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THE NEWTONIAN GRAPH OF A COMPLEX POLYNOMIAL*

MICHAEL SHUB’, DAVID TISCHLER:I: AND ROBERT F. WILLIAMS

Abstract. In a recent paper [4] Smale posed as an important problem in complexity theory, characteriz-
ation of the graph Gf of the Newtonian vector field Nf for a complex polynomial f. Such graphs are known
to be connected and acyclic and Smale conjectured that these two properties completely characterize them.
The purpose of this paper is to prove this conjecture, after adding an additional hypothesis (part 3 of the
definition of "dynamic graph," 2). In additon we give an example and prove a proposition to show this
is necessary (see "Counterexamples" in 2).

We present the proof as Theorem C in 5 using the topological characterization of analytic maps given
by St/Silow [5] in 1929. Bill Thurston pointed us in this direction, though considering the fact that G. T.
Whyburn was the major professor of one of us, we should not have needed this help. In addition we present
direct proofs of three special cases as Theorem A, Theorem B and Example 7. While this was being written
an independent proof was given in the generic case (Theorem A) in [2].

Sections and 2 are devoted to basic properties and to a list of examples designed to acquaint the
reader (and the writers) with various aspects of Newtonian Graphs.
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1. The Newtonian vector field. Given a smooth map f: Rn- R the Newtonian
vector field for f, Nf, is defined by

Nf(x) -(Ofx)-’ (f(x)).
Let bt" R" --> R" be the corresponding flow. Then a computation carried out below using
the chain rule shows thatf(h,(x))= e-f(x). Thusf maps orbits of b, into rays pointing
toward 0. This is essentially the geometric content to Newton’s method for seeking
zeros of f

Alternatively, one defines

Vy(x) -1/2 grad Ilf(x)ll 2-- -(Dfx)trf(x).
For conformal maps, and in particular analytic maps, of one complex variable (by the
Cauchy-Riemann equations) the inverse of a matrix and its transpose differ only by
a scalar multiple. Therefore, the vector fields Vy and Ny also differ only by a scalar
multiple, except where (Df)-1 is undefined.

We next collect some facts for f a polynomial of one complex variable:
1. Ny or Vy have the same solution curves as
(a) -f(z)f’(z) or
(b) - (z a)/[z aj] 2, {a} the zeros of f

Thus the field is the sum of forces toward aj, each inversely proportional to the distance
from a.

To see (a),
f(z) f’(z)

lVAz) -f’(z--- f’(z) -(1/If’(z)l)f(z)f’(z)
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SO that Ny differs from -f(z)f’(z) only by the scalar function If’(z)l -. Note however
that this scalarization converts poles of Ny to zeros of Vy.

(b) -f/f’= -[(logf)’]-= 2 z- a

Iz- a,I 2 -- z- i--](/Ialza,),

where A z- a,/Iz- a,l.
2. Properties of Ny and Vy:
(a) f(,(x))= e-if(x)
(b) Nf and Vy have attractors (sinks) at the zeros aj off.
(c) The only other rest points of Vy are the zeros 0j of f"

(i) generic zeros of f’ are hyperbolic saddles of Vy;
(ii) at multiple zeros of f’ Vy has multipronged saddles ("monkey saddles"
and worse);
(iii) For 0 a zero of f’, the orbits leaving 0, called together the unstable
manifold WU(0), consist of n algebraic curves emanating from 0 at equal
angles because f(z) cl + c2(z- O) Al- higher order terms, c2 0.

(d) Multiple zeros a of f have no geometric effect on the corresponding sinks.
Only the velocity of the flow toward _a is increased.

(e) (Gauss-Lucas Theorem). The convex hull ofthe sinks {a} contains the saddles
{ 0}. The flow of Ny or Vy is inwardly transverse to any convex curve containing the {a}.

Proof of 2. To prove (a) we compute

d--f(cht(x)) Df(t(x)) .- tht(x)

Df(t(x)). (-Df(t(x)))- f(th,(x))

-f(6,(x)).

Thus f(cbt(x))= Pt where

dt
-p att=O, p=f(x)

which has e-’f(x) as solutions.
Parts (b) and (d) follow from the "attracting force" version of Ns, -Y(z-a)/

[z-aj[ 2. Similarly, if all the a are on the side of a line, the vector field is transverse
to this line, which proves the second part of (e). The first part follows from the second
part.

The form -f(z)f’(z) shows that the zeros of f and f’ are the only rest points.
Part (a) implies (c)(ii)-(c)(iii); the inverse image of a directed line under the map
z - c + c2(z- 0)" + h.o.t, consists of 2n directed curves pointing alternatively toward
and away from 0, with tangents evenly spaced at 0.

In fact, property 2(a) is proven for general Cf and 2(b) is true for simple zeros
of Cf since at such points the derivative of Ns is -/.
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Whenf’(0) 0, DVf(O)(w)= -f"(O)wf(O). Iff(0) #0 andf"(0) # 0 then the 2x2
real matrix representing this linear transformation has strictly negative determinant
and trace 0. Thus the eigenvalues of DVy(0) are real and have opposite sign.

We have borrowed here from [3] and [1] where a desingularization of Newton’s
method is discussed in more variables as well.

2. Newtonian graphs and special terminology. Let f be a complex polynomial with
{aj} its zeros and {0k} the zeros off’ which are not zeros off. Let Vy= -f(z)f’(z) be
the gradient vector field of f as in 1. Let WU(0k) be the "unstable manifold" of 0j,
i.e., the union of all solutions which limit on 0k as --> -. Note that they in turn limit
on some a or some other 0k, as t--> +. Define

= {a} {0} w"(o).
Then Gy is a finite graph with distinguished vertices a, 0k and directed "edges" W"(0k).

For nonrepeated zeros 0k off’, W" (0k) { 0k} is a smooth curve but in degenerated
cases W"(0k) consists of 3 or more prongs.

The sinks aj of Gf have weights oj where aj is the multiplicity of aj.
Counterexamples. CE1 below is not homeomorphic to any Newtonian graph Gf,

f a polynomial. CE2 is not isotopic to any such Gf.

CE1 CE2

These facts follow from the general proposition.
PROIOSrrION. For f any complex polynomial and v a vertex of Gj. at most one

incoming edge can lie between any two outgoing edges.
Proof. Suppose the contrary. Then choose a small circle J around v and note that

it passes through points A, B, C, D where
(i) A<B<C<D on J;
(ii) there is no other point of J (outgoing edge) between A and D on J;
(iii) A and D lie on rays beginning at v;
(iv) B and C lie on rays terminating at v.

Then f has a singularity at v (of index>_-2) and f maps the open arc (B, C) of J
completely around f(v) since it intersects the ray {mf(v)l m real m > 1} in the two
points f(B), f(C). fl (B, C) does not intersect the ray {mf(v)lm real, 0 < m < 1} which
is a contradiction.

Examples. In our sketches we indicate the weights only if different from 1.
1. z"-z n =7
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2. Real roots

3. zd--1 d=5

4. (z: + a:’)(z:’- be)

multiple saddle or
unstable star with 5 prongs.

saddle connections

a<b

a>b

5. (z- c)"

n m

sinks of weights n and m.

6. There is a polynomial P, monic and of degree n such that ((z-c)"P)’=
(n+ m)(z-c)m-lz m, n positive integers. (This is proved in Lemma 4.1; we sketch
the graph for such a P, where n 5 next.)

n=5
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7. Given positive integers a l, ", a, there is a polynomial of degree O --" t_ an
with graph

O

t6 O

O

O

O

unstable star with weights

Remark. For any complex polynomial f, the graph Gy is connected and acyclic.
Proof A cycle in the graph, Gy, would bound a finite region in the plane, but this

contradicts 2(a). The flow is a gradient flow with o as the only source. Thus the plane
is the union of Gy and W (), the unstable manifold of. Thus Gy has the homotopy
type of the plane (or a point) and so Gy is connected.

Remark. Any connected acyclic finite graph can be embedded in the plane, and
sometimes in distinct-nonisotopic ways. Embeddings f:G-.R2 and g: GR2 are
isotopic provided there is a continuous 1-parameter family f, 0-< t-<_ 1 such that fo =f,
fl =g and ft is an embedding of G for each t, 0=< t-< 1. This last property, that each
f, be an embedding, distinguishes isotopy from homotopy; were it to be dropped, one
could reverse the orientation of the next two examples, by pushing one of the legs
through another one. The following two examples have two isotopy classes of embed-
ding determined by the cyclic order at the circled vertices.

PROPOSITION. Generically Vf is structurally stable, having
(a) hyperbolic saddles,
(b) no saddle connections, and
(c) all weights= l.

Proof Generically f and f’ have no repeated zeros which proves (a) and (c). Any
one saddle connection can be removed by an arbitrarily small perturbation of one of
the vertices involved, noting for example that a saddle connection implies that two

critical values lie on the same ray. Thus proceeding one at a time, one can remove all
saddle connections by a perturbation so small as not to effect those already broken.
Structural stability now follows from Peixoto’s theorem (see Palis-de Melo [8]).

In order for an abstract finite acyclic graph to be the Newtonian graph of a

complex polynomial, it must have certain properties best described in dynamical terms.
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By a dynamic graph we mean a finite directed graph with two types of vertices,
which we call saddles and sinks subject to the following conditions:

1) At a sink, all edges are directed inward (i.e., toward the sink).
2) Saddles have at least two outwardly directed edges.
3) At a saddle, any two adjacent outwardly directed edges have at most one

inwardly directed edge between them. (Each such edge must then connect two saddles,
and is thus called a saddle connection.)

4) Each sink has a weight which is a positive integer, often 1. The weights have
no effect on the geometry of a dynamic graph.

It follows that a dynamic graph falls into natural units each consisting of a saddle
together with all edges directed away from it. These will be called unstable stars or
k-prongs where k is the number of issuing edges, k 2, 3, . A 2-prong is also called
a hyperbolic saddle.

3. The generic case. Our first theorem is a special case of each of the two others,
but its proof is easy. In addition, while this was being written, other authors [2] have
found a proof independently of this part of our results.

THEOREM A. Given an acyclic dynamic graph with all saddles hyperbolic, no saddle
connections and all weights 1, there is a complex polynomialfwhose graph Gf is isotopic
to G.

Proof. First, there exist sinks Vo, vl," ", v,, G, and subgraphs G c G such that
for each ce, v G and G/I consists of G together with one additional hyperbolic
saddle having v as one of its 2 sinks.

We proceed by induction on a. The graph {Vo} is realized by^the polynomial z.
Thus assume we have a generic polynomial P, such that the graph G of P is isotopic
to G. Let D be a (round) disk containing the zeros of P. Then D t and the field
Vp is inwardly transverse to the boundary cD of D.

Let f(z)= P(A(z-c)) where IAI 1 and c is real. Note that the graph of f is
conjugate to G by a linear conjugacy" f’(z)=AP’(A(z-c)) so that Vf(z)=
-Pa(A(z-c))ff(A(z-c))=Vp(A(z-c)) which gives Vy(z) I-IVpa(A(Z--C)).

Let g(z)= zf(z). We claim that for c sufficiently large and certain A, IA 1, the
graph of g is isotopic to G+I. In fact the field Vg on D differs from Vy only by the
summand -1/z and this is essentially constant=-1/c. Thus for c >> 1, the part of the
graph of g related to the zeros and saddles off is isotopic to by structural stability.

Note that the "ice-cream cone" region sketched below contains the zeros of g and
hence the dynamics of Gg. It follows that the graph Gg of g consists of G together
with a single edge added and that for c large, the saddle of this new edge is outside D.

Now as A varies in the unit circle, the disk D and the dynamics of Vp rotates
through a full circle as well, by structural stability. Thus our new edge arrives at any
one of the entering orbits, for the appropriate choice of A. This is important below,
but here we have more leeway, because there is an open set of orbits limiting on the
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sink v, and have the correct deployment with respect to . Thus for some choice
of h the graph Gg of g is isotopic to G/I.

This completes the inductive step and the proof of Theorem A.

4. Nongeneric saddles and Theorem B. The purpose of this section is to prove
Thoerem B. This uses the fact that our example 6 is the Newtonian graph of a complex
polynomial which we prove as Lemma 4.1. Example 6 is used in the proof of Theorem
B (implicitly) and in example 7, below.

LEMMA 4.1. Given integers m, n and c C, there exists a monic polynomial P of
degree n+m such that P(O)O for cO and ((z-c)mP(z))’=(n+m)z"(z-c)m-1.

Proof. This linear ODE reduces to (z-c)P’+ mP (n + m)z". We try a solution- biz and note that the coefficient of z is n + m on both sides.of the form P z +Y i:o

Proceeding downward, for j=n-1, n-2,...,0 one has the formulas jbj-
c(j + 1)bj+l + mb 0 for the coefficient of z. Thus

c(j+ 1)
b=b+,

m+j

gives our solution, which terminates with bo as b_l 0.
THEOREM B. Given an oriented acyclic embedded dynamic graph G with no saddle

connections and all weights 1, there exists a polynomialf with graph Gf isotopic to G.
Proof. We proceed as before with v,, G c G by induction on a. Here, however,

G/I is G with a multiple saddle attached at v, G. Suppose then that P is a

polynomial yielding the graph G and that D is a disk around 0 containing all G (as
above) and w, the field of P transverse to 0D. Let f(z) P(A(z-c)). For simplicity
we assume 0 is a zero of P, and set f(z)= P(A(z- c)).

Now G+I is G with a saddle edge added at the vertex v. Say the new unstable
star has (n + 1) exiting edges, for some n >_- 1. Then we want our next polynomial g to
have derivative z’f’(z), or g(z) w’f’(w)dw, some c C which we choose to be real.
Here we use the same c as that in f(z)= P(A(z-c)). Then integrating by parts,

ig(z) z"f(z)- n w"-’f(w) dw,
as f(c) 0.

Then the gradient field for g is given by

v. -Izl’f(z)f’(z)+ ne’f’(z) w"-’f(w) dw.

Now near c we scalarize to Vg/lZl2" which gives

-f(z)f’(z)+ nf’(z) Wn-lf(w) dw,

so that we have our given field with an error term,

2’

Then one can estimate E on De by

n(c + ,)"-’[f’(z)f()l,
(c-6)"

some z, " 6 De
which goes to 0 for large c, where diameter of D.
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Next to check the C part of the error, we note that E is ditterentiable as a map
from R2 to RE, as conjugation is real analytic. Hence

nzn-lf’(z)f(z) nf"(w) wn-lf(w) dw n2f’(z) wn-lf(w) dw+
Z Z Z

n+l

These clearly go to zero on Dc as c--> . Thus the field of g on the disk is near that
f(A(c-z)) and has exactly the same saddles. It follows that for c large enough, the
graph Gg is isotopic to G with an unstable star of n + 1 prongs added.

But just as in the proof of Theorem A, we can choose A so that this last edge is
added in the correct "angle."

This completes the proof of Theorem B.
PROPOSITION (Example 7). For any (integral) weights al,’", ak there is an

unstable star with these weights. Equivalently, there is a solution al, a2," ", ak, ai # 0

of the equation

(z- an) ’" (1 "-""" + k)zk-1 H (Z an
n=l n=l

Furthermore, any cyclic ordering of the weights (see the above remark) can be realized.

Proof This ODE leads to an unstable star with weight ai at ai, provided it has a
solution with the ai distinct. To solve it is equivalent to solving a set of k- 1 equations
in k unknowns, which we augment by one equation.

k

(j) an a,,a2...aj=0, j=l,2,...,k-1;
n=l i, <i2<...<i

ia in

ak--1 =0.

Now the function F Ck --> Ck defined by the left-hand sides, where a a 1, , ak
is a proper map and has a positive Jacobian (see 1, p. 294]). Thus F can be extended
to the 2k-sphere cku {} SO that it has a solution al,’", ak.

In fact, by counting degrees we see that there are (k-1)! solutions. To see that
these contain all of the isotopy classes we need a homotopy argument. First, we may
as well suppose that the an’s are numbered in their desired cyclic order. Next let a(t)
be a path, 0 <= <-1, where

a(0)=(1, 1,’’’, 1) and

ce(1)--(Cel, 02,’’" ak) and

a,(t) aj(t) for #j and O< < l.

Now by Lemma 4.1, above, there is a singular graph of weights 1, 1,..., 1, that is,
the regular unstable star of k petals, and thus there is a solution an(0) n 1,..., k
of the equation F<o 0. Then F<,) is an analytic isotopy of this algebraic function,
so there is a unique arc of solutions {an(t)} to the equations F<t =0. This gives a
1-parameter path of functions f(z)= l"-[(z-an) a-, and Newtonian graphs Gt, whose
end G1 has its weights in the correct order as Gt is an isotopy of graphs. The weights
{an(t)} do vary with t, of course, but Gt is an isotopy of the graphs if we disregard
weights. One could also interpret Gt as an isotopy of weighted graphs. The ft(z) are
proper and their Newtonian graphs are acyclic, connected, etc.

5. The general case via Stiiilow’s theorem.
THEOREM C. Given an acyclic dynamic graph G c R there is a polynomial f such

that the Newton graph Gf is isotopic to f
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DEFINITIONS (see Whyburn [7]). A map f:X--> Y is light if f-l(y) is finite (or
totally disconnected; for surfaces X, Y it comes to the same thing) for each y Y and
open provided f(u) is open for each open set U c X. In these terms there is the classical
(1929) result as follows.

STtILOW’S THEOREM [7, p. 103]. Iff M2-> C is a light open mapfrom the surface
M(OM =) to the complex plane then there is an analytic function b :R->C, R a
Riemann surface and a homeomorphism h R --> M such that d f h.

We next outline the proof of Theorem C. We construct a light open map f:R-> C
such that

(a) f is zero only at the sinks v G and has degree m at v, m the weight of the
sink v.

(b) The degree off at a saddle 0 is k- k(0) where 0 is a k-prong in G.
(c) f has no points of degree > 1 except as in (a) and (b).
(d) The f-image of each directed edge is a (straight) ray pointed toward the origin

in C.
(e) f is proper.

Now applying St6ilow’s theorem we obtain an analytic map th’R- C, and a homeo-
morphism h:R-> R:. Now R must be C or the interior of a disk in C. But the latter
case is ruled out as b is proper. Then b is a polynomial since it is entire and has poles
only at . But G6 is just h-i(G) by our construction. That is, the zeros occur only at
the sinks of h-l(G) and the other singular points are th(h-l(0)), 0 a saddle of G.
Finally the solution curves of V6 being those curves which map onto rays of C pointing
toward the origin, include the directed edges of h-(G).

This completes the proof of Theorem C; it remains only to construct the light
open map f satisfying (a)-(e).

Construction offi The construction will use induction on the number of saddle
points in G.

Suppose there are no saddle points in the graph G. Then G consists of one root
of weight m. In this case Gf G for f(z)= zm.

We make the induction hypothesis that such f exist is true for dynamic graphs
with less than or equal to n saddle points.

An equivalent form of the induction hypothesis which will be convenient is the
following. Let G be a dynamic graph with less than or equal to n saddle points. For
any disc D containing G there exists a light open map f such that (1) f(D)= D
{z Izl <_- 1}, (2) f is a covering map from the boundary of D onto the boundary of D1
and (3)f satisfies (a), (b), (c), (d) relative to G.

In order to see that the second form of the induction hypothesis follows from the
first, observe that a large enough disc {zl Izl-<-R} in the range off has for preimage a
disc containing D. Adjusting f by an isotropy in the domain and by a radial isotopy
in the range gives f: D-> D1 with the desired Gf.

Suppose we have a dynamic graph G which is connected and acyclic, with n + 1
saddle points. The points of G are partially ordered by the directed edges. Choose a
saddle point 0 at which no edge terminates. Let {yi}, 1 _-< i-_< k be the edges emanating
from 0. For each yi, G-{interior of %} is the union of two dynamic graphs. Let
be the component of G-{interior of %} not containing 0. Let {D}, 1_-< i<-_k, be a

family of pairwise disjoint discs such that Di contains G, OD f’) y is a single point p
in the interior of yi, and Di 0 yj b for j. Such discs D can be found by taking
small neighborhoods of the G. Since G is connected and acyclic, by the induction
hypothesis there is a light open map f: D--> D1 such that Gi Gj.

Denote by q the terminal end of
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LEMMA. We can alter l/i by an isotopy so thatf(qi) Ai" f(pi),for some real number
Ai >--O, and so that the part of yi from p to q is mapped by f onto the radial segment
from fi (pi) to fi (qi). Furthermore, we can assume that fi (pi) 1 for 1 <= <-_ k.

ProofofLemma. Let { 0} be the saddle points off. Then f(G) is the star formed
by the union of the radial segments from f(0j) to 0. We consider separately two cases"

(1) q is a saddle of Gi and (2) q is a sink of Gi. In case 1, there is a unique radial
segment J from a point of the circle {z [z 1} to f(qi). Let I be the union of all curves
in f-l(j) that terminate at the saddle point qi. There is one and only one such curve
between each pair of successive edges emanating from qi. If J contains some f(0j)
then one of the curves of I will contain an edge of Gi which terminates at qi. Suppose
’i arrives at qi between the two successive outward edges eo, el. By property 3 of the
definition of a saddle connection for the dynamic graph G, no edge of Gi can arrive
at qi between eo and el. Let Io,1 be the curve in I that arrives between eo and e Then

lo.1 does not contain an edge of G. Since Gi is connected and acyclic yi can be isotoped
(that is, G can be isotoped, fixing G-y) so that yi agrees with Io,1 in Di.

In case 2, Yi arrives at the sink q and f(yi fq Di) is a topological line segment
proceeding from 0 to some point p’ OD. Of course the map f, which we know exists,
is only weakly related to the arc /i since 3/ is not a part of the graph Gi. We construct
a more appropriate arc as follows. Choose a point p’ near qi in the correct angle"
or cone at q. Then f(p) 0; let J be the line interval from 0 to f(Pl). Then there is
a unique lifting of J to an arc Iv joining P to q. This arc lifting property is essentially
trivial to understand since we know f/is a branched covering.

Let Ri be the rotation of C centered at z=0 such that R(f(pi)) 1. Define
fi R Gi. Note that Gy, Gy because Ri preserves radial lines. This completes the
proof of the lemma.

We now have the situation pictured in Fig. 5.1, which we can think of as a map
f defined on the union of the disks D1,"" ", Di. Thus it is a simple matter to define
a star-shaped disk D* bounded by the dotted lines in Fig. 5.1 and small arcs on the
disks D1," ", Di. This disk D* is in turn mapped into the disk D’ bounded by the
dotted line A F(Ai) and a small arc of D, by a covering map, branched at F(O)
(see Fig. 5.2). The resulting map F is a light open map having the appropriate properties
except that it is defined only on a compact disk Do D* [_J D1 [_J [_J Di. But since
F(Do) D [.J D’ is a covering on the boundary, it is a simple matter to extend it to the
whole plane by a covering map. This completes the induction and thus the proof of
Theorem C.

FIG. 5.1
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F(O) /
./ 1])’

FIG. 5.2
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