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EVALUATING RATIONAL FUNCTIONS: INFINITE PRECISION IS FINITE
COST AND TRACTABLE ON AVERAGE*

LENORE BLUMf AND MICHAEL SHUB

Abstract. If one is interested in the computational complexity of problems whose natural domain of
discourse is the reals, then one is led to ask: what is the "cost" of obtaining solutions to within a prescribed
absolute accuracy e 1/2 (or precision s =-log2 e)? The loss of precision intrinsic to solving a problem,
independent of method of solution, gives a lower bound on the cost. It also indicates how realistic it is to
assume that basic (arithmetic) operations are exact and/or take one step for complexity analyses. For the
relative case, the analogous notion is the loss of significance.

Let P(X)! Q(X) be a rational function of degree d, dimension n and real coefficients of absolute value
bounded by p. The loss of precision in evaluating P!Q will depend on the input x, and, in general, can be
arbitrarily large. We show that, w.r.t, normalized Lebesgue measure on Br, the ball of radius about the
origin in R", the average loss is small: loglinear in d, n, p, r; and K, a simple constant.

To get this, we use techniques of integral geometry and geometric measure theory to estimate the volume
of the set of points causing the denominator values to be small. Suppose e > 0 and d -> 1. Then:

THEOREM. Normalized volume {x nrllQ(x)l < } < e/dKdnd(d + 1)/2r.
An immediate application is a loglinear upper bound on the average loss of significance for solving

systems of linear equations.

Key words, loss of precision/significance, condition of a problem, rational functions, average case,
integral geometry, models of real computation

1. Introduction. One approach to the analysis of the computational complexity
of algebraic problems, such as the cost of evaluating rational functions over the reals,
presupposes a model of computation with all arithmetic operations exact and of unit
cost, for example, the real number model (Borodin-Munro [1], Knuth [6]). How do
results concerning such an idealized infinite continuous model apply to the finite discrete
process ofcomputing on actual machines ? For example, in the real number model there
is no problem to decide given real x if x # 0, and if so then to compute 1/x. However,
on any real computer, when x is ultimately presented digit by digit, the "marking
time" to observe the first nonzero digit of x, as well as the "input precision" for x
needed to compute 1/x to within absolute accuracy 1/2s, can be arbitrarily large. If x
is presented in floating point notation, the computation of 1/(1-x) in the unit interval
to relative accuracy e exhibits analogous problems.

How do these factors influence the actual cost and reliability of real computation,
particularly as we move away from these simple examples to more interesting ones?
For instance, given an invertible n x n real matrix A, what is the "input precision"
needed to specify the entries of A in order to compute 1/det A to within accuracy 1/2
(Moler [9])? Such questions, dealing with tolerable round-off error and achievable
accuracy are often avoided in approaches to algebraic complexity theory that assume
infinite precision. As Knuth says in [6, p. 486], they are "beyond the scope ofthis book".

In this paper we address some of these questions with regard to the problem of
evaluating rational functions. One approach might be to analyze achievable accuracy
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and related costs assuming given input size or machine precision. In an attempt to
perhaps more fully interpret and apply results concerning the continuous model, we
take a somewhat opposite approach. That is, we ask, given a rational function
P(X)/Q(X) of n variables over the reals, and desired accuracy 1/2s, what "input
precision" is needed to achieve this desired accuracy? Clearly, the answer will depend
on s, on P and Q (i.e., the number of variables, the degrees and coefficients), and on
the input x (x, , x,). It is unbounded in general. Surprisingly, however, we show
(Theorem 4 in 5) that the average input precision sufficient for x in B,, the ball of
radius r about the origin in R", is finite and exceedingly "tractable". Here average
means with respect to normalized Lebesgue measure on B,. This tractability result, as
well as others in this paper, is explicit rather than asymptotic.

Our main tool is a formula which enables us to estimate the volume of the set of
inputs causing the denominator values to be small. In its normalized version, we get
the following elegant estimate (in 4).

MAIN THEOREM.

Vol {x BrlIQ(x)I < e} ella
Vol {Br} <Co r

where Q" R"--> R is a polynomial of degree d >= 1, r, e are positive real numbers, Co
K lo/d nd (d + 1 /2 and Ko is a simple constant depending on the coefficients ofQ (see 4).

This result allows us to estimate, for example, the average "marking time" to
determine that Q(x) is not zero for x Br (Theorem 3 in 5).

We prove the Main Theorem using techniques from geometric measure theory
and integral geometry (Federer [2] and Santalo [11]), thus using methods that are
somewhat new to computational complexity theory.

We address questions both of absolute and relative accuracy. However, unless
otherwise stated, "accuracy" will mean "absolute accuracy". The results on "relative
accuracy" are included in 6.

Remark 1. Computational complexity and the condition/loss ofprecision ofa prob-
lem. If one is interested in the computational complexity of problems whose natural
domain of discourse is the reals (or complex numbers), then one is led, both naturally
and necessarily, to ask: What is the "cost" of obtaining solutions to within a prescribed
accuracy e 1/2 =< 1 (or equivalently, to within a prescribed precision s =-log2 e)?

Clearly, a satisfactory answer must resolve a number of issues relating to tolerable
error and the number of bit and/or basic operations required. In particular, we at least
must answer the following two questions"

(1) What is the necessary and sufficient input accuracy 6 (or equivalently, input
precision -log 6) required for the data in order to obtain a solution to within output
accuracy e ? Here 6 will in general depend on both e and the data, and we assume
that both e and 6 are positive real numbers less than or equal to 1. (If 6 > 1, then we
will define the associated precision to be 0.) The ratio e/6 is a measure of the condition
of the problem (Henrici [4], Wilkinson [17]) and will be "very large" for ill-conditioned
problems, i.e., for problems where the necessary input precision Ilog 61 is "much larger"
than the prescribed output precision Ilog el or where the loss ofprecision

e [llog61-11ogellog+ - 1,0 otherwise
if e/6> 1,

is "great". Thus, ill-conditioned problems are generally not computationally tractable (nor
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are they computationally stable--small perturbations of the input can result in large
changes in the output).

(2) Given input data of precision -log 8, what is the cost, (e.g. in terms of the
number of basic arithmetic operations needed) of evaluating the solution of within
output precision -log e ?

The condition of a problem (1) is often investigated in numerical analysis; the
basic number of steps required (2) is generally investigated in complexity theory.
Clearly, a deeper understanding ofthe complexity issues arising in the real (or complex)
case requires an understanding of both issues.

The condition and loss of precision are measures intrinsic to a problem and
independent of method of solution. However, we remark that from a computational
point of view, the loss ofprecision appears more natural than the condition. For one,
the loss of precision gives a lower bound on the complexity of a problem. But also,
the mathematics helps affirm its naturalness even more. For example, a simple computa-
tion shows that, while the average (with respect to the uniform distribution) condition
of the problem of evaluating 1Ix in the unit interval is infinite, the average loss of
precision (i.e., average log+ of the condition) is very small, consistent with our intuition.
(See 2 and also 6 for an example in the relative case.) Thus, we propose that one
focus on the loss of precision, rather than the condition of a problem, for purposes
of computational complexity.

In this paper we investigate the condition, more precsiely, the loss of precision
in evaluating rational functions with respect to an average case analysis. This point of
view is new. Our results show that, although the problem of evaluating rational functions
can be arbitrarily badly ill-conditioned, the average loss of precision (and standard
deviation) is small.

An anlysis of average cost now just incorporates known results about the number
of arithmetic operations to evaluate rational functions, as well as the cost of multiplying
m-bit numbers (Borodin-Munro [1], Knuth [6]). Thus even on the level of bit
operations required, our results imply that the problem of evaluating, to accuracy 1/2s,
rational functions of n variables, of degree d, whose coefficients lie in a ball of radius
p, on a point x in a ball of radius r about the origin in R n, is on the average tractable
in s, n, d, and T, the maximum number of nonzero terms.

Remark 2. Interpretation and application. We can interpret our results as saying
that computation of rational functions of infinite precision real numbers is tractable
on the average, as long as one only uses as much precision as one needs. It suggests
a methodology for the design of algorithms to compute such functions: start with the
input precision sufficient on the average to achieve the desired accuracy and increase
as necessary, e.g. by the standard deviation.

We give a general formula for input precision sufficient on the average that holds
for all rational functions. Hence the result implies the average tractability of many
problems such as the computation of 1/det A for an invertible n x n matrix A, the
inversion of the matrix by Cramer’s rule, the estimation of the average logarithm of
the condition number of such a matrix, and other problems expressable by a polynomial
number of rational functions. Of course, in any specific problem one expects to do
better. For example, Norman Weiss [16] has shown us that the exponent of e in the

For a problem whose underlying function P is differentiable, an infinitesimal version of the condition
of the problem at input x is the size ]P’(x)] of the linear operator P’(x) [Henrici]. The analogous measure
of loss ofprecision would be log IP’(x)l. Results similar to those in this paper can be achieved using these
notions.
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computation of the volume estimate for the determinant in any dimension can be taken
equal to 1 instead of l!d and for the discriminant of polynomials of one variable of
degree d, the exponent is trivially seen to be no worse than 1/2.

In general, sharper volume estimates for polynomials should be possible depending
on such criteria as irreducibility, the lower coefficients, etc. and these would be
interesting. However, the example P(x) xd demonstrates the sharpness of our results
for the general case with regard to the exponent of e.

Remark 3. Abstract models of computation: recursive analysis. Our results have
implications for recursive analysis, the abstract theory of computation of functions on
the reals (or complex numbers). A model for such a theory of computation could be
based on the notion of function-oracle Turing machines. (See Ko-Friedman [7] for
the development of a formal theory). Informally, we imagine a Turing machine My for
computing a real function f being fed, by oracle, a real input x digit by digit as
necessary. Computations are performed by My in the usual oracle Turing machine
manner. Outputs are produced digit by digit converging to a sequence representing
the real value f(x). Computable real functions are then those functions that can be
realized in this model, and are necessarily continuous (on their domains). The com-
plexity of functions is measured by the cost (in terms of time and space) of producing
outputs that are accurate to within e. Hence, in this model, polynomial-time computable
functions must have polynomially bounded moduli of continuity (i.e., input precision
-log which is polynomial in the desired output precision -log e). Thus, rational
functions are not in general polynomial-time computable.

Our results show that if in this model we extend the notion of "tractable" to mean
"polynomial time computable on the average", then we significantly extend the class
of tractable functions in a way that is both natural and useful. In so doing, we also
show how methods from integral geometry and probability theory can be used to
obtain results in recursive analysis.

Remark 4. Relation to other work. Much of our work and techniques are motivated
by Smale [13] and Shub-Smale [12]. Myong Hi Kim [5] is doing an analysis of the
finite precision analogue of the real number model results on average tractability of
Newton-Euler iteration schemes for finding approximate zeros of polynomials. Smale
[14] is also investigating general notions for the condition (or loss of precision) of a
problem.

The first draft of this paper, including the main results on sufficient input precision,
was finished in the fall of 1983. In Steve Smale’s seminar in the spring of 1984, Blum
suggested that the log of the condition was the appropriate concept for study. Smale
then introduced the expression "loss of precision" and asked what the average loss
was for linear systems. This motivated the facile application of our main results in 7.
Using special techniques Eric Kostlan [8] and Adrian Ocneanu 10] get sharper results
for linear systems.

Remark 5. Further directions and results. The results can be easily extended to the
complex case, the exponent of e changes to 2/d, and generalized to semi-analytic
functions. R. Hardt [3] has proven a volume estimate for these functions which should
be sufficient to conclude the average tractability of the loss of precision function for
a single f. Also, averages could be computed with respect to other probability measures,
reflecting nonuniform distributions inherent in classes of naturally arising problems.

Remark 6. Organization ofpaper. We begin with three simple examples (in 2)
to illustrate key points. In 3 we outline our procedure for the analysis of input
precision sufficient to evaluate a rational function to within accuracy e. In 4 we
estimate the volume of the set of points on which a polynomial has values near zero.
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Using this, we estimate, in 5, the average marking time to determine that a polynomial
is not zero. This enables us to estimate the input precision sufficient on average. Section
6 deals with floating point notation and the relative case. In 7 we give an immediate
application of the main results of the paper to the problem of solving linear systems.

2. Three simple examples. We start with three elementary examples in order to
illustrate key points.

(1) Let x[0,1] and let l(x)=llog(x)[. Then m(x)=[l(x)J+l is sufficient
"marking time" to observe the first nonzero entry in a binary expansion of x. Although
m(x) can be arbitrarily large, its average or expected value Av m is less than 2.5 since

Avm< (l(x)+l)dx=log2e+l.
o

(2) Suppose that an integer s _-> 1 is given and that x [0, 1]. We wish to compute
1/x to within absolute accuracy 1/2S. If Ix- x* < 1/2S++2/(’)+ where e 1/2S+, it is
not hard to see that I1/x- 1/x*l < 1/2S+ (and if I1/x*-y*l < 1/2S+ then I1/x-y*l <
1/2s). Thus, an "input precision" Hs(x) for x sufficient to compute 1Ix to within
absolute accuracy 1/2 (allowing truncation in the answer) is s + 1 + [2/(x) + e ], which
again can be arbitrarily large depending on x. In this case, the average is

AvHs Hs(x) dx<= (s+l+[21(x)+e])dx< (s+l+21(x)+l)dx
o

s + 2 log2 e + 2

which is approximately s+4.885, and anyway, less than s/5, again exceedingly
tractable.

Thus, the average "loss of precision" in evaluating 1/x in [0, 1] is finite and does
not exceed 2 log2 e / 2, consistent with our intuition. On the other hand, using the fact
that given e > 0, 6(e, x)- ex2/(1 / ex), a simple calculation shows that the average
"condition" e/6 for the problem is infinite.

In these examples, we can also easily estimate the variance. Here it is useful to
note that for square integrable functions f and f* on [0, 1] if f*<-f<-f*+ 1 then
If-fl<lf*-Jf*l+l. So, a crude estimate by Cauchy-Schwarz gives Var(f)_-<
Var (f*) + 2tr(f*) + 1 where

Var (f)= f(x)- f(x) dx dx

is the variance of f, and tr(f)= x/Var (f) is the standard deviation.
Thus, in example 2, letting II*(x)= s+21(x)+ 1, a straightforward calculation

shows that

Var (1-Is) (Hs(x) Av Hs)2 dx <= 4(10g2 e)2 / 4 log2 e + 1.

Hence, cr(IIs) < 4.

(3) Suppose that a positive integer s is given, and real numbers P and Q are
chosen at random in the unit interval [0, 1 ]. We wish to compute P/Q to within relative
accuracy 1/2S. What precision H (P, Q) is sufficient for P and Q? If PI > 1/2 and
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then

P/Q
1

2s+l

as long as [P P*[ < 1/2A and [Q Q*[ < 1/2A, where A> s + + 3.
Thus, II(P, Q)<_-s+max (re(P), re(Q))+3. The average value of II in the unit

square is

[m((1-)2 ( _1Av II-<_ s + 1 2,,,_. +3

_-<m
2m_

+ 2m_2
q- S + 3

=m
2 -1 +s+3=

1-1/2
+s+3=s+7.

In the above examples we have basically used the following, which we also use
later on.

LEMMA 1. Let s, m, v, 0 and A be positive integers and P, Q, P*, Q* be real numbers
none of which is zero. Then:

1) If IQI >- 1/2 and IQ- Q*[--< 1/2o then I1/Q- 1/Q*I < 1/2 as long as 0 > s + 2m.
2) If [Q[_->l/2m, [Pl<_-2 v, IQ-Q*]_-<1/20 and [P-P*l =<1/23 then

[P/Q-P*/Q*]<I/2 as long as O> s+2m+v+l and A> s+m+l.
3) If ]P-P*l<(1/2+-)lPI and IQ-Q*I<(1/2+)IQl, then

Proof.
1)

P/Q
1

1 1 Q* *QI < 1/2’
Q. =(1/2m)(1/2--1/2) 20-m__l

1
as long as 0 > s + 2m.

2)

Now by 1)

and thus

1 1 1
2s+v+l

Hence

1
<2=-I-

2s+o+l.
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3) I1-P*/PI<I/2+ and I1-Q*/QI<I/2s+. So,

1 P* 1
1--;7 <--< 1 + 2s+----5

and

So

Now multiply and subtract 1 to see that IP*Q/Q’P-11 < 1/2s.
3. Procedure for the analysis. We define the precision associated with accuracy 8 > 0

to be Ilog2 81 if 8 =< 1 and to be 0 otherwise.
Our procedure for the analysis of sufficient "input precision" (and hence a lower

bound on the "cost" involved) on average, is as follows.
First, using Lemma 1.2 in 2, we estimate the (output) precision O(P, Q, x) for

P(x) and Q(x) (depending on the values of P(x) and O(x)) necessary and sufficient
for the value f(x)= P(x)/O(x) to be within accuracy 1/2=< 1:

where

O(P, Q, x) <- s + 2mo(x + log_ IP(x)[ + 1

llog IQ(x)ll if[Q(x)[<- 1,
mo(x)

1.0 otherwise

is the marking time to determine that the denominator of f is not zero.
Next, we let It(P, Q, x) be the (input) precision for x and the coefficients ofP and

Q, necessary and sufficient for the values P(x) and Q(x) to be within accuracy 1/2 <-_ 1.
Even the most naive method of evaluating P and 0 by multiplying out the monomials
and adding them up will show that, for every positive integer t, I,(P, Q, x)<=
+ H(d, Ty, p, r) where

H d, Tf, p, r) <= log d + log2 Tf+ d log-r+log-p+2.

Here log+ max {log, 0}, d max {deg P, deg Q}, Ty is the maximum ofthe number
of nonzero terms of P and 0 and is bounded by (,/1d ), where n is the maximum
number of variables of P and Q, p is an upper bound on the absolute value of the
coefficients of P and Q, r is a positive real and Ixl < r. Here Ix[ is the Euclidean norm.

So, letting IIs(P, Q, x) be the input precision for x and the coefficients of P and Q
necessary and sufficient to evaluate f(x) to within accuracy 1/2, we have II(P, Q, x)<-
It (P, Q, x) where O(P, Q, x). And so,

1-Is(P, Q, x) <- Os(P, Q, x)+ H(d, Tf, p, r)

<- s+2mo(x)+log2 IP(x)l+ 1 + H(d, Tf, p, r)

<-s+2mo(x)+[log_ Tf + d log- r+log2 p]+ 1 + H(d, Ty, p, r)

<-s+2mo(x)+2[log2 Ty+d log- r+log+ p]+log_ d+3.



EVALUATING RATIONAL FUNCTIONS 391

Now, we also note that computing P(x)/Q(x) to within accuracy 1/2 using the
naive method suggested above and fast multiplication requires no more than 2(d 4-1) T
arithmetic operations times O(IIs(P, Q, x) log II(P, Q, x) log log II(P, Q, x)) bit
operations.

Thus, in order to show that tractability of the average input precision necessary
and sufficient to evaluate f to within accuracy 1/2 and hence the tractability of
evaluating f on average, our main problem, and the focus of this paper, is to estimate
and show the tractability of the average marking time to decide that a polynomial is
not zero. To do this we first show that the volume of the set of points on which a
polynomial has values near zero is "small".

4. The volume estimate. Given a polynomial Q: Rn- R of degree d _-> 1, express
Q as

Q(X) Y, alx’11 X 4- a0

where

I:{i,, 0 < il, in <-- d
and

Let b= ilI""" in!a (where 0!= 1) and Ko= 1/maxll=d
Let r be a positive real number and let Br {X R n] Ixl <= r} be the ball of radius

r about the origin in R n. Let An-1 be the (n- 1)-dimensional surface area of OB, the
boundary of B1. Let Vn be the volume of B1. So, the surface area of OB is An_lr-
and the volume of B is Vnrn.

MAIN THEOREM 1. Let Q Rn--> R be a polynomial of degree d >-1. For any real
numbers r > 0 and e > O,

Vo1 {XE r’IQ(X)I E}<2Ei/dKlo/dlr Vn-I 4-1d(dt + I)
2-1)An-lJrn-12

Proof outline. The proof is by induction on the degree d. The linear case (d 1)
is straightforward. The inductive step uses the co-area formula (Federer [2]) to show
that the Vol {x E B[ ]Q(x)l < e} can be computed by first computing the volumes of
the fibers Q-l(w)f’lB for (Iwl<e), and then integrating over the fibers. Then the
methods of integral geometry (Santalo [11]) are used to compute the volumes of the
fibers. The "capsule" {x BI [Q(x)l < e} is partitioned in such a way as to make use
of the inductive hypothesis.

Proof Since {x e Brl [Q(x)[ < e} {x e B,[ IgoQ(x)l < go}, and noting that

K/coo 1, it suffices to prove the theorem when Ko 1. We prove this theorem by
induction on the degree d. If the degree of Q is 1, Q(X)=Y=I aX+ ao and 1
1/max,>ola,[. The gradient VQ=(al,’", an) and 1/IVQI<= 1. Vol{xBrl IQ(x)l < e}
is therefore less than the volume of the ball of radius r in the n- 1 plane orthogonal
to (al,’’’,an) with (-ao/[VQI2) (al,’",an) as center, times 2e/IVQI. So,
Vol {x B[ IQ(x)[< e}<2eV,,-rn-. Now we proceed by induction. Assuming the
inequality proven for d-> 1 we attempt to prove it for Q of degree d + 1. Choose x
such that Koo/ox, Ko 1.
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Let S {x Brl [Q(x)l < e} and $2 {x B, IoQ/ox, < ea/<a+’>}.
Vol (S $2) + Vol ($2). By the inductive hypothesis

Vol (S2)2(ed/(d+l))/d[ Vn-l+( d(d+2 1)

Vol (S1) <-

On S1-S2, 1/IVQI <= 1/loQ/oxil < lie a/ca+l). So, by the co-area formula (see Federer
[2, Thm. 3.2.12, p. 249]),

Vol (S $2)
1

o-’(w)a(s,-s) IVQI
dw

1
<-_2e

d/(d+l) max (VO1 (Q-(w)(S1-S2))

2el/(d+)(max vol (Q-(w) f) (S1- S2))

where vol Q-I(w) I")(S-S2) and the first integral are with respect to the inducdd
(n-1)-dimensional volume on the hypersurface Q-(w). Thus we will be done as
soon as we show that Vol (Q-L(w)) t3 (S1- $2)--< (d + 1)(A,_l/2)r"-. This follows from
the following proposition which is essentially contained in Smale [13]; the general
case was shown to us in a personal communication from Smale.

PROPOSITION 1 (Smale). Let Q:R"--> R be a polynomial of degree d > 1. For any
real number r > 0

Vol (Q-l(w) fflBr)<d r"-I
2

For the sake of completeness, we include a sketch of this proposition. The typical
line L1 in R" can meet Q-l(w)f’l Br in at most d points. Of the ones that do, the
typical one intersects OBr- S’]- in two points. Using results from Santalo [11, 14.70,
p. 245] we have

,4" 1(A--Vol (Q- w) fqBr) (Q-I(w) I’IBrf"IL1) dE1
Q-I )CI BrCI LI f

<-_- 2 dL
2

<-- 2 dL1

dA Vo! (S-)
2A
d A,,

r"- Q.E.D-2 A--- A’-
MA TORN 2. Let O R"R be a polynomial of degree d >-0. For any real

numbers r > 0 and e > 0

Vol {x e B, IQ(x)l < e}
Vol {B,}

where Co Klo/d n((d(d + 1))/2).

< CQE1/d
r
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Proof Recall (e.g. Santalo [11, p. 976] Vo 1, V2 2, V2 r and generally V,
2,r"/2/nF(n/2) where F is the gamma function. Also, Ao=2, A =2,r, A2=4r and
generally A, 2zr("+)/2/F((n+ 1)/2). Thus for n 1,

Vol (x B, IQ(x)l <2 e’/dK ’/ad(a + 1)
O 2

So, if we normalize, we have for n 1,

Vol{xB,IIQ(x)l<e) e’/K’/dd(d+l)
Vol {B,}

< or 2

and for n > 1,

Vol{xG__nrllQ(x)l<f, } 2F_, lid 1Q/d[Vn_l (d(d -- 1)
Vol {Br}

< K +
r Lv. 2

Now A,_/ V, n and

2g.J"

V,_ ( n ) F(n/2) <;. Q.E.D.V.- n,i F((n-1)/2)rr1/2

5. Average marking time and average input precision. We continue with the notation
and setting introduced in 3 and 4. We now wish to estimate the average value of
mo(x) the "marking time" to determine that Q(x) is not zero for x B.

Recall,

llog2 IQ(x)ll
m(x)=

0 otherwise.
iflQ(x)l-<_ 1,

From the normalized volume estimate, and assuming normalized Lebesgue measure
on B. we see that for 0<= e <- 1, mo(x)<=llog2 el with probability at least 1--Coe/d/r.
This enables us to estimate the average value of mo(x).

THEOREM 3. Let Q:R" --> R be a polynomial of degree d >= 1 and let r be a positive
real number. Then Av mo, the average ofmo(x) in Br with respect to normalized Lebesgue
measure, satisfies

Av mo <- d(log- (?) + log2 e)
where Co Kdnd(d + 1)/2 and log+ max (log, 0).

Also, tr(mo) the standard deviation of mo(x) in Br, satisfies

tr(mo)-<_dlog2e In+
1/2

+21n+ C+2
Proof We first recall the following (from Shub-Smale [12, Part II]):
DEFINITION. Let (X,/z) be a probability space with no atoms. Let m: X --> R/ be

a real valued nonnegative measurable function and let f: (0, 1)--> R be decreasing and
Riemann integrable. We say that m(x)<=f(tz) with probability 1-/z if z{xlm(x) <-

f(y)} >= 1 y for all 0 < y < 1.
PROPOSITION 2. Suppose as above that m(x) <f(/x) with probability 1- tz. Then
(1)

E(m) m(x)tx(dx) <- f(tx) dtx;
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(2)

Yar (m) (re(x)- E(m))2(dx) <-_ f2(x) d (E(m)).
Returning to our proof, we let e()=(min(1, rx/Co))a for O<_-x_-<l. Thus,

letting f()=lloge(x)l, we get mo(x)<-_f(x) with probability 1-x. And so, by
above In too(x) dx <= Iof(tz) dlz.

Nox, lof(/x) d/z =-d log2 (ytz/CQ) dlz =log2 e(dv+ dr In (Co/yr)), where
y min (Co/r, 1). Thus, if Co/r >= 1, then y 1 and we have

I f(/z)d/z =d log_ e(ln C+ 1)"r

And, if CQ/r< 1 then y= Co/r and jf(/x) d/z < d log e. So, J mo(x) dx<= f(tz) dtx <=
d log e(ln+(Co/r)+ 1)= d(logY (Co/r)+log e).

The second estimate follows in a similar fashion, now using part 2 of Proposition
2 and the fact that tr(mo)=x/Var (mQ). Q.E.D.

And thus we have also shown:
COROLLARY. Let Q: R"--> R be a polynomial of degree d. Then (with respect to

normalized Lebesgue measure)

f 2dln(d)+dln(n)+d+ln(KO) ifCo>lIlnlQ(x)ll <-
BnO-lt_,l Cod if Co < 1.

By 3 and Theorem 3 we get:
THEOREM 4. Let f(X) P(X)/Q(X) be a rational function f: R" -> R of degree

d >-1. Suppose that the maximum absolute value of the coefficients of P and Q is p and
that a real number r >- 0 and an integer s > 0 are given. Then Avixl< IIs(P, Q, x), the
average input precision for x and the coefficients of P and Q necessary and sufficient to
evaluate f(x) to within accuracy 1/2 on Br with normalized Lebesgue measure, is finite
and satisfies

Av IIs(P, Q,x)=<s+2 Av mo+logmaxlP(x)l+l+H(d Ty, p,r)
Ixl<r Ixl<r Ixl<r

< s+2d(log- CO+log2 e) +2[log2 Tf + d log+r+log2 p]+log d +3

where Co Kand(d + 1)/2 and Ty, the maximum number of nonzero terms of P and
of Q, is bounded by (").

So, the average loss of precision in evaluating P(x)/Q(x) in Br is loglinear and
crudely bounded by

2d(2 log2 d +2 log2 (n+ 1) +log- r+log2 e) +log2 d + 2(log- p +log2 K) +3.

We may average as well over the polynomials themselves. Let P(n, d) denote the
vector space of real polynomials Q:R"-R of degree d, and F a vector subspace
determined by allowing a fixed subset of the coefficients to be nonzero, with at least
one of these the coefficient of a term of degree d. Let k be the number of nonzero
coefficients of degree d and rn the dimension of f Let C(p) be the cube of side 2p
in F i.e., C(p) {Q F[ the maximum absolute value of a coefficient of Q is less than
or equal to p}. Thus the volume of C(p)= 2"p’. We normalize this volume to one,
fix r>0 and average log- (Co over C(p).
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LEMMA 2. log- (Co/r)<(1/d) log- (1/rptzl/k)+log2 n+log2 (d(d + 1)/2) with
probability 1 tz.

Proof Ko <-_ 1/maxl=d lalI - 1/pp, 1/k with probability at least 1 -/ since the nor-
malized volume of

{Q C(p)imax la,] < pi’/k}

is equal to

2mpm-k( ptz l/k)k
2mp

< log- +log2 n +log2
r =

1--- log- 1/k + log2 n + log2
d rptz

with probability
Now let

Q.E.D.

d(d+l)
2

d(d+l)

k(P, r)

llog2 (e) if pr >--_ 1.

Now Proposition 2 gives
LEMMA 3.

Co d(d+ 1) 1
log- _-< log_ n / log2/--d/k(p, r).

c() r 2 d

Proof.

+(1) for (rpl)log2 1/k log2 (e) In Ilk dlz
rptz

where y=min (1,(1/pr) k) and the two cases give the two integrals.
THEOREM 5. Let F be as above and r, p real numbers bigger than zero. Then the

average marking time for a point (Q, x) in C(p)xBr is less than or equal to d log2 n+
d log2 (d(d + 1)/2)+ d/k(p, r)/ d log2 e.

Proof. The double integral C(p)XBr M is just the iterated single intervals by
Fubini’s theorem and thus Theorem 3 and Lemma 3 finish the argument.

6. The relative case. We now consider the relative case. The relative condition of
evaluating a function f at x is the ratio e/8 where IAxl/Ixl implies IAfl/If(x)[ e.
Its logarithm+ can be considered a measure of the loss ofsignificance for x in evaluating
f(x) since it represents the loss of significant digits when input x and output f(x) are
given in scientific or floating point notation. Rewriting the ratio IAJ]llflllAxl/Ix[ we
get IAJ]/Ihx[ Ixl/If(x)l which is approximated by [DJ]. Ix]/]f(x)l the infinitesimal
condition of the problem. (Note that by the mean value theorem, we have IAf[/[xl <--_

sup [Df(x*)] over all x* on the line segment between x and x+hx.) We call the
logarithm+ of the infinitesimal condition, the infinitesimal loss of significance.
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As an example, we consider the problem of evaluating f(x)= 1/(1-x) in the unit
interval. Here the infinitesimal condition is x/(1-x) and the infinitesimal loss of
significance is log+ (x/(1-x)). So, analogous to the absolute case, we have a problem
were the average loss of significance is small (j log- (x/(1-x)) dx= 1), although the
average condition is infinite.

We now wish to estimate the average loss of significance for x in evaluating a
general rational function f= PQ. Suppose we know that IAxl < ’ implies IAJ]/IJ] < e.
Then we have, IAxlllxl < implies IA/lq < where ’llxl. So,

log+ =log+
,/ixl

<-log+ +log+

By Lemma 1 and 3 we have,

log+(,) =<max (mp(X), mo(x))+2+ H(d, Ty, p, r).

So, Theorem 6 follows.
THEOREM 6. Let f P/ Q: R R be a rational function of degree d >= 1 and let

r > 0 be a real number. Then, the average loss of significance for x in evaluating f(x) in

Br is bounded by

Av log+ [xl+ Av max (mp(x), mo(x))+ H(d, T, p, r)+2

=< log2 r --+ d log- + d log2 e + H(d, Tf, p, r) + 2.
n r

Proof. To integrate nrlog+ Ixl/vol n use polar coordinates and integration by
parts.

Also, by Theorem 2 we have,

Vol {xenlmin (IP(x)[ IQ(x)l)<e} (Cp+Co)e ’/a

Vol Br r

Now proceed as in Theorem 3.

7. Loss of significance in solving linear equations. An immediate consequence of
Theorem 3 is a tractable upper bound for the average loss of significance in solving
systems of linear equations. This was a question of great interest to von Neumann
[15]. Here the problem is: Given A Rn2, a real n x n invertible matrix and a vector
b R, solve Ax b for x. What is the loss of significance?

Suppose an error Ab in input causes an error Ax in solution, i.e., A(x+Ax)=
b+ Ab. By linearity, we have A(Ax)= Ab and by invertibility, we have A-I(Ab)= Ax.
So, the relative condition of the problem is

IAxl
Ixl IAxllbl IA-(Ab)I IAxl
IAbl IAbllxl I(ab)l Ixl

where l] is some standard norm. We note that the right-hand side is bounded above
by KA IIa-ll Ilall, where Ilall- max Iaxl/Ixl- ma.xl,l=l Iaxl is the operator norm of
A. Numerical analysts, see e.g. Moler [9], call KA the condition number of the matrix
A, and it can be considered the worst case measure of the relative condition for the
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problem of solving Ax b (with fixed A, varying b). Analogously, we consider log KA
which is a measure of the worst case loss of significance of the system.

THEOREM 7. With respect to the Euclidean norm II in R" and R"2 and normalized
Lebesgue measure,

n-l)Avln KA <-In n-- In (n-1)+n+4n Inn.
ABI_R 2

Proof Let A=(a0) and A-l=(bo/DetA) where b0 is the ijth cofactor of A.
Suppose A B1. Then, IIAII-<_ 1" For suppose Ixl 1. Let aj be the vector (ajl, ", aj,).
Then,

IAxl (a, x)= __< a,l=lxl
_

la,12 a02
i=1 i=1 i=1 i=lj=l

1/2

since A B c R".
To estimate IIg-ll we estimate Ibol" Suppose bo= Det (c) where c are entries

from A. Let C (Y’__-I ci) /2 be the length of the kth column vector. Then Ib01_-<

"-- C< 1 And so, Hkn- Ck
< (1/x/n 1) n-1 Thus, Ibol <I-Ik= Ck. Since A B1, k

(1//n- 1) "-1. So we have,

g IIA-111 IIAII--< IIA-111 Det A
max Ibel

Therefore,

n 1

Det A (n 1)("-1)/:"

n- 1) In (n- 1)+1 In IDet All.In Ka <--In n-
2

Now, Det A is a polynomial in/I2 variables of degree/1 and KDetA 1. By the corollary
to Theorem 3,

n-l)Av In KA <= In n In (n 1) + 2n In n + n In n2 + n
ABI 2

n- 1) In (/1-1)+/1+4n In/1.=Inn-
2

This estimate follows from very general considerations, and so one would expect better
results for this particular problem. Indeed, using methods different from ours, Eric
Kostlan [8] has shown that although the average condition number (with respect to
the standard Gaussian measure or the space of/1 x/1 complex matrices) is infinite, the
average loss of significance is less than -52 Inn. Adrian Ocneanu [10] has calculated
sharp upper and lower bounds, (3 + e) Inn and (-e) In n respectively, where e can
be made as small as desired by setting a lower bound on n.
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