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COMPUTATIONAL COMPLEXITY: ON THE
GEOMETRY OF POLYNOMIALS AND A THEORY OF COST: II*

M. SHUB" aND S. SMALEt

Abstract. This paper deals with traditional algorithms, Newton’s method and a higher order generaliza-
tion due to Euler. These iterations schemes and their modifications have had a great success in solving
nonlinear systems of equations. We give some understanding of this phenomenon by giving estimates of
efficiency. The problem we focus on is that of finding a zero of a complex polynomial.
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1. This paper deals with traditional algorithms, Newton’s method and a higher
order generalization due to Euler. These iteration schemes and their modifications
have had a great success in solving nonlinear systems of equations. We give some
understanding of this phenomenon by giving estimates of efficiency. The problem we
focus on is that of finding,a zero of a complex polynomial.

Following the work of Newton and Euler we define a rational map (or iteration
scheme) E:C->C (C the complex numbers) which depends on three parameters:

(a) f, a polynomial, f(z)=d
i=o aiz, ad # O. Often times we take f to be in the

space Pd (1) where

and

Pa(1)= {f f(z)=
,=o

a,z’, aa=l, 1};
(b) a positive integer k (which amounts to the number of derivatives used);

(c) A number h, 0 < h :< 1.
Then define E E k,h,f, E’C --> C by

E(z) Tk(f-l((1 h)f(z))).

Here f-i is the branch of the inverse of f which takes f(z) into z, given as an
analytic function in a neighborhood of f(z) (provided f’(z) 0).

Tk is the truncation of the power series expansion in h about h 0 at degree k.
It is easy to check that E l,l.S is Newton’s method. One can see a full discussion in
Shub-Smale (1982) (hereafter referred to as [S-SI]).

Consider first the problem: Given (f, e), f Pd(1), e > 0, produce a z C with
If(z)l < e. For this we particularize the Newton-Euler iteration scheme by choosing k
and h to depend only on f and e, in a certain way. Let

k [max (log Ilog el, log d)]
where Ix is the least integer greater than or equal to x. We will define in 2, universal
constants H and K, approximately 52 and 512 respectively. Then we will take
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146 M. SHUB AND S. SMALE

Thus with these specializations the Newton-Euler iteration scheme E’C-C
depends only on (e,f) and we write E E. With e > 0 define

ALGORITHM (N-E). Let fe Pa(1) and n K(d +llog el).
(1) Choose zoeC, [Zo[ =3 at random and set for i= 1, 2,3,.-. (an iteration)

zi E(Zi_l) terminating if ever [f(zi)] < e
(2) If i= n, go to (1) (a cycle).

THEOREM A. For each f, e, (N-E) terminates with probability one and produces a
z satisfying ]f(z)l < e. The average number of cycles is less than or equal to 6. Hence the
average number of iterations is less than 6K(d +llog el).

Here average and probability refer to the choice of the sequence of Zo in (1) of
(N-E).

Remark. With certainty it only takes about twice as long. See 2 for an elucidation
of this remark. In practice one can obviously do better by trying and testing h 1,,..., H. We have not analyzed this. Also see 2 for the total number of arithmetic
operations required.

Next consider sharpening the goal [f(z)l < e. Machine or discrete processes will
not generally succeed in finding exact zeros of polynomials. For our theory we use the
notion of approximate zero z of a polynomial f, Smale (1981), [S-SI]. This complex
number z is one close to an actual zero, where closeness is defined without any arbitrary
choices. The justification of close is given in both theoretical and practical terms. More
precisely define

py= rnn If(O)l.
f’(0)=0

There is a universal constant c (about ) and z is an approximate zero of f if
If(z)[ < cpy. Then this proposition follows.

PROPOSITION. Let E E k,f, be the Newton-Euler scheme with arbitrary k and
h 1, and E the composition E E times. Let z be an approximate zero off, so
If(z)[ < bcpf with b < 1. Then

[f(E’(z)) < b(k+’)’cpf.

The extremely rapid convergence gives some good justification for "approximate
zero".

In Algorithm (N-E) there was a random element, the choice of Zo. Now probability
enters into our analysis in a second way. We average over f Pal(l) with respect to a
uniform distribution; that is we normalize Lebesgue measure on Pal(l) Cd= i2d. We
use these probabilities since speedy algorithms are not usually infallible.

Define for each f Pd (1)

where Ds is the discriminant off (see Lang (1965)). With K as above let

,’,= K d +llog

Let E be the Euler-Newton iteration scheme
[max (log Ilog ey[, log d) ], so that E depends only on f

with h=H, and k=
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ALGORITHM (N-E). Let f Pd(1), satisfy e>0.
(1) Set m=l;
(2m) Choose Zo C, lZol 3 at random and set zn En(zo). If If(z,)l < ef terminate

and print: "z, is an approximate zero;"
(3) Otherwise let m m + and go to (2m).

THEOREM B. Algorithm (N-E) terminates (and hence produces an approximate
zero) with probability 1 and the average number of iterations is less than K1d log d where
K1 is a universal constant.

We make the probability considerations a bit more precise.
Let S be the circle in C defined by Izl R and endow it with the uniform

probability measure (Lebesgue measure normalized to 1). Set R 3 and denote by 12
the product of S with itself a countable number of times. Thus a point Zo of f is a
sequence $ (1, a,""" with I,1- 3. Endow 12 with the product measure as well as
Pd(1) X12. Let T: Pd(1) f Z+ be defined by: T(f, ) is the first m such that E"($m) <

Thus the total number of iterations of Algorithm (N-E) for a given f is of the
form S(f, ) nT(f, ), n K(d +llog eel). Theorem B asserts than when ey>0, S(f, )
is defined for almost all f. Moreover S(f)= S(f, ) is defined and finite for
almost all f and

ff S(f) <-_ Kid log d.
Pal(l)

By Fubini’s theorem, we could equally well assert that

(f,)Pd(1)
S(f, ) <= Kid log d.

Remark 1. We are assuming exact arithmetic in the theory here. In general, because
of the robust properties of Algorithms (N-E) and (N-E), this is reasonable. However
the calculation of ey in Algorithm (N-E) is not so robust. In that respect, Theorem A
is more satisfying than Theorem B.

Remark 2. Our work emphasizes the theoretical side, and the understanding of
classic algorithms, rather than the design of new practical algorithms. Yet the results
do have some implications for the latter. For example they suggest calculating deriva-
tives up to order [log d] and/or [log Ilog eli could give speedier routines, especially
for one complex polynomial. We have not tested our algorithms on the machine.

Remark 3. The number of arithmetic operations in contrast to the number of
iterations is approximately quadratic in d. This is proved in 2.

Remark 4. Questions of variance arising in these theorems can be handled. See 2.
At this point we review some of the motivation from Smale (1981), Hirsch and

Smale (1979) and [S-SI]. Letf be a polynomial, f:CC, let zC and w=f(z). The
ray from w to 0 is the segment in the target space from w to 0. Let Rw denote this ray
and fz the branch of the inverse of f taking f(z) back to z. If f- is defined on all of
Rw then sr=f-l(0) is one of the zeros of f (Fig. 1). Since a polynomial maps a

FG.
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neighborhood of infinity to a neighborhood of infinity and has only finitely many
critical points it is a fairly simple calculus exercise to see that except for a finite number
of rays (at most d 1) f-i is defined on all of Rw. Thus we attempt to follow the curves
f-(Rw) from an initial starting point z to a zero sr of t. One way to do this is to
parameterize the Rw as (1 h)f(z) for 0-< h <- 1. Then try to follow the ray by analytic
continuation in h, f-l((1-h)f(z)). Finally, truncate the power series at degree k in h
to make the computation finite, Tk(f-((1 h)f(z)). This is Ek,h,f(Z). If P(h) is positive
for small positive h then (1-P(h)) is also further down the ray and we may try
Tkf(1-P(h))f(z)). The inverse images of the rays are also solution curves of the
differential equations ;= -f(z)/f’(z) and =-1/2 grad If(z)l = (see Smale (1981)). Thus
we may attempt to solve these equations numerically with step size h to attempt to
follow the ray. These examples are given in greater detail in [S-SI].

We analyze a class of fast algorithms broader than the Euler iterations, but which
still agree with the inverse of the ray to high order. First we extend the E k,h,.f(Z)--
Tk(f-((1-h)f(z))) by replacing h on the right-hand side by P(h)=ik= cih where
ci is real for all and c > 0. These generalized Euler iterations are

GE,,h, (z) T(f-((1-P(h))f(z)).
Thus Ek,h,,C is given by P(h)= h. The GEp,k,h,f are polynomials in h of degree k. We
allow modifications of these polynomial iterations by addition of a well bounded
remainder term of order k + 1 in h. We denote this largest class of iterations we consider
by GEMk (GEM Generalized Euler with Modification). These iterations are fast.

An important ingredient in the analysis is the function Pd C "--) R+. (f, 7.)’--)Of,
which was introduced in [S-SI]. We recall the definition of this function. Given f, z
and 0 =< c <- r/2, let

{ w,- wClO<lwl<21/()l, argf-- <c

w is an open wedge of angle a centered at f(7.). Let , be the max -< ’/2 on
which f-i is defined by analytic continuation (Fig. 2).

(zl

Fa. 2. f[ is defined on this wedge.

In 3 we prove Theorem C.
THEOREM C. Suppose that 7.’= Ih,z(7.) is a GEM iteration. Then there is a constant

k depending only on I such that: If ,o> 0 and If(zo)l > L>O then chere is an h given
explicitly such that

,f(z.)l<L forn=k[lg’f(z)/LI] k+’)/

Ozzo
and z. Ih.y)" Zo).
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Theorem C can be used to show that any GEMk iteration can be adapted to
produce fast algorithms as in Theorems A and B of this paper. Finally, in 3 we show
that the GEMk iterations are precisely the efficiency k incremental algorithms defined
in [S-SI] which satisfy an additional "smallness" condition.

2. The main goal of this section is to prove Theorems A and B of 1. We require
some of the main results of [S-SI]. First Proposition 1 is a special case of [S-SI, Thm.
2] at least after a short translation of constants. The constants K, K’ are universal, not
very large and well estimated via [S-SI]. Let k 1, 2,. ., arid e > 0.

PROPOSITION 1. There exist.K, K’>0 so that if O<h<-K/(d+llogel) l/k, n=
(K’/h)(d +llog el), f Pd(1) and [Zol-3 with Of,o=> 7r/12 then

If(E’(zo))l < e for some 0 <- < n.

Here E is E E, times and E is the Eulerk iteration of 1.
Next by specializing k to k =max ([log d], [log Ilog eJ]) we obtain
COROLLARY. There exist universal constants H, K so that for n K (d +llog

E= Ek,H, f Pd(1) and IZol=3 with Of,zo>= r/12
If(E’(z0))l < e for some 0<-_ < n.

Finally we require the following proposition which is obtained from [S-SI,
Proposition 3, 4]. For fePd(1), let v-{zllzl-3 and Oy,z> 7r/12}. Then using the
uniform probability measure on S {zllzl- 3} we have Proposition 2.

PROPOSITION 2. The measure of Vf >- for any f.
We recall a bit of probability theory. The set S has a probability measure. Impose

the product measure on II the (ordered) countable product of S with itself. Suppose
Vc S has measure v. For efl, (1, 2,""" ). Let m() be the m such that i V
for i< m but ,, e V.

PROPOSITION 3.

m(e)
1

Proof Let V={lm()=i}, i=1,2,.... Let vi be the measure of V. Then
vi r(1 v)-1 and moreover

m()= E ivi iv(l--v)i-l=-"
i=1 i=1

Now we can prove Theorem A of 1. In fact it is an immediate consequence of
the corollary of Proposition 1, and Propositions 2 and 3. Q.E.D.

We will need a few more facts to prove Theorem B. We begin with another
elementary result of probability theory.

DEFINITION. Let (X, IX) be a probability space with no atoms. Let S: X R+ be
a real valued nonnegative measurable function and let f: (0, 1)-* R be decreasing and
Riemann integrable. We say that S(x)<-f() with probability 1-ix if Ix{xls(x) <-

f(y)} >_- 1 y for all 0 < y < 1.
PROPOSrrION 4. Suppose as above that S(x) <f(ix with probability 1- Ix. Then

1) E(S)= S(x)Ix(dx)<= f(Ix) dIx.

2) Yar (S) (S(x)-E(S))2Ix (dx) <-_ f(Ix) dIx-((S)).
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Proof We only prove 1). Let y, (0, 1) for -<i<c be a decreasing sequence
with 0 and 1 as limit points. Let. = My, My,_, . be constructed so that/ (My,)
l-y, and S(x)<--f(y,) for xMy,. Then S(x)l(dx)<=f(y,)l(My,-Myi_,)=
,f(Yi)(Yi-a-Y) which converges to the Riemann integral off

Recall that py= mino.y,(o)=o If(O)l. From Smale (1981) we have Proposition 5.
PROPOSITION 5.

Vol {f Pd(1)IPT < a} < da2.

Here Vol means normalized volume so that Vol (Pd(1))= 1 and Vol is a probability
measure on Pd (1).

PROPOSITION 6.

]log pf[ " 1/2 log d + 1.
Pd(1)
pf

Proof Let/z da so from Proposition 5, Vol {f Pd(1)[P < x///d} </z and

Vol (f Pd (1), pf< 11110g Pfl <1/2 log d +1/21log

Now apply Proposition 4 to finish the proof.
PRO’OSrrXON 7. There is a constant K2 and forf Pd (1),
a) ddp-a<- Dy,
b) e <= cp.r,
c) p)Ilog efl <= KEd log d.

Proof Dy=da 1-[o,.t.,.ro,)=of(O) (see Lang (1965)) so

IDf[ >= d d min If(Oi)])d-1 ddp-’.
Ois.t.

f’(Oi)=O

which proves a). We will use a lemma to prove b). First recall that the discriminant
is given as the determinant of a (2d-1) by (2d-1) matrix, see Lang (1965). Dy=
R(f,f’)=adR(f,f’la).

LEMMA 1. 1) For a polynomial f of degree d with la, I-<- 1 for >-_ 1 then

OR(ff’/d)
Oao

=< (2d 1)! j laol
j=l j

2) IffPd(1) then (2d-1)!(d-1)(py+2)d-2pf>=R(ff’/d).
Proof The resultant is a polynomial of degree d- in ao. Crude estimates give

that the modulus ofthe coefficient ofa by expanding the determinant is =<(d-1)(2d- 1-
j)! so

OR(f,f’/d) 1 (d-l)<= j (2d-l-j)!lao[-’
Oao j=l j

_-<(2d-)! j
j----! j

Let f’(0)=0 and
Letfo=f f( O). Then ao(fo) ao-f( O), a(fo) at(f) for i> 1 and R(fo, f’o/ d) 0.
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Applying the mean value theorem to the line segment between fo and f gives

[R(f, f’/ d)l IR(f, f’/ d) R(fo, f’o/ d)l

<= (2d 1)! j (lao[ + py)’i-l[f-fol
j=l j

_-<(a-! j
j=l j

(2a 1)!pf((1 +

(2d- 1)!(a- 1)(py + 2)d-:py.

pf+ t

Now to prove b), note that

py < d + 1 and dd(2d- 1)!(d- 1)(d + 3)d-2 < c(2d)4d.
For the proof of c), note that ey < 1.

By definition

Ilog ec[-- log
(2d )4d

Therefore by using Proposition 7a,

]log ef[ _<- K3dllog d + Ilog p ll and

f llogey[<=K3d(logd+Ips<lllogpy[)+K3d(logd+fpy>,llogpy[)
Now the first term on the left is estimated by Proposition 6. The second is estimated
using the fact that py < d + 1. This yields Proposition 7.

With these preparations we now prove Theorem B from Theorem A. Note first
that by Proposition 7b, Algorithm (N-E) does terminate with an approximate zero if
it terminates. Now apply Theorem A with Algorithm (N-E) where e is chosen to be
ey, and then integrate over Pa(1). This yields

fP, S(f’ )6Kd+6K Ifllg
Now apply Proposition 7c. Q.E.D.
Remark 1. There are various ways to compute the Euler iterations

z’= E,.h(zo) Tk(f-’((1 h)f(z))).

a) The Taylor series expansions of f at z, fz may be calculated by the algorithm
of Shaw and Traub with (2d 1) multiplications, d 1 divisions and d2+ d/2 additions,
after writing f(w)=(W-Zo)Q(w)+R. See Knuth (1981, p. 470) or Borodin-Munro
(1975, p. 33). Moreover fz may be calculated in O(d log d) arithmetic operations and
perhaps in O(d) operations, see Borodin-Munro (1975, p. 106).

b) Tk(f-) may then be computed in k3/6 multiplications by Lagrangian power
series reversion (Knuth (1981, p. 508)). The algorithm of Brent-Kung (1976) (see also
Knuth (1981, p. 510)) computes Tkf in O(klogk)3/2 operations and the value
Tkf-((1 h)f(z)) in O(k log k) operations once the Taylor series off at z is known.
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c) Putting together a) and b) to get a good asymptotic estimate gives that Tkf-[(1
h)f(z)) is computable in O(d + k log k) operations.

d) Thus in Theorem A the average of the total number of operations is

O((d +llog el)(d + k log k)),

where k max [log d, log [log eli or simply

O(d2 + dllog el).

e) For Theorem B, the situation is a bit more subtle since k depends on f. The
average total number of operations is

O(I S(f, Zo)(d+klog k))
Pd (1) Xl’

where k max [log d, log Ilog el], which gives eventually

O(d(log d)2 log log d).

f) D may be computed in O(d(log d)) arithmetic operations according to J. T.
Schwartz (see Knuth (1981, p. 619)).

Remark 2. An estimate for the variance of the numer of iterates in Theorem B is
simple to calculate by Proposition 4. The variance is O(If (d log d +[log pf[)2) which
is O(d2(log d)2).

Remark 3. It is possible to devise deterministic algorithms in place of Algorithms
(N-E) and (N-E). By [S-SI, Prop. 3, 4] Of,zo->- zr/12 except for at most 2(d- 1) arcs
of S of angle 10zr/12d each. Thus if we place 24d points evenly around S at least
one-twelfth of them will have O bigger than zr/12. Now for the sake of Theorem A
or B we can pick from this finite set at random eventually exhausting the set and still
not take more than 12 choices on the average. Thus for Theorems A and B a deterministic
version is possible with a factor of 2 in the number of steps. Now the algorithms always
terminate. It is not necessary to say with probability one (in the case of Theorem B
as long as er > 0).

3. We begin this section with a description of the GEM (Generalized Euler with
k ch isModification) iterations that we consider. Throughout this section P(h)=

a polynomial with c real and c>0. Thus for small real h, (1-P(h))f(z) is on the
line segment between f(z) and 0. The Generalized Euler iterations are GEp,k,h. (Z)=
Tk(f-l((1- P(h))f(z))).

DEFINITION 1. Z’= In,f(Z) is a GEMk iteration iit there is a polynomial P(h) and
constants c > 0, > 0 such that:

where

Ih,f(Z) =GEp,k,h,f (z)+ FRk+l(h,f, z)

f(z)
f’(z)

and IRk+i(h,f, z)l<-Chk+ max (1, 1/hk) for 0<h<8 min (1, hi).
The number hi hi(f, z) is the radius of convergence of f;l((1-h)f(z)) as a

power series in h around zero.
Examples of GE iterations without modification are described in [S-SI] these

include incremental Newton’s method, kth order incremental Euler, and kth order
Taylor’s method for the solution of the differential equation dz/dt =-f(z)/f’(z).
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It is sometimes more convenient to express the GE iterations and the modifications
in terms of the polynomials 0-f,z introduced in [S-SI].

(w) ,z(W) E ,w’

where
(-1)i+lf(i)(z)fi-l(z)

0-0--0, o’1=1, 0"i-- i!(f’(z))’
We recall some basic facts about 0". Given the iteration z’= Ih,y(Z) write

Ih,f(Z) Z + FR(h,f)(z).
We frequently write R(h,f, z) or just R(h), R(z) or R. By Taylor’s formula (see
[S-SI, 1])

f(z’) f(z)(1-0"o R)

or

f(z’)
-1-0"oR.

f(z)

Thus R(h,f)(Z)E 0"-a(1-f(z’)/f(z)). 0" is a polynomial of the same degree d as f, thus
there are d points z’ which give the same value for f(z’)/f(z). If Ih,f(Z) is continuous
then at least for small values of h

f(z)]

where 0"-a is the branch of the inverse of 0" taking 0 to 0. The radius of convergence
of 0"-a is ha. Comparing coefficients of powers of h (see [S-SI]) shows that

GEp,k,h,y (z) Z+ FTk(0"-l(p(h))).

Consequently we may restate Definition 1.
DEFINITION 1’. Z’= Ih,f(Z is a GEMk iteration if[ there is a polynomial P(h) and

constants c > 0, 6 > 0 such that

Ih.f( Z) Z + F( Tk( 0"-l( p( h + Rk+ h, f, z)

where IRk+l(h,f, z)l<= chTM max (1, 1/hk) for 0< h < 6 min (1, h,).
One may also express the Generalized Euler iterations in the source as follows:
PROPOSITION 11 [S-SI]. There are universal polynomials Pj=Pj(0"1,"’, 0"j+1,

Cl,"’’, Cj+l) such that given any Generalized Euler iteration (without modification):
k-1

GEp,k,h,f (Z) Z + F Pjhj+l,
j=0

Po-- Cl,

P1 c2- 0"1 c12
2P2 c3 20"2ca c2 (o" 20-2) C

One can write down Pj explicitly inductively, in terms of Pi, i<j, 0-j+a and cj+a.

Proof. The coefficients of 0-- are computed from the 0-i and P(c, 0") is defined by

2 P(c, 0")hj+’= Tk P(h)
j=o t= l!
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The GEMk iterations may be similarly written with the addition of a remainder
term. Examples of Generalized Euler with Modification are the simple Runge-Kutta
approximation to the solution of dz/dt= -f(z)/f’(z) (see [S-SI]) and an incremental
Laguerre method. For the latter do the following. Instead of letting R TkO’-a(h) as
for Euler we let (Tktr R)= h and solve for R. We can do this for k 2. That is we
solve tr2R + R h for R yielding R (-1 +x/1 + 4tr_h)/2o’2. For h 1 this is Laguerre’s
method of Henrici (1977, p. 53) with 3’ 2.

We now turn to an analysis of the GEM iterations with the goal of showing that
GEM’s are cheap, Theorem C.

Given P(h) there is a 6 > 0 such that P is injective on the disc of radius 6, D(3).
Let K be the Lipschitz constant of P on D(3), K SUpzD()IP’(z)l. Let "yk(Ca) be the
first positive root of

(1-y)E-4cly(1 +B(k+ 1)yk)

where 1-< B < 1.07 and B is a constant which makes the Bieberbach conjecture true
(see [S-SI]). Finally, let

yk(P) =min 3,-, y(ca)

LMMa 1. Suppose that O< h, _-<min (1, ha(f, z)) and that h ah, forsome complex
number a with al , and 0 < y < /(P). Then:

a) r-a P(h)l <- c, yh,/(1 y)2;
b) r-lp(h) Tr-P(h)l<-ch,B(k+l)3,+/(1-3,)2;
c) T(r-P(h))l < h,/4;
d) Tk(O’-aP(h) tr-l(D(h,)).

Here D( h is the disc of radius h around O.
Proof Since h, <- (1/ K)ha P(D(h,))c D(hl) and since h, < 3ha tr

-a p is defined
and injective on D(h,). (tr-ao P)=ca so (1/ca)(cr-lo P) is defined and injective on
D(h,). It has derivative 1 at 0. Now [S-SI, Lemma 7, 2] applied to
proves a) and b). By the triangle inequality

< Clyh,)2+cah,B(k+ 1)yk+l

]Tk(’-a(P(h))]=(l_y (1_),)2

and the right-hand side is < h,/4 since y < yk(Ca). This proves c). Since ITktr-a(P(h)] <
h,/4, [S-SI, Lemma 5, 2] proves d).

LEMMA 2. Let In.y(z) z + F(z)Rn,y)(z) be a GEM iteration then there is a 3 such
that

h,(f,z)
4

for 0< h < 3 min (1, hi(f, z)).
Proof There is a P(h) and Rk/l such that Rh,f= Tk(r-a(P(h))+ Rk+a. Now use

Lemma lc with h, =1/2 min (1, hi) and further choose 3 < Yk(P) small enough so that
IRk+[ < ha for 0< h < 3 min (1,

LEMMA 3. Let lh,f(Z) Z + F(z)R(h,f)(z) be a GEMk iteration. Then there is a 3 > 0
such that for 0 < h <3 min (1, hi), o--1 (tro R) R.

Proof By the Koebe theorem

r (D(h,)) D
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where D(r) denotes the open disc of radius r around 0 in C. By Lemma 2 there is a
such that

hl(f 2’)

for 0< h < 5 min (1, hi(f, z)). Thus R(h,f)(Z cr-l(h ’) for some h’e D(hl)
(r R(h,f)(Z h’ and r-l(cr R(h,f)(z)) o’-l(h ’) R(h,f)(z).

PROPOSITION 2. If z’= Ih,f(z)= z+ F(TKr-l(p(h))+ Rk+l(h)) is a GEMk itera-

tion, then there are constant K > O, e > 0 such that

(,)
f(z’)

1 P(h)+ Sk+l(h)
f(z)

where ISk+l(h)l<Khk+ max (1, 1/h) for 0<h<e min (1, hi).
Proof.

f(z’)
1-,to R= 1-,r(T,r-P(h)+ R/,(h)).

f(z)

There are K, 5 > 0 such that for 0 <- h < 5 min (1, h)

and

Sk+l( h o’((r-l(p(h))- o’( Tko’-l p( h + Rk+l( h ))

I-l(p(h))J<2ch,

Itr-l p( h Tr-l(p(h + R+,(h )l < Kh+’ max (1, -k )
by Lemma 1, the definition of Rk+l(h) and the triangle inequality. Now by the
generalized Loewner theorem (see Smale (1981) say)I,,i /’- < 4! h. Now apply [S-SI,
Lemma 3, 2] with a =4/hi, b=2ch, c=(k/2c)hk/ max (1, 1/hl). Make sure that
6 is small enough to guarantee (1 + c)ab < 1.

Iterations satisfying (,) were called efficiency k in [S-SI]. One of the fundamental
estimates on speed is proven for iterations of efficiency k [SS-I, Thm. 4]. Since a
polynomial f of degree d is generally d to 1 a point z’ is only determined by f(z’) up
to this d to 1 ambiguity. Efficiency k iterations are determined by the ratios f(z’)/f(z)
and thus are determined up to this same ambiguity. We impose a continuity condition
on iterations.

DEFINITION. The iteration Ih.y(Z)= Z+ FR(h,f, z) is called small iff there is a
5>0 such that o--l(o’(R)) R for all 0<h<6 min (1, hi).

Here, as above, r- takes 0 to 0 and is defined and convergent on the disc of
radius hi hi(x, z).

THEOREM D. The small iterations of efficiency k are precisely the GEMk iterations.

Proof. Proposition 2 proves that the GEMk are efficiency k and Lemma 3 that
the GEMk are small. Now to prove the converse. If

and

z’= Ih,s(Z) Z + FR

f(z’)
f(z)

-1-(P(h)+ Sk+l(h))
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where I&/(h)l<Kh/ max (1, 1/hk) for 0<h<e min (1, 1/h) then

oR=P(h)+&/(h);

and there is a 0 < 8 < e such that

R tr-l(p(h) + Sk+i(h))

for 0 < h < min (1, hi) since I is small. Thus it only remains to prove that for

Rk+l g-l(P(h)+ Sk+l(h))- Tkg-lp(h),

there are c > 0, > 0 s.t.

(1)IR+I < ch k+l max 1, h---
for 0< h < min (1, hi).

IR+(h)l<=l-l(p(h)+ &+(h))--(P(h))[+l-(P(h)) T-(P(h))[.
We estimate the two terms on the right. For h, =min (1, hi) and h yh, with

y < Yk(P) Lemma lb asses that

I-’(p(h))- Tk-(p(h))] ch*B(k+ 1)rk+

(l-T)

so for O< < (P)/2 min (1, hi)

hk+l ()]-(P(h))- Tk-(P(h))<4c=4chk+ max 1,
h,

Now estimate

Icr-l(p(h) + Sk+l(h))-cr-l(p(h))l

as in Proposition 2.

1o--111/i-1 < (Bi) ’/i-1

hi
For 0< h < (,(P)/2) min (1, hi) (,(P)/2)h,,

4

1
IP(h)[ <

yk "n’tr) h and Io-lp(h))[ <4ch

by Lemma l a and there are 8, K such that

ISk+(h)l < Khk+l max (1,-kl) K
for 0 < h <

Thus by [S-SI, Lemma 3]

1o-.-l(p(h) + Sk+l(h))--l(P(h))]
kKhk+l/h,

hk+l
kh,

(1-(4/Tk(P))h/hl)(1-(1 + KTk(P)(h/h,)k)((4/Tk(P))h/hl))"

Now it is easy to produce a 8 such that for 0<h<Sh,, K divided by the
denominator is bounded.
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LEMMA 4. Suppose If(z)l<-If(z)l and that zl=f;l((1-h)f(z)) for 0<lhl<
sin (R)y,zo, then

f(z1)
19y,z, >= Oy, arg

f(z)

Proof Since If(zl)l < If(z)l it suffices to see that Zl f-1( Wy,z) see [SS-I, 3] for
thenf, is defined on a wedge of angle at least the angle of Wy, minus larg (f(zl)/f(z)[.

But the open disc of radius [f(z)l sin Oy, centered at f(z) is contained in Wy, as

Fig. 3 shows. Thus (1-h)f(z) is in this disc for 0-<[hi<sin 0y, and zlfl(Wy,z).

FIG. 3

LEMMA 5. Let Ih,f(Z) be a GEMk iteration. Then there is a constant a, >= a > 0
depending only on I such that: If 0 < h < a sin Oy, then

(R)f,z, => Of, arg
f(z’) ]f(z)

Proof. By Lemma 4 we need only show that there is an a such that if 0 < h <
a sinOf, then z’=f-l((1-h)f(z)) for some h with 0<lhl<sinOy.z. Now f-l((1-
h)f(z))= z+ Fo’-l(h). Thus it suffices to show for z’= Ih,f(Z)= Z+ FR that R(h,f, z)=
(r-l(h ’) for some h’ with 0< Ih’l < sin Oy, Since a GEM iteration is small, there is a

81> 0 such that for 0< h < 81 min (1, hi), o’-l((rR(h,f, z)) R. We will let h’-
o’R(h,f, z). Since sin Oy.z <rain (1, hi) we know that 81 sin Oy, < 81 rain (1, hi). Now
we claim that there is an a, 0<a-<_81 such that if 0<h<a sinOy, then h’l=
Io’R(h,f, z) < sin Oy, The last claim finishes the proof, for then h’= o-R(h,f, z) satisfies
0<lh’l<sinOy, and o-l(h’)=R(h,f,z). To verify the claim we may assume 81_-<1.
Let L be the Lipschitz constant of P(h) on D(1) o-R(h,f, z)= P(h)+ S+l(h) where
C,/x > 0 with the property that

,Sk+l(h)l<Chk+lmax(1,-kl) for 0< h </x min (1, hi),

max 1,
min (1, hi)

<"sin O,z
Thus for 0 < h < x sin 01,

IS+(h)l < z+’ sin Oy,
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We may assume/x <min (1/2L, 1/2) for 0< h </x sin
(1/2)k+l sin (R)y,z and we are done.

We now can prove that GEM’s are cheap. This is the analogy of [S-SI, Theorem
4] but for GEM’s Ay, can be replaced by Oy,o.

THEOREM C. Suppose that z’= Ih,f(Z) is a GEMk iteration. Then there is a constant
K depending only on I such that: If (R)y,,zo > 0 and If(zo)l > L> 0 then there is an h given
explicitly such that If(z,)[ < L for

n [K (lg Jf(zo)/ L’.) (k+l’/k]Of,o

and z, Ih,f)" Zo).
Proof The proof is the same as [S-SI, Thm. 4]. Take a to be the min of the a

considered there and the a of Lemma 5 above, and replace Ay, by (R)y,o.
Remark. It is easy to adapt the algorithms of Theorem A and B to GEMk iterations

and prove analogous theorems. We state a particular theorem which is the analogue
of the "Main Theorem" of [SS-I] and which has the same proof starting from
Theorem C.

THEOREM E. If z’= Ih,(z) is a GEMk iteration, there are positive constants K1,
K2 depending only on P(h with the following true: Given d > 1, 1 > tx > 0 there are R,
h such that" If (zo,f) SR Pd(1) then z (Ih,)(Zo) will be an approximate zero off
with probability l-Ix for any s >- K(d(llog tZ]/tX))k+l)/k+ K2.

4. This section consists of a series of problems and remarks.
(1) There is the general problem of comparing speeds of different algorithms for

root finding of complex polynomials. See Dejon-Henrici (1969) and Henrici (1977)
for a number of such algorithms. Comparison by experiment on machines can often
be done readily. But the theoretical study of which algorithms are faster is another
story. Such an analysis must deal seriously with round off errors and eventually
consideration of the question: What are appropriate models of algorithms for this
problem? Perhaps even the question must be confronted; what is the best model for
the machine for this kind of study? Is a Turing machine always the right model? See
the Traub-Wozniakowski (1982) critique of Khachiyan’s work on linear programming
for a good perspective on related questions.

For the comparison of algorithms lower bounds on speed are important. See
Traub-Wozniakowski (1980).

Finally in this discussion, we note that we have just received the paper of Sch6nhage
(1982). This takes a different approach to the study of speed related to the fundamental
theorem of algebra. It seems to be quite an interesting work.

(2) We only have results for one variable. It is a wide open and central problem
to extend the analysis to more than one variable, especially to polynomial maps from
C" to C" (or " to "). Since the theory of schlicht functions, used heavily here, is a
one variable theory, finding the right estimates in several variables is a challenging
problem. Relevant to this problem is that a mild algebraic condition on a polynomial
map f: C" C" guarantees that f is proper and hence has a zero, see Hirsch-Smale
(1979).

(3) We have studied the problem of efficiency for finding one zero of a polynomial.
What about the problem of finding all zeros of a polynomial f? The natural algorithms
would follow paths in the space I C I=[0, 1]. Define fd(Z)--I-I di=1 (z ffi) where
’l,...,ra are the dth roots of unity. Let F:ICC be defined by F(t,z)-
(1--t)fd(z)+tf(z). Generally F-(O)c IC consists of d curves leading from the
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known sri to zeros of f. One obtains good algorithms by following these curves
simultaneously. We suspect that the speed in this case can be understood by the
methods in these papers.

(4) We have used the space

Pa(1)--{(ao,’’", aa-1, aa}lla, <- 1, aa-- 1}

of coefficients off(z) d=0 aiz . While this parameterization has a simple immediacy,
the projective space Ca/I/(C -0) is more natural. Here (ao," , aa) Ca/l is equivalent
to (hao, , ,aa), each nonzero complex h. It would seem reasonable for the results
to go over. Also we have used one particular probability measure, the uniform one. It
would be useful to make a generalization to a wide class of probability measures, say
given axiomatically as in Smale (1982b). Finally the problem suggests itself to replace
polynomials by other classes of comlex analytic functions. For example much of the
analysis applies to rational functions which are also invertible up to the "first" critical
value.

(5) We recall a problem, yet open, from Smale (1981) which has received some
attention. For any polynomial f, degf> 1, and complex number z, f’(z) O, it seems
likely that there exists a critical point O(f’(O)= 0) such that

It is proved there that

min

f(z)-f(O)

o
f’(0)=0

f(z)-f(O)
<-KIf’(z) with K 4.

One can express the conjecture in a slightly sharper form by making K a function of
d, K Ka d- lid. This conjecture is the best possible as can be seen by choosing
f(z) zd--dz, and z 0. The conjecture is false for entire functions such as f(z)= e z.

Dick Palais first pointed out to Smale that the estimate (K 1) was true for f
with real zeros. Nan Boultbee confirmed Smale’s early calculations for degree f-<4.
And recently David Tischler (1982) has proved the conjecture when one root of f is
zero and the others have the same absolute value. Linda Keen and Tischler have
produced some supportive numerical evidence, but as mentioned above, the general
conjecture remains open.

(6) We remark that although detailed techniques are different, there are basic
similarities between the main theorems here and in Smale (1982a). Each gives a good
estimate for the average number of iterations of a well-known algorithm or variation
thereof. Moreover the underlying geometry of the algorithm in each case is following
the inverse image of a segment in the target space.

The work of Kuhn-Zeke-Senlin (1982) and Renegar (1982) on the speed of
piecewise linear algorithms to find zeros of polynomials relates to both our paper here
and Smale (1982a).

(7) The algorithms in [S-SI] and in this paper start with Zo e C satisfying Izol >> 1,
e.g. Izol-3. This is necessary for our analysis since the rough behaviour offe Pd(1)
on points Zo with Izol large enough is independent of f. On the other hand the large
starting value contributes eventually to the d in the estimates of the main theorems.
This suggests that if one started with [z0]-< 1, e.g. Zo 0 at least that factor of d would
be eliminated, sharpening the theorem drastically.
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The problem here is to obtain information on the behavior of Oy, for Iz[ 1 or
even z 0. Consider the integral On of (R)y,z over the space Pa(1) x S with the usual
uniform probability measure. Is there an e > 0 independent of d such that Oa > e > 0?
A related question is: Do there exists universal constants el, e2> 0 such that fPd(1)
(measure of {z Sl[Oy, > el}) -1 <e. An affirmative answer would imply that the d
in d log d of Theorems A and B could be eliminated.

In the case of Theorem A this is very direct; Theorem B actually requires a slightly
different algorithm. The idea is to switch to h 1 at some point. We develop such an
algorithm a bit.

Let fly min (1/2c, 1/2cp}/) and j =jk [IOgk+l (8d log2 (d))]. Here c is about 2 as in
the definition of approximate zero. It is a simple computation to check from the
proposition of the introduction that:

LEMMA. Suppose f Pd 1 and ef > O. If If(zo)[ < fif then [f(E(zo))l < ef.
< pl/2/2)cpf. ThusProof. If py 1 then [f(zo)[ < y

If(Ek(zo))l < P-P---- Cpf <=28dlog2d

24d24dlog2d (2d)4d < ef

If py>= 1 then [f(Ek(zo)l < c/(2d)4d < ef by a similar calculation.
We are now ready to describe the Algorithm (N-E)’:

0) m=l
1) k=max([logd],m)

j [Iogk+ (8d log2 d)]
n=K(d+m)

2) Pick Zo with Izol 3 at random.
3) z E k,,y(E

If If(z)l < ey terminate and print "z is an approximate zero off".
4) If not m=rn+l and go to 1.

Once 2-"< fly all that is needed for this algorithm to produce an approximate
zero is to pick a Zo with Oy,zo => 7r/12. So in the mean the algorithm goes through six
additional cycles of the loop. Thus for fixed f with ey > 0, Algorithm (N-E)’ terminates
with probability one.

Let m(f)= [log

S(f)<-_ m(f)[K(d + m(f)+j]+ E -(K(d + m(f)+k=l

m(f) < C log d for C a constant.
Pd(1)

This shows that Theorem B applies to Algorithm (N-E)’. The extra computations
involved in increasing k do not seriously effect the total number of arithmetic operations
either.
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