and -rjp , tends to zero, so

max2

Since max(x^: 7 G/^j/Hx - .vl| is bounded and ||T?f..'ll te^^ls to zero we have
ll̂ v f̂-11/11-̂  ~ 1̂1 tending to zero as x tends to x. We finally have

THEOREM F.6 . i),T?, is differentiable at x and D^-Qfr has zero derivative at x.

PROOF. The computation above applies to every face in which x lies, to prove that
Djifr has zero derivative at .v.

REMARK F . 7 . Having proven the differentiability, we can now give an explicit
expression for the derivative. Let us denote U = Uix) = D^t]^ e R" and let U'{x) G
R"^" denote the derivative. If x is interior the vector U is determined by the following
set of equations in U and W:

= c

AUix)=O.

Differentiation gives

D-'-U'ix) - A^W'ix) = 2D;'D^,,,

AU'ix) = 0.

The interpretation of this system is that the 7th column of U'ix) is equal to D^ times
the orthogonal projection of the yth column of the matrix M = 2/>^r'/)(•,,., into the
nulispace of the matrix AD^. However, since M is diagonal., the yth column of W
turns out to be the orthogonal projection of Ujix)e'/{xj) into that nullspace.
Interpretations can be developed for higher order derivatives using the same idea.
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