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Dyparical ayetess and numerical analysis are intimately linkad.
Humerical meabthods are used to approximate solutions of eguakions, and
ara freguantly thenselves iterative methods - that is, dynamical systeme.
An understanding of the logal and globel gecmetry and fynamice both of
the systems ta be approximabed and/or of the mumerical methods theaselvas
can be useful to crucial Cor the understanding of the functidning of bBha
numerical method, the validity of the pumerical rosults and their applica-
Bility to $he orfiginal problen.

In Ehia lecturs, we comment an tha Evler and Taylor approximations
o the golutions of a2 differential eguation in Section 1, Hawton arcd
gradient notheds for finding zeros of a vecter fleld in Spctions I and 3.
ard the particular case of the Rayleigh guotient iteration in Sectlon 3.

puch of the material we dizcuss comed from Hirsch-Smale, Smale, and

Shub=-5male.

Saction 13

Given a differential eguation & = VWx] in R, Euler's mathad with
step @ize h # 0 for the approximation of a solution is given by

H oM, ) ‘ dgnots £ 1E% rough x at bime t.
®ip =¥t b [y b Let T, ix) d& he soluticn throug.
Eetting h = % and Xy = HLE iz a good approwimation to ?tlxb; xn con-

verges to ¥ [x} as n » = with good estimates ¢n $he arror far ¥ which

are CT bounded (Sco Atkinson [1978156.2 for examplel. This is the tra-

Aitienal sumerical analysis appreach. It igrores the global rature of
and B [¥) = x = hvixl. In fast, the first result we prove is that
2

w
i =
E, and ¥, are tangent at h =0 in thea El topology fwr W which ara C©

kounded. It can be uwscful to have this result on general manifcolds, so

first we dafina the Buler appruoximaticn for gensrcal manifolds. Given a

Partially supported by HEF Grant FMC3 BIO0L24G7.
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smooth complete Rlemannian manifeld M which perhaps has boundary and a
el vector field V:M+TH , we suppose that V points in along the boundary
or ie tangent to the boundary . Let ?.(x) denote the sclutions of

# = Wix) with initial condition x. Thus ¥_ is defined for all t » 0 and

?E;H += M 15 an ambedding. How we wish to deecribe the diEplﬂ:EﬁEnt of W
by tWi{x).
Faor this we suppose a chark B 0. ~+ M defined on a neighborhood U,

of @ itn T M mapping 0 ©o x. In cass x i8 a boundary point we suppoze

tangent vectors to the boundary are mapped to the boundary and inward
pointing vactore are mapped into M, u, then is a neighborhoed af 0 in

the half space. The sum X + £V[(x] is naw simply feplaced hy
Etii] C BH{t?{x}]- This agrees with the uswal definition in Euclidean

apace where E“:vl = ¥ + v far any tangent vector v at x. In general,

we reguire regularity conditions om B Dﬂxiﬂ} = Igg ¢ B:U ~ M defined
X

by (x,v) + [BHth] ig smaoth with Lipechitz first and second derivatives

which are bounderd alopg M. Moreover, B in supposed to be defined on a
uniform neighborhood of the zero gection in TM. Thias last condition can
be interpreted as a statement abhout the natural extension of B to the
double af M if 4 has boundary.

Examples of maps B on manifolds M are provided by khe exponsntial

map of a Riemannian metric. For the uwnit sphere in Euclidean space,
x + v n-1

s =[x e 8" {|x]] = 1}. et Bix,v} =
|l + vl

. . g . n=1
This 2 has the added advantage of being injective on all T S5 .

Thenram 1i

Let W he a EE bounded wvector Field. Then Et. &nd ':Ft dre tangent at

£ = 0 in the C° toapology. More precisely, there is a constant © such
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7 z
that in the one norm ||E. - ¥ [[, £ ©%

FProof :

It guffices ta prove this thecrem in Euclidean space for general B
elther by adapting the proof to charts or embedding the manifeld H in
Euclidean space and extending all the structures. Thus we assume

vi R + R and s CE hounded, 1.e. there exists RufKI,RE > 0 such that

| 1wi{=} | = LY Plowvix) || < X, and ||n2v¢xh|| % K, for all x & . We
break the presf into three stepa first some elementary estimates, next

the case B(x,v) = x + v 80 Ettxr = % + £V and finally the casze of gen-
eral B.

Remark :

Given a contractian map £ of a complete metric apace
dlifix),E(¥)] < 2d{x,¥) and D £ X < 1, let %o be the fixed point of £.

| £
Then disx,x,) < E{xi {I]].

Lemma 1:

For & <. 5 < %
1

: EX,
2l Lhgixl il S opae
5K
=} ||DHTEIHI - 1d|]| =
l1-s5X¥
1
) |logt e || 5 e
=1
sk
= ||DEngqxh|| < z =
{1-3K,)
K. X E.KE.E.5
i I 0z e
al |Intﬁnx?[+EtH]]D1¥E[H]J_I < +

= L-sK) [1-5H1]§
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oroof:

5
a) ¥_ix) =x + J V¥, ix}]dt {I)
S i t

The contraction rate to determine ¥ is s Lip V = =K, and the
identity functicn is moved abt most by EHﬂ.

‘b Differenkiate [I)

a8
. = : ? IX
anaix} I + gnxv[¥t[xllnx?t[xlﬂt [XI]

The gontraction rate is sE; and the constant function the identity

is maved ak mosk Eﬂl.

c)] Add ogne to b).
d)l nDifferentiate [II)

=
. _ : z
mo¥ x) = gnxvtetixhJnx&t{x}brft{xl + va{?tixJJHKTttHbdt.

The contraction rate is Eﬁl and the zerao function is moved at mnqt

1
E L]

K ——
tl-eHll

I L]

el D(D Wiy {x}) * D ¥_[x)) =

. 2
DEV(Y D)} o DY (x} = D (¥, (x) + DVI¥ (%)) = DL(F (x}} = B¢ ().

Multiply the bounds and add.

How we return to the proof of the theorem and conzider the cazge
5
Ehat Bix, vl = x + ¥ =0 E;tl_.'-t:l = ¥ + tWix}, then for 0 < £ < I{__

1
L :
||?t{xl - Et[xh|[ = | |x + fvily _(x}ldx - {x + VI(x) )]
| =
t
“ [1ivie qm) - vidax|| =t sep  [[VIF_{x)) - vix) ||
o F Des<t 2
¢ Kot =up ||y [x) = x|] « K __EE_ e (LTI}
O - ':I'*'E:ft = = 1 l—t'ﬁ:l

by Lemma 1, and

- =] i ' % - t
||o veixh = DE (=) || = |] L + A R T e {L + = Vi) ||
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£
= Ilﬂﬂxvtfgtxllnxwatx] - b, Vixlds||

Tt - n;:gtllnxﬂl¥sﬁrllnxTF¢xl - 0 V(x| |

2
< £ gup D D Wiy (=)D ¥ _(x)) which by Lamma 1
- uasqtll t' K a X' E N

K_E E. K K.t

0z 012 I 2
= E (Iv)
tKl [L-EE.}

L

This finishes the proof of thecrem 1 in the case of the usual
Euley methsd in Buclidean space. In fact, formulas III apd IV show that

there iz a canstant € such that in the one norm for b sufficiently small
||Et i Tt]Fl = Etz-

How wWe torn to the case aof gener-idl B, We nead only show that
Bt{x] = Ex{t?l and x + tV({x) are tangent in the ot topology. The

The hypotheses on B were intended to make this true. By Tayrylor's
formala given r > 0, there £s a ecnstant C > 0 such that for {lw|]| = =z,

2
3B ] 2
Blx,w) = x + E;{x,ﬂl“ + h——%{x,ﬂ]iw,w] + Rix,w) and ||Rix,w}]] = En||w|| :
=1
i, 3°n
Haw EE-{DJ ig the identity and =

=l

i& baunded for ||w|| = r. Se far

||w||<r, there is a constant C; such that ||Exiw!— x + w|| = El||wi|z.
Hence [[E_ix} - fx + tVx)) || = [|E_(&VWix)) - {x + tVix)1]]

2 2
< cllltvtlel = Oy KL

How foar the derivative. ..

o (Bix,evix}t - D [x & tWixh}]]
= !lDtxr“}Htx,tvfnJJ @ D (=, t¥ixi} - (I + thxv[xlﬂll
= | H2x, evin) ), SRl evixl)) ° : - 11,10 [gp

P L. - Trital .tn“v{w] r th?Exi

B I
= || &2 %, Vb, Solx, tVix))) - {%E!x,ﬂbf%aix,ﬂllﬁ[tg u1x,“|
M
2
; 3B 3B
Since g;txpﬂl = Id, 13§§;}{x,ﬂb = 0

and by the symmetry of the second derivative %;I%E}{x,ﬂ] = 0, Thas
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there iz a constant C, sueh that ||g gi %Wl || < C4]|w|| and by the
i
mean valoe thearssn |E (3, €7 (%) ] 'F—llrﬂ'|| % E1||t“‘x'|1 CKyt
(v

There i2 A E3 such that

1 d B d b
I[ SLER I %Eix,n}i[ < E3|1H|} 80 [IéE;lx,tvIHJ = Eﬁiu,ﬂjbtnxv[xlf|
B2, tv(x)) - 20,000 vexb ]| 2 el vl || | [en,vix) ||
5 e (V)

Altogether we have shewn that in the one norm there is a constant
T, swch that

F:
|[E t=) = (x + t¥(x)[[; 2 C,t

and we are done.

for application it is best to keep the explicit formulas III, IV,
¥, VI. Generally speaking many stability thecrems for differential
- - - L
equations actually give etability for any map sufficiently C7 clase to

?t’ the neighborhood af validity decays linearly as t tends to zero, so
E, entars this neighborhood as t tends to zero.
Be
#
Neighborhood of valldity in El.
-1
.

i

The easieast example of this phencmenan is the follewing. For =0,

t, lx) = at tx} taking R ta R is a flow of expanding linear maps for >0

. kA .
and for each t*0 any linear map R such that ||A - Pt|| ¢ g '— 1 iz also

expanding. The size of this neighborhood decays gslower than any multiple

2

of t° sinee the derivative a2t 0 £a 1.
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{tJtlj
(e, |et= 1))

The thearsm implies the (in this case trivial) fact that the Buler
approximation to the flow E (x} = (1 # El}x enters this peighborhood

and is expanding for small t. I am certain that other less trivial

axamples of the phenomenon ares:

1} the neighborhood of persistence of a pormally hyperbolic in-
variant manifold including a hyperbolic fixed point ar a hyperbolic
closed orbit for the flaw ¥, (See Hirsch, Pugh, Shub and Braun,

Hersheonoyl

2) the neighborheod of conjugasy for the time & map of a Morse-Smale
gradient flow (Ses Palis-Smale)

3] the neighborhood of persistence of a paewdo~hyperbelic splitting
an an everflowing invariant set for the [low ¥, i{See Hirsch, Pugh, Shub)

but T don't know if the explicit estimates establishing these facts are
in the literature so I will stop short of claiming that they are true.
When one wants ko exploit one of these facts one will have to da it wikh
estimates anyway.

For example, one might expleit 3 to try to prove that the Lorenz
attractor has Williams"'" presumed attracting bundle. The technigues
would be ta find ane For Et, t amall enough such thak ?t ig in the domain
af persistence of E_.. The existence of such a t is guaranteed by the
theorem and 3. This is a good project.

Tt iz passible that higher order decivativea or higher order of
gantact could be useful, such as in the examinaticon of bifurcation phe-
namena. Lt is easy to generalize theorem 1, which we now do, without
keeping track of the constant.

for a ck+l vectar field % = Wix), write the solution as vix,t).

The kT° srdee Taylor methed for the approximation of ¥ix,t) Is simply
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= 2 - 1 k
T, (%, %) ® + tntvﬂn.n} + &t ntf{x,D] + . . .+ ETtthT .

The derivatives ug?ix,ur are camputed from V. For instance,
T,dx,t) = = + D ¥(x,0) = = + £Vix} and is just E, (x}.

The spcond derivative nE?:x,t} = DtvtT[x,t}l - va{Tix,tJ]DtItx,tb

= D VI t) )W ix, £) ) and D:T[x,ﬂ} = D Vix} - Vix) B0 T,(u,t) =
X + tV{x} + thﬂxﬂixb - Vix], ete.

The spatial derivative aof 7 (x,%) applied to the tangent wvector u

g
r
DxTh-I:rr.tJu - 1 F Dx[tnt'f fx,0}]u + Dx']ﬂ: Dl: (x00)a +...
1.k X ; kel
+ nx‘iTt D ¥i{x 01 Ju. Since ¥ is C r the partials coomute and

_ o 2 3 k
DTy (% 80y = u ¢ £D {0 ¥k, 00u) + SETDL (DY (x, Dhult...+ ﬁtknt[t:x'f[xrn]u:l

. y - th
which 15 just the k order Taylor approximation for the spatial de-
rivative Dx'l-'h{,tilu.. The flow vix,a,t) = I:':I'I::{..t]',.l:l-x'!"l.t,-'l::lul 15 the

solution of the wvector Field Pix,ul = (Vix), DV{xla) and lTkix,t:.

. th 3 2
D, Ty lx,thub is the k™7 order Taylor approximation to y(x,u,t}. ‘Thus

i
L estimates for yix,u,t] and its kth order Taylor approximation are
Eu and El ot

A | = { ] i
v is C ], this argu=ment can be applied inductively to the Ffirst j de=

estimates for ¥ and its k order Taylor approximation. If

rivatives of T].:I::-LJ t] and the first derivative of ¥ix,t!.

Theorem 2:

Let M b2 a complete region ino E™ with smooth boundary and let V

k+7 £
be a ©° 4 vecter fiald 0 < k, ] = = tangent to or peointing in aleng the
boundary of M, which is bounded and which has bounded derivatives up to

order k+j. Then there is a conatant C > 0 and a ty * 0 such that

Etk+l

gy leat] - wlaeed || < for all ¢ < £ « ¢

q-
fers the j norm =means the sup of the norm of the differencas of
the values and the first j derivatives of T {x,t) and ¥(x,t).
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Proof s

It suffices to prove the theorem for § = 1 by inductian. It is
well known and fairly simple to see from the Taylor series expansion

that the estimate is valid in the C° narm once the Eh gize of ¥V is
bounded. Thua we are done as soon asz the Eﬂ giza af vait,xju is

bounded along the orbit of Y(t,x) for 0 £ £ < 1L and ||u|[| = 1, but this
Followe from Lemma 1 ).

Sectlion 2:

Givan a vector f£ield (or more generally a section aof a wector bun-
dle} £ then we can ask to find the zeros of £, One approach would ke to

integrate £ and hope (this is effective if F=-grad ¢}, but also we may
define the new vector field ¥ = -k grad <f,f> = -4 grad ||f||1.

Other approaches are Wewton's method, which we will define for general
manifelds, but in BT is

s :Dfx}‘lrtx]. and the Hewton vector field MNix) = w[Dfx:'lfix}

If £: g7 . gl

i %)

Newton up to Lirst order Inverts £ at £(x} and evaluates at @ i.e.
pulls the end point of the ray back. The Hewton differential egquaticn
is % = MNix}, its solution curyes are mapped by £ ta solutian of ¥ = =y,
= they are the inverse images of the rays. HNewton®s method may be
thought of as an approximation to the time one map of this eguatian by
Euler's methed. Integration of the Hewton differential equaticn i=
thus another way to find the zeros of £ (this squation has "pples" where
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the Hewton method does) .

In R7, the gradient vector field Vix) = -Ygrad «fix}, fix)» is
determined by the linear map w + - <£(x},DElx)w: and is therefore

Vixh = BEY ) -+ Elx). By £ this wvector maps to -DE{x) - DE %) £ [x)

which glves a negative inner product with f£(x]:

c-DE [x] *DETUx) £ (x) ,E(x}> = — <DE-(x) Elx), of S () £ () = < 0 and hence

the image of a soclution curve of the gradient equation f = Vix] by £
is transversal to and inward pointing on spheres. In the case that DE

1 ana pe® airrfer by a real meltiple. So the solution

curves of & = Nix)} and % = Vix) are the same. In particular, if £ i=

i3 canformal BE

an analytic function of one variable £: € + C, then

pet(z) = F'iz), (DE(=11"T =

so —grad| [E(z)]|° = €' (=) E' [z)Hiz)
£z}

= ||f{z]||EH:1l which ie a positive real multiple of W(iz}. How let £
be a ccmplex polynomial f: © + C. For each critical point & of £, let
Wo(#)

{z € cl¥ lx] + 6 as t = a }
W e) = [z & Cl¥ (x} + 8 as & = =}

. z >
where 8 _ 1s the solution of z = -grad|fiz) |” and for any z & C dencte

by “l ihe brameh of the inverse of £ taking flz)} back te z. The dis-
=

cugsion akbove proves the Ecllowing

d
Propogition 1: Let fiz) =1 aizi be a non-conatant complex polynomial.
i=0

2 :
al The image by £ of a solution curve of =grad |E(=}|" az B(z) through
the point =z, lies on the half ray throuwgh filzj) pointing towards the
origin. If Ty i3 nok on the stabhle or unstable manifold of a critieal

5 u
point the image is the entire half ray. If£ 24 € W (B) or =, ¢ W (&)
For m saddle point 8, then the image terminates at £{8).

-
hy If ftznj = w and £"(z,} # 0, then the solution curve of -grad|f{z)|

or Wiz} through z, is the image of the half ray through w by the analytic
-1

=1 .
pontinuation of the branch of £ ~ taking w to Iﬂlfsn
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e} If £{g) = @ and £'{£) # 0, then the stable manifold W™ (L} is the

image by the analytic continuation f;l whiichk is defined on the whole

complex plane minus & certain number of kalf lines from infinity to
f{Eii whersa By LT R K are the critical points of £ on the

boundary of HE{gJ. Tt i3 tespting to try b0 find a selution to the
polynomial equation E(z] = 0 by picking a point z, and aither:

al Take the solution curye of =grad |f|:'ai|E through =z,. With
a finite pumber of exceptione this curve kends to a raot of f£lz].
b] Take the sclution curve of Niz) through 5 - With a finite
number of exceptions this curve tends to a root of filz).
el Take f;l of the ray (1-h)fiz,) for 0 = h = 1. With the ex-
1]
ception of a finite number of rays substituting h = 1 gives a zero of f.

Ahz Smale points cut in Smale 1931, one can prove the fundamental
theorem of algebra by these methods. Method c) iz the easiest. More-
over, many numerical metheds for solving polynomial equations are in-
timately connected to these theoretical methods. Hirsech=Smale,
smale 1961, and Shub-=Smale 1982, 19B3 discuss these points.

Fram Shub-Smale 1262, we have the following simple propeosition.

Propasition 2:

. 2
Let £: € + C be a non-constant polynomial. Then Vizl=-grad|£(z} |

pﬂ-inl':s in along any circle centered at zers which contains all the

rocaks of E.

Proof:

We nead anly show that the: inner product <Hiz) .z* < 0 for any =
on the ecircle.

1
Kiz} = ;!?;r = EfEii = i where the a runs through the rogts of £.

Mow <Hiz),2> = Rai i 2} < 0 KEE

Z=d




1] =
EEIEE:E g} < 4 1Iff

1
Reliz=z 2z} < O
But now Rel(z z-a) ¢ @ since the ook a is inside the circle an which =z

lies. Thus Relz E%E’ < 0 for each a Individually and we are dons.

If f has simple roots and £' as wall then [ﬂzil1 i= a Morse-function
pointing in along the boundary of the disc and -grad 1f|E is generally

a Morse—-Smale weotor Field.

: 2-1
are conceivable for Eth degres equations. The latter occurs for ziz

The fact that -grad |f{=]|E ig generally Marse=Emale together with

).

Sectien 1 can he used to give a preliminary indicatien of why numerical
methode work, but see Smale 1981 and Shub-Smale 1982,1983 for much more
of this=.
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spction 3:

——————

To derine Mewton's method for the problem of finding the zeros of
a vector field on a manifold, ¥v: ¥ + TH we employ the function Bﬁ‘“x*u

of Section 1, and assuma that Vix} & “x' Then we lat

Hx) Ex{{v'liI_IEJVIx}}j whera U‘ix}:TxH - THH, has to he made

1

cense of via a connection and (V'(x}} = is assumed to exist. As for the

ppual Hewton's method we have :

proposition 3:

The fixed points of Hix) correspond te the zeros of V. If ¥V has
gimpla zeros, H'[x) = 0 at each fixed point.

Praaf:

Since deefinn: a chart Hxivh = x 1ff v = 0 and hence Hix) = x iff
v(x] = 0. The simplicity of tha zero of ¥ is the same a8 the assertion

1 exigts. MNow wribte in a chart

that (¥'{x))
x o+ [, 0 ) v ix) ) and

Aifferentiate at a point » with ¥ix) = 0 in the direction v abtaining

ivxtﬁ'[T]_lﬁ'{?]{"?ﬂxhr + t“’Ix}lqlivv'[xF{?lln (v,=v). The derivative

of B at (x,0) is [(Id,Id) =o Dxtﬁtxl} = (0},

If we consider the linear map A:R -+ R then the zeros of the

yectar field wix) = Adx) - fﬂﬁiﬁ :x = hix) = plxlx are the elgenvectors
& [
= |
af A. Wix) = Alx) = zAx,¥» x defines a vector field on the sphere B
n=1 n—-1 s x + v : .
Let B _:T 5 + 5 be defined by v - = as in Section L.

of the various sugoested methods to find the zeros of V wec zZay

golve & = Wixl on 5“_1,?t{xj a B_AX] which is a Morse=Smale flow
|[e™ =) ||

for A with eigepvalues with distinct real parts, and has normally
hyperbolic invariant circles if the eigenvalues of A have distinct
real parts except for cooplex conjugate pairs. These are generic and



B2
the induced dynamics are stable amone linearly induced flows. [See
. Palis] In fact for symmetric A, Vix} = -grad{k<fx,x>) which is a

1

Morse function an S0 . wWhen A has distinct eigenvalues.

Section 1 then asserts that the Euler approximation

B i) m e ¥ FRLIE] T =X
t EEI + ElA(x) - cx,hlﬂl?ﬁll

has similar properties for small t. The fixed pointe are once again
éigenvactnrs of A. As far as I know this is an unexplared and probably
uninteresting method to find elgenveciors.

The Hewton's method is more Interesting.
vﬁ[x] = ¥[x] = Alx] - <hlx),¥x = plx) — plx)x.

In R", Vilx)lwv = hiv) — <A(v),x> % — <AlX]l v x - plx)v.

_1 ] ]
To project onto the tangenk space of g subtrack the projection an x
{thiz is tke indeced connection] .

VPRIV, ur = <A(V) NEF = SR {w] xrox,mF = SB{N),VE = pxhex,ws.

cx,v> = 0 for v tangent to s at x mo <V'(x}v,x> = -<Aix),v> and
Vogsdv = Alv) = <hv,x*»%x — pixiv. Now solwving V' {xlw = VWix] gives

Blw) — <Bilwl,x>%x — pilxiw = Alx} = pi{x)x or [A - pi{x1Ilw = (A — px]I)x
+ «<A(w) ,x>x, Thus Lf we @an solve for w and (A - pilxll] is invertible

w=x + [h - pqx;Ir'lcnqu],xax. Hewtan®s iteration then ia Hﬁixl -

x=w__ _ =(A - o)D) teatwl aex  _ (A - plx}T) M
|x=wl]  |1tA = alxdDT) " tentw) o] | [t = pix}i™ ‘x|

whara

we have wrelbkten i, to strass the dependence on A. HHE"H} - Fﬂhix}r

sa H, ia defined on a subset af projective [(n-1} space, RPFIn-1}. Up

ta sign L i a well known onumerical method called the inverse power

X, AN

method with Rayleigh guetient shift. As above, o,(x) = pla] = s

For x 8 R, let Fplx) = (A - piﬂrll'lx.
Lecoma 21

For x € RS, x # 0, » € BY, 4 #£ 0, AR = 2" linear and o0:r™ + R"

an ocrthogonal linear map

1) pplxd = pg (Ax)



2) ":h.n.{’ﬂ' - :lnhh:]

3
VoParlagtxl = P (ox)
4 F,lhx) = AF, (x)

) Fln{:] = thlxl

1

&) Fu_lhn = th
Praaf @
<hlix) x> CAAN, AN
1) p,ix) = —-—-—f—{!*:} = ——l'—“* o = Py (Ax])

2 by, lx)= PREXE o o (x)

=1 ! T -
L <0 RO, x> - <Al (O ) x> = « A0 O > X
3 Fo ;AD:“] - ﬂt,!; {6u,ﬂu} <0x , 0x> ni{ﬁxl

4) Fx) = (A = p, x)T) Tax = (A - o, (x}I) " hx = AE, (x)

1

5) Fyaix) = (A - o (X1 7 x = (A - Ap, (x)T) T x = A, (x)

AR

6) 07'F00x) = 07 (A - o, (0x)T) Pox = (07HA - p -1, (x1TIO) 1k

1

= (07RO - p -1, (%11} % = F-L, (x)

Lemma 2.4 implies that F, may be defined on a subset U of the
projective space of K", AP(n-1) where [A - p, (x)1)”' exists. Denote
this map by R,, it agrees with the map which H, induces on projective

space. R, has, for this context, another rather unnatural lift frem

projective space to the sphere En-l by the formila

=1
= __IA - pix)}I)
Hhixl - —r

| (A = pix}X)

(x)
(x) ||

for x a unit vector such that A - pix)I is invertible. Parlett calls

this map the Rayleigh gquotient iteration. It secss more appropriate

to refer to Ry or N, by this namg. N, is a different 1ift of B, to gh=1-

A A



B4
Given the orthogonal transformation O, it acts on projective space by
acting on lines.

Proposition 3:

Let A be linear, 0 orthogonal and A real non-zero. Then R,.= R,
and 0 'R0 = Ry-1,,.
Proof:

This follows immediately from Lemmas 2.5 and 6.

Thus the dynamics of Ha on projective space only depand on the

orthogonal cancnical form of the matrix which can be adjusted by a
scalar multiple. This can be seen directly for thxl as well.

Proposition 4:

Let A be linear, O orthogonal and A real non-zerc. Then

5 = o1
Hln - ﬂl and Hu lm:| 0 Hhﬂi

Proocf:
V.. = Av., and (V. |"1 - lnu' }'1 so this proves that N = H
AR A AR ATAN AR A
n‘lvin{:: - ﬂ-llﬂlul - 0 %  <AOx,Ox> Ox
e 0" lagix) - @ aox,x- x
= V-1, (x). Thus
oIy (0x)0 = Vi-1._(x] and N.-1..{x) = B_{(vi=1_ (x))"1ev. =1 (x})
J N O “AD 0 “AD x'''0 “AD 0 “AO
=8 (0" v o) " v, (0ix)))
x A A

= - =1
=0 "By (Vy(00x]) luh{m:u = 0 "N, [0(x)]}.



85

For a non-zero vecter x in B, let [x] denote the equivalence
class of ¥ in AP(n=<1). So Ra[:] = [Ellxl],

How we follow Parlett for an analysis of R for sysmetric A,

Proposition 5:

Let A be a sysmetric linear map, A:R" + B". Then there is a
neighborhood W of the eigenspaces of A in RP(n-1) such that any w E W
either converges cubically to an eigenline of A under iterations of R,

or is itself already an eigenline of A.
Proof:

Let z be a unit eigenvector, Alz) = lz. The perpendicular space
to the A eigenspace is left invarjant by A. cCall this map al and pl.

P on the perpendicular space. Let U be orthogonal to z. Then

[A = plz + w11 Mz + wl] = [ :{t+u[ +Hal - otz + wiTy )
= [z + {I:TTEITEIII - ﬁllullilulliihl - otz + up1) "L
I

How if the norm of u is small plz + u) is close ta L. As Al doas not

have 1 as an eigenvalue there is a constant ¢ > 0 such that for small
u, |[1at - o(z + ulll_lu[[ <« C||u]|] and thus there is a constant

k > 0 such that for ||u|| small enough and u orthogonal to the eigen-
space of A, [(A - pilz + ulil-ltr + u)l] = [2 + v] where v iz oarthogonal

te the 1 eigenspace and ||v|]| = k[|u] |3, This is cubie convergence to
the eigenvectors.
How we do a particularly simple case, A is 2 x 2 symmetric. To

1 Q
study the dynamics we suppose that A has been diagonalized A = {ﬂl \ J

with 1, < A, {If A, = A,, R, is the identity.)

1132+12f2
plx,y) = %
X +y

ne

N ¥
Hnl.{ﬂ:pj"}] E‘_‘L-ptx':r} ¥ "'-z“"h‘:.'l"ﬂ and



1 .. L
[{l,¥)] = —
Hl : A4k fz_ A +12¥
L 1 § l+y2 2 14y
3
r

Similarly

R, [(x,1}] = [{-x,1)].

Thus the dynamics are independent of A. Every point tends pre-
cisely cubically to ocne of the two fixed points with the exception of
the orbit of the point [(1,1)] which has period two. The derivative of

the square at [(1,1)] is 2. So [(1,1)] is a source. Dhilrll-#lll+12}
as it does at the other point in the orbit. The wector (1,1) is an

eigenvector of (A - phll;I}Ilz.

For general symmetric A, and [1ﬂ] € RPFin-1) define {1i] indoctive-
ly by Ha[11~11 - [xi] as long as R, is defined at [xi_l]i The Rayleigh

quotient iteration converges for almost every starting point. In fact,
we have the next thecrem which is taken from Parlett. Let p = ﬂl:t}'

Theorem J3:

Let A be a symmetric, real n x n matrix. Let [x.] € RP(n-1), and

let R, be the Rayleigh quotient iteration. Then either

1) ﬂ[lh] is an eigenvalue of A for some k > 0

or
(2) [X,] is defined for all k > 0 and in this case o, converges
and either
(L) Py T i and iukl + [z] cubically where A(z) = Az
or

linearly where x, and x_ are the bisectors of a pair of eigenvectors



&7

whose eigenvalues have mean p = lim L

Proof:

The proof of this theorem is rather clever. First consider Hh

n-1

acting on 5, *, %, given and x. ., = N, (x.] where defined, so x, is a

unit vector. Let r, = (A - D'IHII}IE* ||rh|| is monotonically de-

creasing for:
Hegall = |18 = otxe ) Dix, ||

2 ||a - etz ]
= F{:k.lh - nlxhlI}xt+1?| since the second vector is a

multiple of x, which is a unit vector

o |Ih = ﬂk{x.llxh|| I|Ik+1|[ by the symmetry of A and

Cauchy-Schwartz = ilrkil. Moreover, ||z, || = ||rh+1]| iff pe,y = Py
from the first inequality and (A - ph;}:k = aflA - nhII_llxk] for some

a €@ R by the second ineguality, so (A - pklizxk = oxX, .
Now if ||z, || = 0., it is not too difficult to see that (x] is

ultimately in the domain of cubic convergence of an eigenvector.

1f Elrk][ = 1 >0, then if [z] is an accumulation point of [x1,

we see that ||r _.{2}]|| = ||z (2)]|]| by continuity so z is an eigenvector

of (A - nitill2 but not of A = piz)I (because T > 0) and this only
happens when z bisects a palr of eigenvectors for A. Using continuity
one can now essentially finish the argument by the analysis we have
done above of the two dimensional case.

The convercence properties of the Rayleigh gquotient iteration for
general real matrices are unknown. We say that the eigenvector x of A
is simple if Alx) = Ax for real 1 and the dimension of the generalized
A eigenspace ©f A is one. Convergence to simple eigenvectors is
guadratic by:

Froposition 6:

Let x be a unit vector and a simple eigenvector of A:R" = R",

Then ithﬂlj' = 0.



Proof :
We need only show that v;t:] has no kernel. But
“?:.IIH ® AV = Ay = <AW,.X X and

(A = AI)v cannot be a multiple of x for any v independent of x.
The case of a complex eigenvalue is gquite different. Indeed for

a rotation of the plane A = [“““E #inBl  yieh 0 ¢ 0 mod(2n),
-gingé cos@

-1 O _(sins)”t
(A - pix)I) = independent of x and on projec-
(sing) ™"  ©
tive space induces the same map as g -é] independent of A. Thus

avery point has period two and the orbit gives an orthogonal basis of
the space. This dynamics is analagous to Theorem 3.2ii. For two by
two matrices the dynamics of the Rayleigh guotient iteration can be
completely described.

- Proposition 7:

Let A:R° = R® be linear and R,:RP(1} = RP{l} the Rayleigh quotient

iteration. Then either
1) A iz a multiple of the identity and Rﬂ is not defined

! hi toint o :
ErY 2) R, has pericd two, A has complex eigenvalues
J-H::;,-pfﬂwl.#’} 3} R, has cne orbit of period two, two fixed points and every

-t"""’?-{iﬁf" other point has guadratic convergence to one of the fixed points; A

has two distinct real eigenvalues

i) R,

to the fixed point; A has two egqual real eigenvalues but is not a
I!I.‘IJ].I::ILF].I' of the identity.

“n #fikﬂ'ﬂh”ﬁ‘miL&HEE fIF jg?EA¢£¢;ﬁﬂﬂp&§iiﬁﬁfi*“ji

Prool:

has one fixed point, every other point converges linearly

2l oo

By Proposition 3 and the discussion above we have only to consider



Y E
2
the case that with respect to the standard basis of R, A = [ﬂ A ]-

Computing in the coordinate chart {(l,y)}} for RP[1)

3 .
(A, = .l - &
1 z?r__.- ¥ = i_and £ ¢ 0, than

If JL]_ 2

R (y) =
" (3, - 11} - 2ey - Eyj

R.ﬂ[:f} - +~ . This is case 4). The dynamics are independent of 3A,c
Yy +2

and converge globally linearly to y = 0. If 3, # 3, and € = 0, this

iz the symmetric case discussed ahove. It is a special case of 3).
R, is 2 homecmorphism and the convergence to the fixed points is cubic.
The last case to consider is A, £ i, and € # 0.
=1
5l -

2 3
So Eﬁ{fl = gn{y] = g* —T ¥ The Eixed points of this trans-
dy" 4+ 26y + 1

LE':E-EHJ_-A

formation are y = 0 and y = - % and these are also critical points by

Proposition 6. The other two critical points of R, are real and are

+ 3 2
at y = :_# . We assume that § is positive since Flll5 and F‘_ﬁ

: 1 s | :
are conjugate by y = —-y. For y < - ——, Hﬁl:.r:l- < = =5~ . Therefore it

is simple to see that the graph looks like

I

B

L]

[]

L]

L]

(1

]

]
T
rl.-

i

il

L]

i

i

i

i

i

I

I
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The ecritical points tend to the super-attractive fixed points.
Therefore, it follows from the work of Fatou (See Blanchard) that even
22 a rational map of the Riemann sphere it is hyperbolie. On the left

every point tends to - ~%— - On the right, the basin of attraction of

0 is delimited by a point of period two and outside this bagin the map
is monotonic on the relevant intervals. Since there can be no other
sink (a critical point would have to tend to it, again by the work of
Fatou) every point on the right ocutside the basin of 0 besidas the re-

pelling point of period two tends to the fixed point = —%— - g.e.d.

It is simple to see that for § » 0, all the Eﬁ are topologically
conjugate, and interesting to note by Sullivan and Mafié, S5ad and

Sullivan, it follows that the entire family of rational maps of the
sphere Hﬁ, § » 0 are quasi-conformally conjugate. Hence the Julia

sets are all quasi-circles with dynamics topologically conjugate to

L -5-3. No two are conformally conjugate because in the complex plane
the other fixed points are just -if and i.

Pruhltqi

Fix n > 0. For almost every (A,v) where A:R™ + @ ig linear and

v € RP(n-1), does E:IV! tend to a super-attractive fixed point or a

point of period two?
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