
SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
003

A SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER
GENERATOR*

L. BLUM?, M. BLUM AND M. SHUB

Abstract. Two closely-related pseudo-random sequence generators are presented: The lIP generator,
with input P a prime, outputs the quotient digits obtained on dividing by P. The x mod N generator with
inputs N, Xo (where N P. Q is a product of distinct primes, each congruent to 3 mod 4, and x0 is a quadratic
residue mod N), outputs bob1 b2" where bi parity (xi) and xi+ x mod N.

From short seeds each generator efficiently produces long well-distributed sequences. Moreover, both
generators have computationally hard problems at their core. The first generator’s sequences, however, are
completely predictable (from any small segment of 21PI + consecutive digits one can infer the "seed," P,
and continue the sequence backwards and forwards), whereas the second, under a certain intractability
assumption, is unpredictable in a precise sense. The second generator has additional interesting properties:
from knowledge of Xo and N but not P or Q, one can generate the sequence forwards, but, under the
above-mentioned intractability assumption, one can not generate the sequence backwards. From the
additional knowledge of P and Q, one can generate the sequence backwards; one can even "jump" about
from any point in the sequence to any other. Because of these properties, the x mod N generator promises
many interesting applications, e.g., to public-key cryptography. To use these generators in practice, an
analysis is needed of various properties of these sequences such as their periods. This analysis is begun here.

Key words, random, pseudo-random, Monte Carlo, computational complexity, secure transactions,
public-key encryption, cryptography, one-time pad, Jacobi symbol, quadratic residuacity

What do we want from a pseudo-random sequence generator? Ideally, we would
like a pseudo-random sequence generator to quickly produce, from short seeds, long
sequences (of bits) that appear in every way to be generated by successive flips of a
fair coin.

Certainly, the idea of a (fast) deterministic mechanism producing such non-
deterministic behavior seems contradictory: by observing its outcome over time, we
could in principle eventually detect the determinism and simulate such a generator.

The resolution [Knuth], usually, is to require of such generators only that the
sequences they produce pass certain standard statistical tests (e.g., in the long run, the
frequency of O’s and l’s occurring in such a sequence should be nearly the same, and
the O’s and l’s should be "well-mixed").

However, the usual statistical tests do not capture enough. An important property
of sequences of coin tosses is their unpredictability. Pseudo-random sequences should
be unpredictable to computers with feasible resources. We say that a pseudo-random
sequence generator is polynomial-time unpredictable (unpredictable to the right, unpre-
dictable to the left) [Shamir], [Blum-Micali] if and only if for every finite initial segment
of sequence that has been produced by such a generator, but with any element (the
rightmost element, the leftmost element) deleted from that segment, a probabilistic

* Received by the editors September 7, 1982, and in final revised form August 15, 1983. A preliminary
version of this paper was presented at Crypto 82.

" Department of Mathematics and Computer Science, Mills College, Oakland, California 94613, and

Department of Mathematics, University of California at Berkeley, Berkeley, California 94720. This work
was supported in part by the Letts-Villard Chair, Mills College.

$ Department of Electrical Engineering and Computer Sciences, University of California at Berkeley,
Berkeley, California 94720. This work was supported in part by the National Science Foundation under

grant MCS 82-04506.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, and City University

of New York, New York, New York 10036. This work was supported in part by the National Science

Foundation under grant MCS 82-01267.

364

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 365

Turing machine can, roughly speaking, do no better in guessing in polynomial time
(polynomial in the length of the "seed," cf. 2) what the missing element is than by
flipping a fair coin.

1. Two pseudo-random sequence generators. In this paper, two pseudo-random
sequence generators are defined and their properties discussed. These are called"

(1) the 1 /P generator,
(2) the x2 mod N generator.

The two generators are closely related. For example: From short seeds, each quickly
generates long well-distributed sequences. Both generators contain hard problems at their
core (the discrete logarithm problem and the quadratic residuacity problem, respec-
tively). But only the second is "unpredictable"--assuming a certain intractibility
hypothesis.

More specifically, TIEOREM 2, Problem 4 (6). Arty sequertce produced by the
1/P generator is completely predictable; that is, given a small segment of the sequertce,
orte cart quickly infer the "seed" and efficierttly extend the givert segment backwards
artd forwards.

On the other hand, TIaEOREM 4 (7). Modulo the quadratic residuacity assump-
tion, the x2mod N generator is polynomial-time unpredictable to the left. We
say, for reasons pointed out irt the applications (10), that the sequences it gerterates
are cryptographically secure.

The 1/P generator has been well studied in the history of number theory [Dickson]
and as a pseudo-random number generator [Knuth]. Our results concerning its strong
inference properties, we believe, are new and surprising.

The x2 mod N generator is an outgrowth of the coin-flipping protocol of [Blum].
Its strong security properties derive from complexity based number theoretic assump-
tions and arguments [Blum], [Goldwasser-Micali], [Yao]. Our investigation reveals
additional useful properties of this generator: e.g., from knowledge of the (secret)
factorization of N, one can generate the sequence backwards; from additional informa-
tion about N, one can even random access the sequence. Our number-theoretic analyses
also provide tools for determining the lengths of periods of the generated sequences.

Both generators have applications. The lIP generator has applications to the
generation of generalized de Bruijn (i.e., maximum-length shift-register) sequences.
The x2 mod ?4 generator has applications to public-key cryptography.

The two generators are presented together so that each one’s properties help to
illuminate the other’s.

2. Notation and definitions. In this paper, the underlying models of computation
are Turing machines [Hopcroft and Ullman]. Probabilistic procedures are effective
procedures (Turing machines) that can toss a fair coin (at a cost of 1 step per toss) to
produce truly random bits during their computation. (Probabilistic) polynomial-time
procedures halt in (worst-case) time poly(n), where poly denotes a polynomial, and n
is the input length.

The base, b, will always be an integer > 1. For any positive integer, N, let

INl- [1 +logbN] be the length ofN when N is expanded base b, and let IN[- INI2.
We also let n [NI so N-O(2).

For - {0, 1,..., b-1}, let * be the set of finite sequences of elements of ,
and let be the set of (one-sided) infinite sequences of elements of .

For x e *, let Ix[be the length ofx, and for integers k _-> 0, let {x e Ixl- k}.
For x e, and for integers k >_-0, let x be the initial segment of x of length k, and
x be the kth coordinate of x where x0 is the initial coordinate of x.

366 L. BLUM, M. BLUM AND M. SHUB

DEFINITION. Let N be a set of positive integers, the parameter values, and for
each N e N, let Xv c {0, 1} be a set of seeds (recall n -[N[). The set X {(N, x)lN N,
x e XN} is called a seed domain.

We can, and sometimes do, think of Xv as a subset of X by identifying seed
x Xv with "seed" (N, x)e X. With this identification, X can be thought of as the
disjoint union (-Jr Xv. The point of view should be clear from context.

DEFINITION. Let X" ={(N, x)[N N, [NI n, and x XN} be the set of seeds of
length n. Suppose for all sufficiently large integers n,/z is a probability distribution
on X :’. Fnen U ={/x} is an accessible probability distribution on X if there is a
polynomial poly and a probabilistic poly(n)-time procedure that for each sufficiently
large input, n, outputs an element of X according to/z, with negligible error, i.e., it
outputs an element of a set containing X according to a probability distribu-
tion on the set containing X) where, for all t, for all sufficiently large n,
E(,x)x ItEm(N, x)- tz’,,(N, x)[< 1/n’.

A pair (X, U), where X is a seed domain and U is an accessible probability
distribution on X, is called a seed space. We simply let X denote the seed space when
the underlying distribution is clear.

Now, let Z {0, 1, ... , b- 1}.
DEFINITION. A (base b) pseudo-random sequence generator G on seed space X is

an effective map G’X E such that for each integer s => 0, there is an integer => 0
such that for all (N, x) X with tx(N, x) O, [G(N, x)]’, the initial segment of G(N, x)
of length n , is output in time O(nt). (Thus, from short "seeds" (i.e., of "length" n),
that are produced using at most poly(n) truly random bits, G generates long sequences
(i.e., of length n), in polynomial time.) G(N, x) is called the pseudo-random sequence
generated by G with input or seed (N, x).

Remark. If X represents a set of "observable states" for elements of seed space
X, then the sequence G(N, x) might represent the observed states through which seed
x p’;:es (at times 0, 1, 2,...) resulting from some underlying transformation of X
into itself. This point of view motivates the following more structured (and rrre
restrictive) formulation of a pseudo-random sequence generator.

DEFINITION. A transformation T on seed space X is a poly-time effective map
T: X X such that for all sufficiently large n, T(X) X and T preserves/x, (i.e.,
/x, (A) =/x(T-1(A)) for each A X). For each seed x XN, the sequence x,
Tx, T2x, is called the orbit of x under T. We sometimes write Xk Tkx, SO Xo X

and Xg+l T(Xk).
DEFINITION. A partition B of seed space X into states E is a poly-time effective

map B:XE.
The system (X, T, B), with X a seedspace, T a transformation on X, and B a

partition naturally defines a base b pseudo-random sequence generator G on X where
the kth coordinate, [G(N, X)]k B(Tkx). Thus, if Xo, Xl, x2," is the orbit of x under
T, then G(N, x)= bobl"" where bk B(Xk) is the state of x at time k.

Remark. If T is poly-time invertible on X, i.e., if T- is defined and poly-time
computable, we can, and sometimes do, think of G mapping X into the set of 2-sided
infinite sequences on E.

In the next two sections we give examples of specific pseudo-random sequence
generators. We use x2 rood Ngenerator to denote a particular type of pseudo-random
sequence generator, whereas x2 mod N denotes the remainder upon dividing a specific
integer x2 by N. A similar distinction is made between the 1 !P generator and the string
of digits 1/P.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 367

Throughout this paper x mod N denotes the least nonnegative integer remainder
upon dividing x by N (rather than denoting the residue class mod N).

Recall that Z* {integers xl0 < x < N and gcd (x, N) 1 } is a multiplicative group
of order 0(N). If P is prime, then Ze* {1, 2,..., P-1} is cyclic. For each N, we
consider Z* c {0, 1} via the natural identification.

3. The lIP generator. Fix an integer b > 1 and let 5: {0, 1,..., b-1}.
DEFINITION (lIP generator (base b)). To define the seed space, let N {integers

P> 1 relatively prime to b} be the parameter values, and let the seed domain X be
the disjoint union t-Jpr Z*e. We can, and sometimes do, identify X with the (denge)
subset {r/PIP N, r Z,} of the unit interval [0, 1). Let/zn be the distribution on X
given by/zn(P, r)= un(P), vp(r), where u is the uniform probability distribution on
(e N[IPI n} and Vp is the uniform distribution on Z*e. Then U {/} is an accessible
probability distribution on X.

Let G :X E be defined by letting G(r/P) qlq2q3 be the sequence of b-ary
quotient digits that immediately follow the decimal point when rip X is expanded
base b. (We note that the successive digits of G(r/P) can be computed in O(Ibl" Iel)-
time, and that the sequence G(r/P) is periodic with period dividing 0(P).) We call
this pseudo-random sequence generator the lIP generator (base b).

From the state space point of view, the lIP generator (base b) is the pseudo-
random sequence generator defined by the triple (X, T, B) where X is the seed space
defined above, the transformation T: X - X is defined for x in [0, 1) by Tx bx mod 1
(equivalently T(r)= br mod P for re Ze*, which is a permutation on Ze*), and the
partition B:XE={O, 1,2,...,b-1} is defined for x in 0,1) by B(x)=[bxJ
(equivalently, B(r)= [br/PJ for rZ*e).

Remark. The lIP generator (base 2) might be considered to be a discrete realiz-
ation of the classical arithmetical model of a coin toss defined by the map 2x mod 1
and partition [0, 1/2) (_J [1/2, 1) of the unit interval [Billingsley, Kac]. In 6 we see that while
a number of the "ergodic" like properties of the classical model are reflected in this
discrete realization, the sequences produced are predictable.

Example. Let the base b= 10, and let P= 7 and r= 1. The pseudo-random
sequence generated by the lIP generator (base 10) with input 1/7 is 142857142....
Note that 10 is a primitive root mod 7 (i.e., a generator of the cyclic group ZT*) and
that the period of this sequence is 7-1 6 (see Theorem 1). From the state space
point of view, the orbit .of 1/7 under T is: 1/7, 3/7, 2/7, 6/7, 4/7, 5/7, 1/7,...,
and so, bo=l (since 1/7[1/10,2/10)), b1=4 (since 3/7 [4/10, 5/10)), b2=2,
b3=8, b4--5,’".

4. The generator xz rood N.
DEFINITION IX2 mod N generator]. Let N {integers NIN P. 0, such that P, O

are equal length (IPI OI) distinct primes =3 mod 4} be the set of parameter values.
For N N, let XN {x2 mod Nix Z’u} be the set of quadratic residues mod N. Let
X disjoint t_J Nr X/ be the seed domain.

For (N, x) X", let/x,(N, x) u,(N) Vl(X), where u, is the uniform probability
distribution on {N NIINI- n} and vu is the uniform distribution on X,. Then
is an accessible probability distribution on X since

1. asymptotically, 1/(k In 2) of all k-bit numbers are prime and half the primes
of any given lengths are =3 mod 4 (by de la Vallee Poussin’s extension of the prime
number theorem [Shanks]);

368 L. BLUM, M. BLUM AND M. SHUB

2. primality is decidable in polynomial time by (Monte-Carlo) probabilistic pro-
cedures [Strassen-Solovay], [Rabin ’80] or, assuming the extended Riemann
hypothesis, by a deterministic polynomial time procedure [Miller], and

3. gcds are computable in polynomial time, and IZI/IZNI 1 as n .
Let the transformation T:X X be defined by T(x) x2 mod N for x Xv. T is

a permutation on Xu (see Lemma 1) and is computable in poly-time. Let the partition
B:X{0, 1} be defined by B(x) =parity of x. B is computable in poly-time. Then
(X, T, B) defines a pseudo-random sequence generator (base 2) called the x2 mod N
generator. Thus, with inputs (N, Xo) the x2 mod Ngenerator outputs the pseudo-random

2sequehce of bits bob1"’" obtained by setting xi+l x mod N and extracting the bit

b =parity (xi). Such sequences are periodic with period usually equal to ,X (, (N)) (see
8 for the definition of h and clarification of "usually"). We also note that the equality

x x’ mod N x02’md(u mod N enables us to efficiently compute the ith sequence
element, given x0, N and h (N), for i> 0. For i< 0, use xi XimoO x(a(u).

Example. Let N=7.19=133 and Xo=4. Then the sequence Xo, Xl=
Xo2 mod 133,... has period 6, where Xo, X,’" ,xs, 4, 16, 123, 100, 25, 93,. .
So bobl...bs...=O 0 1 0 1 1.... The latter string of b’s is the pseudo-random
sequence generated by the x2 mod N generator with input (133, 4). Here, A(N)= 18
and h (h (N)) 6.

5. The assumptions. Our main results about unpredictability and cryptographic
security follow from assumptions concerning the intractability of certain number-
theoretic problems by probabilistic polynomial-time procedures. Stronger results would
follow from stronger assumptions concerning the circuit size complexity of the number
theoretic problems below. Such results would be desirable, for example, if’ we wished
to assure that sequences produced by our generator appear random to hard-wired
circuits.

1. The discrete logarithm (index finding) problem. Let P be a prime. Let b be a
primitive root rood P (i.e., a generator for Ze*). The function fb.e’Z*e Z*e defined by
fb.e(x) b mod P is a permutation of Ze* that is computable in polynomial time. The
discrete logarithm (index finding) problem with parameters b and P consists in finding
for each y in Zp* the index x in Zp* such that b mod P y. A (probabilistic) procedure
P[b, P, y] solves the discrete logarithm problem if for all primes P, for all generators
b for Z’e, and for all y in Z,, P[b, P, y] x in Ze* such that b rood P y.

The discrete logarithm assumption. (This asserts that any procedure for solving
the discrete logarithm problem will be inefficient for a fraction of the inputs.) Let
P[b, P, y] be a (probabilistic) procedure for solving the discrete logarithm problem.
Let 0 < 8 < 1 be a fixed constant, and let be a fixed positive integer. Let poly be a
fixed polynomial. Then for all sufficiently large n, for all but 8-fraction of n-bit primes
P, for all primitive roots b mod P, Probability {(expected) time to compute P[b, P, y]=>
poly (n)ly is selected uniformly from Ze*,} > 1In t.

2. The quadratic residuacity problem [Gauss]. Let N be a product of two distinct
odd primes. Exactly half the elements of Z* have Jacobi symbol +1, the other half
have Jacobi symbol -1. Denote the former by Z*(+I) and the latter by Z*(-1).
None of the elements of Z*(-1) and exactly half the elements of Z*(+ 1) are quadratic
residues. The quadratic residuacity problem with parameters N and x consists in
deciding, for x in Z*(+ 1), whether or not x is a quadratic residue.

The quadratic residuacity assumption (QRA). (This asserts that any efficient
procedure for guessing quadratic residuacity will be incorrect for a fraction of the
inputs.) Let poly (.) be a polynomial. Let P[N, x] be any (probabilistic) poly-time

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 369

procedure which, on inputs N, x, each of length n, outputs 0 or 1. Let 0 < 6 < 1 be a
fixed constant, and let be a positive integer. Then for n sufficiently large and for all
but 6 fraction of numbers N of length n, N a product of two distinct equal length odd
primes, the probability that PIN, x] is incorrect in guessing quadratic residuacity (i.e.,
PIN, x] 0 if x Z*(+1) is a quadratic residue mod N; 1 if not), given that x is chosen
uniformly from Z’u(+ 1) and given the sequence of coin flips (in the case the procedure
is probabilistic), exceeds 1/n in the sense that

*+l Prob (PIN, x] is incorrect) > 1/n’.
o(N)/2

By Lemma 3, the "l/nTM is replaceable by "(1/2)-(1/n’)."

6. The lIP generator is predictable. Let P and b be relatively prime integers > 1
and r0 an integer in the range 0 < r0 < P. Denote the expansion of ro/P to base b by

(1) ro/P .qlq2q3"

where 0 <_-qi < b. Since b is prime to P, the expansion is periodic. Then, for m >_-0,

(2) (b’.ro)/P=ql...q,,.q,+lq,,+2 (ql""" q,,)+r,,/P

where

(3) 0 < r,,, b’ro mod P < P
and

(4) O<rm/P=.q,,+lq,,+z...=(b".ro/P)modl<l.

Here, ql, q2," are (quotient) digits base b and qq2" denotes their concatenation,
whereas rm, the mth remainder (of ro/P base b), is an integer whose length (base b)
is less than or equal to the length of P: Irmlb <-IPI, where in this section]PI denotes
IPIb. Recall for roe Z’v, (1) defines the pseudo-random sequence generated by the 1/P
generator with input ro/P.

There are several reasons one might consider the 1/P generator a good pseudo-
random sequence generator: if the parameter P is a prime, and b is a primitive root
mod P, the sequences produced have long periods and nice distribution properties
(Theorem 1 below)l. In addition, these sequences possess certain hard-to-infer proper-
ties. For example, given a remainder r generated during the expansion of 1/P base b,
it is hard, in general, to find any index m such that r,, r. This is because r,, bm mod P,
so m is the discrete logarithm of r mod P. It follows (Theorem 2, problem 1) that,
given a string of quotient digits q,,+qm+2" qm+k (k poly (IPI)), it is hard in general
to find its locatioh in the sequence.

We remark that it would be natural to restrict the 1/P generator (base b) to the seed space Y {(P, r)lP
is an odd prime, b is a primitive root mod P, Ze*} with the product distribution: for each (P, r) yn, let
tzn(P, r) u,,(P) ve(r), where u is the uniform distribution on the parameters of length n and ve is uniform
on Z*p. Then, on reasonable conjecture, {,},,z is accessible on Y since: a) E. Artin’s conjecture and the
prime number theorem imply that if b is not a square, then the cardinality of {PIP is a prime of length n
and b is a primitive root modP} is more than (1/3). (2"/n), asymptotically as n goes to infinity [Shanks
p. 81]. And, there are (Monte-Carlo) probabilistic polynomial-time procedures for b) testing primality
[Strassen-Solovay]; c) testing if b is a primitive root mod P, given P and the factorization of P- [LeVeque,
Thm. 4.8]; d) producing, for any k, k bit integers in factored form according to the uniform probability
distribution [Bach]; and e) computing greatest common divisors.

370 L. BLUM, M. BLUM AND M. SHUB

On the other hand, Theorem 2 will give a sense, which is correct, that the lIP
generator yields a poor pseudo-random sequence: from knowledge of P and any
IPl-long segment of the expansion of ro!P base b, one can efficiently extend the segment
backwards and forwards (problem 2). More surprisingly (problem 4), from knowledge
of any 21PI + 1 successive elements of the sequence, but not P, one can efficiently
reconstruct P, and hence efficiently continue the sequence in either direction.

It follows that there is a simple efficient statistical test for deciding whether a
3n-long string of digits has either been generated by the expansion of lIP base b, for
some prime P of length n, or has been generated at random (uniform probability
distribution), given that it was produced in one of those two ways. Use 2n + 1 of the
given 3n digits to recover the suspected P; use this P to generate 3n digits; then
compare the generated digits with the 3n given digits: if they agree, the string has
probably (with probability >=1-1/2"-1) been generated using the lIP generator.

To lead up to Theorem 1, we consider the following types of sequences (closely
related to maximum-length shift register sequences [Golomb]).

DEFINiTiON. Let P, b denote arbitrary positive integers. A (generalized) de Bruijn
sequence of period P-1, base b, is a sequence qlq."" of b-ary digits (i.e., 0-< qi < b
tor all i) of period P-1 such that (1) every b-ary string of length IPI-1 occurs at
least once in the sequence, and (2) every b-ary string ot length IPI occurs at most once
in any given period of the sequence.

THEOREM 1. Let P prime. Let b {1, 2,. , P- 1} be a primitive root mod P.
Let ro {1, 2,. , P- 1}. Then the pseudo-random sequence generated by the 1/P
generator (base b) with input ro/P is a (generalized) de Bruijn sequence ofperiod P- 1,
base b.

Proof. Since r, b"’ro mod P and b is a primitive root mod P, the sequence
of remainders r,, (generated during the expansion o 1/P base b) is periodic with

period P-1, the remainders in any period are distinct, and {r,,ll <--m <_-P-1}
{1,2,..., P- 1}.

Similarly, the sequence of quotients r,,,/P is periodic with period P-1, the
quotients in any period are distinct, and

(5) {r,lPI1 <= m <-P- 1}= {lIP, 2/P,..., (P- 1)/P}.

Therefore, the sequence of quotient digits qm is periodic with period at most P- 1.
If the period were less than P-1, then there would be integers 0-< m < m2 < P-1
such that .q-,l/1q,-l/2 .qm/lq,-2/Z" "" Since rm/P=.q,,/lq,,/2 we would
have r,l/P r,u/P, a contradiction. Therefore the period is P-1. [Gauss]

Now, a string al’" as of s b-ary digits appears somewhere in the expansion of
ro/P if and only if it appears as an initial string in the expansion of r,/P for some
1 =< m =< P-1 if and only if (by (5)) it appears as an initial string in the expansion of
g/P for some 1 =< k-< P-1. But also, the set of b-ary strings of length s correspond
exactly to the subintervals of the unit interval [0, 1) of the form Ill b s, (l + 1)/bs) where

is an integer, 0=< l< bs. Since l/P< libIPI-1, there is for each l, at least one k,
1 <- k<=P 1 such that k/P[l/bIPI-1, (l+ 1)/bIPI-1) and so we have property 1. Since
1/bIPI l/P, there is for each at most one k, 1 -< k _-< P- 1 such that k/P [l/bIPI,
(1-1-1)/blPt), and so we get property 2. QED

So, if P is prime and b is a primitive root mod P, it follows from Theorem 1
concerning de Bruijn property 1 (and Artin’s conjecturesee footnote 2 concerning
that conjecture) that neither IPI-1 successive digits of quotient, qm+l’"qm+lPl-1, nor
(the approximately IPI- 1 successive digits of) a remainder, r,, are enough to construct
P, or to extend the sequence, on purely information-theoretic grounds. In contrast, it

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 371

will follow from Theorem 2 below that (various combinations of) approximately
digits of information are sufficient to efficiently extend the sequence in either direction.

THEOREM 2. Let P and b be relatively prime integers > 1 (P not necessarily prime),
and let ro be an integer in the range 0 < ro < P. The following problems are solvable in
polynomial Pl -time.

Problem 1. Choose a polynomial, poly (.), and hold it fixed.
INPUT: P, b, remainder r,,,, positive integer k <-poly
OUTPUT: r,,-1, r,,+k;

Problem 2 [Gauss]. This is a computational version of Theorem 1 concerning de
Brui.in property 2. (A similar algorithm gives the computational version of property 1.)

INPUT: P, b, IPI successive digits of quotient qm+lqm+2" q,/lPl"
OUTPUT: r,,, (and hence, by problem 1, r,+lp and q,, q,,+lPl+l).
Problem 3. We assume that P is relatively prime to each of 1, 2,. , b (to ensure

that the output is the unique P that generated r,,, and r,/l).
INPUT: b, r,,, r,,+l such that r,,. b r,,/l (i.e. r, >= P/ b).
OUTPUT: P (and therefore also, by problem 1, q,q,,+l q,,+lel).
Problem 4. We assume that ro is relatively prime to P (e.g., r0 1).
INPUT: b; k quotient digits, q,,+lq+2 q,+k, where k [1Ogb (2P2) and m is

arbitrary. (Note that k <- 21PI + 1).
OUTPUT: P; rm (and hence by problem 1, qm and qm+k+).

Proof. To solve problem 1" rm+k bkrm mod P and rm-- b-lrm mod P where b-1

is the inverse of b mod P. We note that

(6) (bkr,n)/P=qm+l q,,+k + r,,+/P.

So, q,.., qm+k [(bk+lrm-1)/PJ (By convention, we do not drop initial digits in a
concatenation of quotient digits, e.g., in (6).)

To solve problem 2: By (6), r,,=(q,+l" "q,,+lpl)’P/blPl+(r,n+lpi)/bIPI. Since

rm+lPI < P < blPI, rm [(qm+l qm+lel) P blPI]
In problems 3 and 4, the number P is not available and must be constructed.
To solve problem 3" By (6) with k 1, b. r, r,,/l q,,/l P where 0 =< q,,/l < b.

Actually, 0 < q,+l, since, by assumption, b. r,,, # rm/l. Therefore, P equals some integer
in the sequence of real numbers (b.r,,-r,,/l)/1, (b. rm-r,,/l)/2,’",(b’r,,-
r,,/l)/b-1. Select any integer P in the sequence such that P is relatively prime to
1, 2,..., b. Such an integer P is unique; for suppose to the contrary that P, O are
two such integers relatively prime to each of 1, 2,. , b. Then P. (i) O" (j) for some
0 < i, < b. Without loss of generality, suppose P< O. O is relatively prime to each of
1, 2,..., b, so gcd (O, i)= 1, so OIP, so O -< P, which is a contradiction.

The solution to problem 4, which is very pretty, is by continued fractions: By (6),
r,,/P=q,,+l"’" q,,+/b+e where O<=e<l/b. By [LeVeque, p. 237, Thm. 9.10],
the continued fraction expansion of q,,/l"’" q,,/k/bk has convergent r,,/P if l!bk=<
1/2P2, i.e., 2p2<=bk, i.e., logb (2p2)_-< k, as postulated. So r,/P=A/B for one of
the convergents A1/B1, A2/B2," of the fraction q,n+l qm+k/bk. Since both b and
ro are relatively prime to P, it follows (from (3)) that gcd (r,, P)- 1, so r, A and
P= Bi.

It remains to show that rm and P can be obtained by generating the above
convergents until for some the first k digits of Ai/Bi are q,/l" q,/, at which
point r,,,=Ai and P=B. To see why, recall that the continued fraction
qm+l qm+k/bk 1/al + l/a2+ l/a3+" 1/ai+" has convergents A1/B1 1/al,
AE/B2 a2/(ala2 + 1),. , A/B (aAi_l / A_2)/(aB-I + B-2), ". Here, the Bi

372 L. BLUM, M. BLUM AND M. SHUB

are strictly increasing with i. Since for some i, Ai/Bi r,,/P, this procedure for obtaining
r, and P will never go beyond A/B r,,/P. To see that the procedure generates
convergents to the point where A/B=r,,/P, note that when Aj/Bj=
q,,,+l"’’qm+k’’’, the error is sufficiently small to ensure that A/B rm/P.

Since Ai and Bi grow exponentially, P= Bi and r,, A can be computed in
polynomial(IBil), in particular in O(number of steps to compute the ith Fibonacci
number), and therefore in polynomial(lPI) steps. This solves problem 4. QED

Example. Let b 10 and P 503. Then P is a prime and b is a primitive root
mod P, so the lIP generator with input 1/503 quickly generates a sequence of base
10 digits with period 502. This sequence is

00198 80715 70576 54075 54671 96819 08548 70775 34791 25248 50894 63220 67594 43339 96023
85685 88469 18489 06560 63618 29025 84493 04174 95029 821073558648111 33200 79522 86282
30616 30218 68787 27634 19483 1013916500 99403 57852 88270 37773 35984 09542 74353 87673
95626 24254 47316 10337 97216 69980 11928 42942 34592 44532 8031809145 12922 46520 87475
14910 53677 93240 55666 00397 61431 41153 08151 09343 93638 17097 41550 6958250497 01789
26441 35188 86679 92047 71371 769383697813121 2723658051 6898608349 90059 64214 71172
96222 66401 59045 72564 61232 60437 37574 55268 38966 20278 33001 98807""

Since 15031- 3, every string of two decimal digits occurs at least once in the above
sequence, and every string of three decimal digits occurs at most once in any period
of the sequence.

Since k [lOgl0 (2. 5032) 6, we can, from any segment of length 6 of the above
sequence, efficiently recover P, and then quickly extend the segment in either direction.
For example, consider the segment 433399 (shown in bold type above). The continued
fraction expansion of.433399 is 433,399/ 1,000,000 1 / 2 + 1/ 3 + 1/ 3 + 1/ 1 + 1/ 16 +
1/6+1/1+1/1+1/358+..., and its first five convergents are" 1/2=.5; -37=.48...;
10 .434 13 218
----23 =.43333 ,5--0- .4333996 At last, the first 6 digits agree with
the segment 433399. So we get P= 503 and r,, 218 (and so r,,-1 10-1" rm mod 503
151.218 mod503=223). In this way, we can extend the given segment, 433399,
forwards and backwards.

7. The x2 mod N generator is unpredictable. In this section we elaborate on
properties of the x2 mod N pseudo-random sequence generator, and prove (modulo
the QRA) that it is polynomial-time unpredictable (Theorem 4, this section).

First we recall some number-theoretic facts. Suppose N P. O where P and O
are distinct odd primes. Let Z* {integers x]0 < x < N and gcd (x, N) 1 }. Then ORgy,
the set of quadratic residues mod N, form a multiplicative subgroup of Z of order
q(N)/4 (where q(N) is the cardinality of Z’N). Each quadratic residue x2 mod N has
four distinct square roots, +/-x mod N, +y mod N. If we also assume, as we shall for
the rest of this paper, that P= Q= 3 mod 4, then each quadratic residue mod N has
exactly one square root which is also a quadratic residue (see Lemma 1, this section).
In other words, squaring mod N is a 1-1 map of QRN onto QRN. (Comment: half
the primes of length n are congruent to 3 mod 4 asymptotically as n - c [LeVeque],
so there are plenty such N.)

We now investigate what properties can be inferred about sequences produced
by the x2 mod N generator, given varying amounts of information. In the following,
N is of the prescribed form, that is to say, N P. Q where P, Q are distinct primes
both congruent to 3 mod 4. Also, xi is a quadratic residue mod N, Xi/l x2 mod N and
bi parity (x):

1. Clearly, knowledge of N is sufficient to efficiently generate sequences
x0, xl, x2,’’’ (and hence sequences boblb2" ") in the forward direction, starting from
any given seed xo. The number of steps per output is O(INI 1+) using fast multiplication.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 373

2. Given N, the factors of N are necessary and sufficient to efficiently generate
the x2 mod N sequences in the reverse direction, x0, x-l, x-2," , starting from any
given seed Xo. (See proof below).

3. What is more, the factors of N are necessarymassuming they are necessary
for deciding quadratic residuacity of an x in Z*(+l)mto have even an e-advantage
in guessing in polynomial time the parity of X-l, given N and given Xo chosen "at
random" from QRI. (Note that to choose a quadratic residue at random with the
uniform probability distribution from QRN, it is sufficient to choose x at random (with
the uniform probability distribution) from Z* and square it mod N).2

To see Claim 2 above, we first prove the following:
LEMMA 1. IfN P" Q wherePand Q are distinctprimes such thatP Q 3 mod 4,

then each quadratic residue mod Nhas exactly one square root that is a quadratic residue.
Proof. Whenever N is a product of two distinct odd primes, every quadratic

residue mod N has four square roots, +x and +y. Since N= 1 mod 4, their Jacobi
symbols satisfy (+x/N)=(-x/N) and (+y/N)=(-y/N). Since P=3mod4,
(+x/N) (+y/N) (this can easily be proved from the fact that gcd (x + y, N) P and
gcd (x- y, N) Q, whence x + y kP and x- y lQ, whence (x/P) (-y/P) and
(x/ Q) (y/ Q)). Thus (+x/N) (-x/N) (+y/N) (-y/N). Eliminating the two
roots, say + y, with Jacobi symbol -1 with respect to N, we are left with the two roots
+/-x having Jacobi symbql +1 with respect to N. Exactly one of these roots has Jacobi
symbol + 1 with respect to both P and Q, because P 3 mod 4, and this one and this
one only is a quadratic residue mod N. OED

The necessity (of knowing the factors of N) now follows" Suppose we can efficiently
generate such sequences in the reverse direction. To factor N, select an x in Z* whose
Jacobi symbol is (x/N)=-1. Let Xo x2 mod N and compute x-1. Then efficiently
compute gcd (x + X-l, N) P or Q. We can sharpen this argument to show [Rabin ’79]
that the ability to compute x-1 for even a fraction of seeds Xo will enable us to factor
N efficiently with high probability.

On the other hand, if we know the factors of N we can use the algorithm described
in Theorem 3 (below) to efficiently generate sequences backwards:

THEOREM 3. There is an efficient deterministic algorithm A which when given N
(of the prescribed form), the prime factors of N and any quadratic residue Xo in Z,
efficiently computes the unique quadratic residue x_ mod Nsuch that (x_1) 2 mod N Xo.

A(P, Q, Xo) x-1.

Proof. By Lemma 1, the map from the quadratic residues mod N into the quadratic
residues mod N, f:x - x2 mod N, is 1 1 onto. The algorithm A can now be described
as follows:

INPUT: P, Q two distinct primes congruent to 3 mod 4; Xo a quadratic residue
mod N, where N P. Q.

OUTPUT: A quadratic residue x-1 mod N whose square mod N is Xo.
Compute Xp -X//--O mod P such that (Xp/P) + 1, where 4oo mod P denotes an,integer in Zp whose square mod P is Xo:
/oo mod P +XoP+1/4 mod P (for P-- 3 moO 4). Compute xo x/oo moO Q. Use

the Euclidean algorithm to construct integers u, v such that P. u + Q. v 1, and from

A more formal statement of claim 3: Modulo the QRA, given a polynomial poly, a constant 0 < 6 < 1,
and a positive integer t, if P IN, Xo] is a probabilistic poly-time procedure for guessing the parity of x-1
given Xo in QRN, then (YxoORN Prob [P[N, Xo] Parity (x_x)])/(q(N)/4) < (1/2) + (1/n’) for sufficiently
large n, and all but 3 fraction of prescribed integers N of length n.

374 L. BLUM, M. BLUM AND M. SHUB

that obtain the particular number, XN -’]"Xp" Q V "-t- XQ" P. u x/00 mod N, that is a
square root of x0 mod N, and that is also a quadratic residue with respect to both P
and Q and therefore with respect to N. QED

To see Claim 3 above, we start with the following definition.
DEFINITION. Given a polynomial poly and 0 < e _-< 1/2, a 0-1 valued probabilistic

poly-time procedure P(.,.) has an e-advantage for N in guessing parity
(of x-1 given arbitrary x0 in QRrq) if and only if (xooRNProb[P[N, xo]
Parity (x_)])/(o(N)/4)>-(1/2)+e. In a similar fashion, we can define a procedure
having an e-advantage forN in guessing quadratic residuacity (of arbitrary x Z*(+1))
[Goldwasser-Micali]. The 1/2 / e makes sense in the second definition since exactly
half the elements in Z’N(+ 1) are quadratic residues.

LEMMA 2. An e-advantage for guessing parity (of x-1 given quadratic residue Xo)
can be converted, efficiently and uniformly, to an e-advantage for guessing quadratic
residuacity (of x in Z*(+1)).3

Proof. Let x Z’N(+ 1) be an element whose quadratic residuacity mod N is to be
determined. Set Xo x2 mod N. Since P-- Q-= 3 mod 4, the square roots of x2 mod N
that are in Z’N(+ 1) are x and N-x (see proof of Lemma 1), and since N is odd, each
of these square roots has opposite parity. Only one of these square roots is a quadratic
residue (i.e., equal to x-i), and only one of these has parity equal to parity (x-i).
Therefore, x is a quadratic residue modN if and only if x=x_l if and only if
parity (x) parity (x_). QED

LEMMA 3 (Goldwasser and Micali). An e-advantage for guessing quadratic
residuacity can be amplified to a 1/2-e advantage, uniformly and efficiently.4

Idea of proof. Suppose P[N, x] is a probabilistic poly-time procedure that has an
e-advantage for N in guessing quadratic residuacity. Then we can in polynomial time
sample (uniformly) the elements x of QRN and of Z*lV(+I)-QRI (by selecting a
number at random from Z*, squaring it, then taking its negative mod N), and estimate
constants A and B such that

Prob [P[N, x]
A and

q(N)/4
YxZ*+I>--OR,

Prob [P[N, x] 1]
/ B,

q(N)/4

and A-B>-_2e (approximately). Now let xZ(/l) be an element whose quadratic
residuacity mod N is to be determined. To this end, select r’s independently and at
random with uniform probability from Z*. Compute x. r2 mod N. [Comment: For
x QRN, x. re mod N is uniformly distributed over QRv; for x : QRN, x. r2 mod N is
uniformly distributed over Z(+I)-QRI.] Test each of the resulting numbers,
x. r2 mod N, for quadratic residuacity by checking if PIN, xr2] 1 (using sequences of
coin tosses as may be required by P). Compare the resulting fraction of favorable
outcomes to the fractions A and B in order to get an amplified advantage in guessing
quadratic residuacity of x. QED

3A more formal statement of Lemma 2: Given poly, O<e(n)<-_l/2, N=a set of integers N of the

prescribed type. If there is a probabilistic poly-time procedure that has an e(INI)-advantage for each N e N
in guessing parity (of x-1 given an arbitrary Xoe QRr), then there is a polynomial poly’ and a probabilistic
poly’ procedure that has an e(INI)-advantage for N e N in guessing quadratic residuacity (of arbitrary x in

Z*(+I)).
4A more formal statement of Lemma 3: Given poly, t= a positive integer, and N =a set of integers

N of the prescribed type. If there is a probabilistic poly-time procedure that has a 1/IN[’ advantage for

N N in guessing quadratic residuacity (of x in Z*(+ 1), then for any positive integer t’ there is a polynomial
poly’ and a probabilistic poly’-time procedure that has a 1/2-l/IN]c advantage for NN in guessing
quadratic residuacity (of x Z*(+ 1)).

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 375

CLAIM 3 follows" Suppose to the contrary that P is a probabilistic poly procedure
that has a 1/n advantage in determining parity (for infinitely many n, and for more
than 3 of prescribed numbers N of length n). Then convert P (Lemma 2) to a
probabilistic poly’ procedure P’ for determining quadratic residuacity that has an
amplified advantage (Lemma 3) of 1/2-1/nc (for these same integers N). This
contradicts the quadratic residuacity assumption.

Leading up to Theorem 4 we make the following definition.
DEFINITION.
1. A predictor P(.,.) is a probabilistic poly-time procedure that on inputs N,

bl bk, with bi {0, 1} and k =< poly (INI), outputs a 0 or 1 (the output may depend
on the sequence of coin-tosses that the probabilistic algorithm makes).

2. P has an e-advantage for N in predicting to the left sequences produced by
the X2 mod N generator if and only if for some k -< poly ([NI), YxOR., Prob [P(N, bl(X),

bk(X)) bo(x)]/(q(N)/4)>- (1/2)+ e, where bi(x) =parity (x2’ mod N).
THEOREM 4. Modulo the QRA, the x2 mod Ngenerator is an unpredictable cryp-

tographically secure) pseudo-random sequence generator. That is to say, for each prob-
abilistic poly-time predictor P, each constant 0 < < 1, and positive integer t, P has at
most a 1/n advantage for N in predicting sequences to the left (for sufficiently large n
and for all but a fraction of prescribed numbers N of length n).

Proof Suppose we have a predictor for the x2 mod N generator with an e-

advantage for N. This can be converted efficiently and uniformly into a procedure with
an e-advantage in guessing parity (of x_l given arbitrary x0 in QRN). To see this,
suppose we are given Xo QRN. From seed x0 generate the sequences boblb2" Then
parity (x_1) b_ 1.

Now convert (Lemma 2) to a procedure for guessing quadratic residuacity
with an amplified advantage (Lemma 3) to get a contradiction to the quadratic
residuacity assumption. QED

It follows from a fundamental theorem of Yao [Yao] that, under the QRA, the
sequences produced by the x2 mod N generator pass every probabilistic polynomial-
time statistical test (roughly speaking, these sequences cannot be distinguished by any
poly (n)-time statistical test--with more than a negligible advantage--from sequences
produced by successive flips of a fair coin). More precisely, what does this mean? Yao
gives a very general definition of the concept of a probabilistic poly-time statistical
test, but the following definition adequately describes such a test for our purpose:
formally, a probabilistic poly-time statistical test, T, is a probabilistic poly-time algorithm
that assigns to every input string in {0, 1}* a real number in the unit interval [0, 1]
(the particular value depends in general on the sequence of coin flips made by the
algorithm). Let a,, denote the average value that such T assigns to a random m-bit
string (chosen with uniform probability from among all m-bit strings). We say that a
pseudo-random sequence generator passes test T if, for every positive integer t, the
average value, over all seeds of length n, that the statistical test assigns to a poly (n)-bit
pseudo-random string (produced by the given generator) lies in the interval apoly(n) +

1! n for all sufficiently large n. If a generator does not pass test T, then we say that
T has an advantage in distinguishing between the pseudo-random bits produced by
the generator and truly random sequences of bits.

THEOREM 5 (following Yao). Modulo the QRA, the sequences produced by the
x2 mod N generator pass every probabilistic polynomial time statistical test.

Idea of proof. Here and in the sequel, we use polyl, poly2,’., to denote distinct
polynomials. Suppose there were a probabilistic polyl-time test T that, for infinitely
many n, has an advantage in distinguishing between the pseudo-random sequences of

376 L. BLUM, M. BLUM AND M. SHUB

length poly (n) produced (from random seeds of length n) by the x mod N generator
and truly random sequences of bits of the same polyl (n) length. Then for some positive
integer and infinitely many n, the average value that T assigns to the pseudo-random
sequences of length polyl (n) (generated from seeds of length n) lies outside, say
above, apoy. + 1/n, whereas the average value it assigns (truly) random sequences
lies inside Opolyl(n) q" 1In t+l. For each of these n, we can find integers j, k _->0, j+ k
polyl (n) (in probabilistic poly2 (n)-time) such that "with high probability" the average
value that T assigns to sequences in A {rl" r)+b b} is closer to Opoly(n) by
at least 1/(nt+l.poly (n)) than the average higher value it assigns to sequences in
B ={rl...rbob... b}where the bo"" b are sequences produced by the gen-
erator, the seed Xo having been chosen uniformly at random, and the rl"’" r+l are
sequences of independent random bits. Integers j, k are found by trying different
values of j, k, in each case sampling elements of the associated sets A, B, and applying
T to these samples. The Weak Law of Large Numbers assures that this can be done
in probabilistic poly2(n)-time.

We can convert T into a predictor for the generator: Given a sequence b b
produced by the generator, we submit a sample of poly3 (n)-many sequences of the
form rl’"r1Ob", bk (where the rl,"" ", r are independently chosen random bits)
to test T and estimate the average value, call it a, assigned by T to the entire set of
these sequences. Then submit the corresponding sequences rl ri I b bk to T and
estimate the associated a 1. T’s "advantage" in distinguishing between pseudo-random
and random sequences can now be converted into an advantage in predicting bo
correctly: Use a biased coin to predict bo. Set the bias so that the coin has probability
1--1 0 1)-r(a -a of coming up heads. Toss the coin and if it comes up heads, predict
bo 0, else bo 1. (It is tempting but incorrect to suggest that we predict b0 0 if a
is greater than a 1, else bo 1. Problems arise if for a few choices of bl ", the random
strings rl’"rb’." bk give a correct strong bias toward bo=0, whereas for most
choices of b..., the strings rl’"rb’l’" b’k give a weak bias toward b 1. One
would end up giving wrong answers for the majority of strings b b,. In this case,
the expectation of predicting bo correctly would be less than 1/2. The biased coin makes
the expectation greater than 1/2.) QED

Remark. We can construct another unpredictable generator as follows: recall that
since N-- 1 mod 4, both x and -x (in Z*) have the same Jacobi symbol, and since N
is odd, x and -x have opposite parity. Therefore, the parity property partitions Z*(+1)
in half. In a similar fashion, the location property, where location (x)=0 if x <
(N-1)/2, 1 if x-> (N-1)/2, partitions Z*(+I) in half. Exactly one of x and -x is a
quadratic residue; but which of the two is the quadratic residue is hard to decide. Thus
we get the following.

THEOREM. The modified x2 mod N generator, gotten by extracting the location bit
at each stage (instead of parity) is cryptographically secure (modulo the quadratic
residuacity assumption).

Conjecture. The modified x2 mod N generator, gotten by extracting two bits at
each stage, parity (x) and location (x), is cryptographically secure.

Question. Parity (x) is the least significant bit of x; we can think of location (x),
in a sense, as the most significant bit. How many bits (and which ones) can we extract
at each stage and still maintain cryptographic security?

8. Lengths o| periods (of the sequences produced by the x2modN gen-
erator). What exactly is the period of the sequence generated by the X

2 mod N
generator? For quadratic residues Xo mod N, let r(Xo) be the period of the sequence

2
Xo, Xl, x2, , where x Xo mod N. Since the x2 mod N generator is an unpredictable

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 377

pseudo-random sequence generator (modulo QRA), it follows that on the average,
r(Xo) will be long. In this section we investigate the precise lengths of these periods
without relying on unproven assumptions (such as quadratic residuacity). To start, we
show that the period is a divisor of A (A (N)).

DEFINITION. Let M--2e,pI, *pek, where P,... ,Pk are distinct odd
primes. Carmichael’s A-function is defined by

2e-1 if e 1 or 2,
A(2e)=[2-2 if e> 2,

and)t(M) lcm [A(2e), (P1-1)* P1-1, "’, (Pk-- 1)* p?-l]. Carmichael [LeVeque],
[Knuth] proves that A(M) is both the least common multiple and the supremum of
the orders of the elements in Z*. As corollary, Carmichael’s extension of Euler’s
theorem asserts that a(4) 1 mod M if gcd (a, M)= 1 [Knuth, vol. 2, p. 19].

The following theorem asserts that the period, r(Xo), divides ,X (,X (N)).
TI-IEOREM 6. Let N be a number of the prescribed form (that is to say, N P. Q

where P, Q are distinct primes both congruent to 3 mod 4). Let Xo be a quadratic residue
mod N. Let 7r 7r(xo)=period of the sequence Xo, X1, X2," ". Then rlX(X(N)).

Proof. Let order x denote the order of x mod N. Then for x e Z*(+1), order x is
odd, because:

(1) order x order xi+l. This is because
(i) order xi/llordv x, and
(ii) Xo, xl," cycles.

(2) for all positive integers u, 2"llordvx=:>2"-llordvx+. (Here, 2"[[ordux
means 2U}ordvx and 2"+1 does not divide order x.)

Hence, by Carmichael’s extension of Euler’s theorem,

2x (rdNX) 1 mod (ordu Xo).

But r is the least positive integer such that 2’ 1 mod (order x0), since r is the
least positive integer such that Xo Xo

2" mod N.
Therefore, rlA(ordNxo). (This is a stronger result than the statement of the

theorem!)
But A(ordvxo)lA(,(N)) since order (Xo)l,(N) for Xo in Z.
Therefore, zrlA (A (N)). QED
The following theorem provides conditions under which A(A(N))lr(Xo)and

therefore A (A (N)) ,r(Xo).
THEOREM 7. Let N be a number of the prescribed form, Xo a quadratic residue

mod N, 7r(xo)= period of the sequence Xo, Xl,"
1. Choose N so that ordv)/2 (2) A (A (N)). (Note: this equality frequently holds

for prescribed N. See Theorem 8.)
2. Choose quadratic residue Xo so that ordu (Xo) A (N)/2. (Note: one can always

choose a quadratic residue Xo this way. See the paragraph below immediately following
the proof of this theorem.)

Then A (A (N))lr(Xo) (and therefore A (A (S)) r(xo)).
Proof. Recall that x =(Xo)2’ mod N, and so ,r-least positive integer such that

x, (Xo)2= mod N Xo.
Next note that 2"mod(A(N)/2)=l: By 2,-A(N)/2=least positive integer

such that x2v)/2 modN-1. But xmodN=xo, so Xo
2-1 modN= 1. Therefore,

(N)/212=- 1.

378 L. BLUM, M. BLUM AND M. SHUB

Finally, we show that h (h (N))lTr" By 1, h (h (N)) least positive integer such
that 2a((N)) mod(h (N)/2)= 1, but (we just saw), 2 mod (h (N)/2)= 1. Therefore
h (h (N))[7r. QED

Condition 2 of the above theorem holds for a substantial fraction of quadratic
residues, x0 in Z. Specifically, the number of quadratic residues in Z that are of
order A(N)/2 mod N is (N/(ln In N)z) (where f(n) l(g(n)) means there exists a
constant c such that f(n)> c.g(n) for all sufficiently large n). To derive this lower
bound, let N P. Q. Let gp, go be generators mod P, Q respectively. Let a gp mod P,
=go mod Q. It is easy to see that ordNa lcm [P-1, Q-1] (N). Now there are
q q (P)) generators mod P and q q(Q)) generators mod Q. By the Chinese remainder
theorem, Z*=Z*pXZ, so there are at least q(0(e)). 0(q(Q)) elements in Z* of
order A(N). But q(x) > x/(6 lnln x) for all integers x> 2. Hence

q(q(P)), q(q(O))= q(P-1) q(O- 1)->
P-1 O-1

6 In In (P- 1) 6 In In O 1)

N-P-O+I
[6 In In (N 1]2

The map x x2 mod N is 4 1. Therefore, there are at least l)(N/4(ln In N)2) quadratic
residues in Z} of order ,(N)/2.

Condition 1 of the above theorem is harder to ensure in general. The following
definition and theorem give conditions of special interest for our applications, under
which condition 1 will hold.

DEFINITION. A prime P is special if P 2Pa + 1 and P1 2P2+ 1 where P1, Pz
are odd primes. A number N P, O is a special number of the prescribed form if
and only if P, O are distinct odd primes both congruent to 3 mod 4, and P, O are both
special (note: distinctness of P and O implies that P2 # O2).

Example. The primes 2879, 1439, 719, 359, 179, 89, are special. The number
N 23,47 is a special number of the prescribed form.

Remark. It is reasonable to expect [Shanks] that the fraction of n-bit numbers
that are special primes is asymptotically 1/((ln P)(ln Pa)(ln Pz)), which is asymptotically
1/(n31n3 2) since 2"<P<2"+a, 2"-a<Pa <2", and 2n-z<Pz<2n-a. It follows that
there is an efficient, i.e., polynomial (n), probabilistic algorithm to find special n-bit
primes: simply generate n bit numbers at random and use a probabilistic primality
test [Strassen-Solovay], [Miller], [Rabin ’80] to select the ones that are special.

THEOREM 8. Suppose N is a special number of the prescribed form, and that 2 is
a quadratic residue with respect to at most one ofP1, O1.5 Then ordx<u)/2 (2) A (A(N))
(and therefore A (A (N)) 7r(xo) for some Xo).

Proof. For N of the prescribed form, A (N) lcm [2Pa, 201] 2P1Qa, and
A(A(N))=lcm[2PE, 2QE]=2PEQ2. It is easy to see that A(A(N)/2)=A(A(N)), so

ordx<u)/2 (2)]A(A(N)). Therefore, ordx<u)/2 (2)[2P2Q2.
Assume to the contrary that ordx(r)/2 2 # 2P2Q2. Then either ordx<N)/2 (2) P2Q2

or ordx<N)/2 (2)12P2 or ordx<N)/2 (2)12Q2. Without loss of generality, we may assume
that ordx<u)/E212P2 or ordx<N)/2 (2)= P202.

Roughly three fourths of all special numbers of the prescribed form satisfy this additional condition
(that 2 is a quadratic residue with respect to at most one of Px and Oa). The condition is needed: for

example, the special number in prescribed form, N 719.47, fails this condition (for this N, orda(N)/2 (2)
X (X(N))/2).

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 379

Case 1. ordx(s)/2 212P2.
Then 22P2-= 1 mod (A(N)/2)-- 1 mod P1Q1.
Therefore 22P2-= 1 mod Q1.
But 22Q2= 1 rood Q1 since Q1 2Q2+ 1, by Fermat’s Little Theorem.
Therefore 2gcd(2PE’2Q2) 1 mod Q1.
Therefore 22-- 1 mod Q1. This is a contradiction (since Q2 >- 3 and therefore

QI->_ 7).
Case 2. orda(l)/2(2) PeQ2. Then 2P=- l mod P1Q1, which implies 2P=-

i mod QI, which implies 22-1 mod Q1 since P2 is odd. Therefore,
-1 mod Q1. Therefore, 2 is a quadratic residue with respect to QI. Similarly, 2 is a
quadratic residue with respect to P. Contradiction. QED

Open question. Let 7rb(Xo) be the period of the sequence bobl’" produced by
the x2 modN generator with input (N, Xo). Then 7rb(Xo)lTr(Xo). What is the exact
relation between rrb(Xo) and 7r(Xo)? Are they generally equal?

9. Algorithms for determining length of period and random accessing. The fol-
lowing two theorems provide algorithms for determining

(1) r(xo), the period of the x2 mod N sequence that begins with Xo, and
(2) the ith element x.
These will be useful in the cryptographic applications.
TEOREM 9. There exists an efficient algorithm A which, when given any N of the

prescribed form,6 A (N), A (A (N)) AND the factorization of A (A (N)), efficiently deter-
mines the period r(Xo) of any quadratic residue Xo in Z*, i.e., A[N, A(N), A (A(N)),
factorization of A (A (N)), Xo] r(Xo).

Proof Let r=r(Xo).
Recall that

(1) xi=(Xo)2modN and x,=(Xo)Z=modN=xo.
(2) rlA (A (N)) (by Theorem 6).

Therefore, (Xo)’ rood N Xo.
It follows that (x0)2mdv) modN=xo (by Carmichael’s extension of Euler’s
theorem, a)= 1 modN if gcd (a,N)= 1; therefore x)-- 1 modN; therefore
2 (x (N)) d- kh (N)Xo mod N= Xo).

Therefore, from knowledge of A (N), A (A (N)), and the factorization of A (A (N)),
one can efficiently determine or: look for the largest d]A(A(N)) such that
(Xo)\2x(X(N))/dmdA(N) mod N x0. Then 7r h(h(N))/d. QED

THEOREM 10a. There exists an efficient deterministic algorithm A such that given
N, h (N), any quadratic residue Xo in Z’N, and any positive integer i, A efficiently computes
xi, i.e.,

A[N, , (N), Xo, i] xi.
2imodA(N)Proof. x xo mod N.

The number of steps to compute xi in this fashion, given N, A(N), Xo and i, is
O(INI+) using fast multiplication. QED

THEOREM 10b. There exists an efficient deterministic algorithm A such that given
any N of the prescribed form, A (N), any quadratic residue Xo in Z’N, and any positive
integer i, A efficiently computes x-i (note the negative subscript), i.e., A[N, , (N), Xo, i]

Proof [Miller] has shown how to efficiently factor N-P. Q given A (N). The
proof of Theorem 3 shows that x/0modP= +XoP+l/4. Exactly one of these two

N P* Q, where P, Q are primes congruent to 3 mod 4.

380 L. BLUM, M. BLUM AND M. SHUB

roots is a quadratic residue since -1 is not a quadratic residue mod P for P 3 mod 4.
Therefore, x-i mod P XO

P+l/4 or --XoP+l/4. Similarly, x-2 mod P -t-Xo(P+1/4)2 (since
(--1)P+1/4 +1). Continuing, x-i modP=+xo(P+l/4)’modP=+xo(P+l/a)’md(P-1)
mod P, which can be computed efficiently. From x-i mod P and x_i mod Q, The Chinese
Remainder Theorem enables one to efficiently compute x_i. QED

Conversely, the following theorem asserts that an algorithm that knows the period,
zr, and for any can obtain the ith element x of the sequence x0, Xl," obtained by
squaring mod N can factor N.

THEOREM 11. Let 0 denote an oracle such that O(N, Xo, i)=(r, x), where 7r

r(xo). There is an efficient probabilistic algorithm Ao such that A (N)= P or Q, for
N=P,Q.

Proof. The algorithm A works as follows:
Search at random for y e Z* such that (y/N) -1 (half the elements of Z* have

Jacobi symbol -1 with respect to N). Set x0 y2 mod N. Ask the Oracle for 7r, then
for x-i (recall: x=xo). Then y2=(x_l)2=x=xomodN. But y# +x-i since
(y/N)=-I and (+X_l/N)=+l. Therefore, gcd (y+x_l,N)=P or Q (by elemen-
tary number theory). QED

Open question. Can an algorithm use an oracle that outputs just xi--namely,
O(N, x0, i)= xmto factor N?

Open question. Can an algorithm use an oracle that outputs just rmnamely,
O(N, x0)= 7rmto factor N?

10. Applications. (1.1) The lIP generator (base 2) is useful for constructing
(generalized) de Bruijn sequences. These have applications, for example, in the design
of radar for environments with extreme background noise [Golomb]. We believe there
may be additional interesting applications making use of properties identified in this
paper, particularly the property that from 21PI / 1 but not IPI- 1 quotient digits, one
can infer the sequence backwards and forwards. For example, one could split a
key, P, between two partiesmby giving IPI successive quotient digits to each so that
together they have 2lPI successive digits. Neither party alone would have the slightest
information which prime, P, was key, but cooperatively they could determine P
efficiently.

(1.2) Maximum-length shift-register sequences (which are closely related to the
lIP generator) are used for encryption of messages [Golomb]. We view the inference
procedure given here as yet another step toward breaking such crypto-systems.

(2.1) The x2 mod N sequence can be used for public-key cryptography: Alice can
enable Bob to send messages to her (over public channels) that only she can read.
Alice constructs and publicizes a number NA, her public key, with the prescribed
properties: NA PA * QA where PA and QA are distinct equal length randomly chosen
primes both congruent to 3 mod 4. She keeps private the primes PA and QA, her private
key.

Bob encrypts: Suppose Bob wants to send a k-bit message rfi =(ml," "’, mk),
where k =poly (INAI), to Alice. Using Alice’s public key, Bob constructs a one-time
pad" he selects an integer x0 from Z* at random, squares it mod NA to get a quadratic
residue Xl, and uses the x2modN-generator with input (NA, Xl) to generate the
one-time pad/ (bl,. , bk). Bob then sends BOTH the encrypted message, rfi @/
(ml0)bl,’", mkbk), AND Xk/l to Alice over public channels, where 03 is the
exclusive-or.

Alice decrypts: From her knowledge of PA and QA, her private key, Alice has
enough information to efficiently compute Xk, Xk-1,’’’, Xl from Xk/l by backwards

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 381

jump (Theorem 3). From that, she reconstructs the one-time pad/ and, by 0)-oring
/ with the encrypted message, decrypts the message,

Anyone who can reconstruct (i.e., guess with some advantage) even one bit of
from knowledge of k and Xk/l can thereby obtain (guess with some advantage) a bit
of the one-time pad b. This is impossible (by the quadratic residuacity assumption and
the following theorem) if r is a randomly selected message.

THEOREM 12 (stronger version of claim 3). Let poly be a polynomial Let 0 < < 1.
Let be a positive integer. Then for all but a g-fraction of numbers N of the prescribed
typeS, the factors ofNare necessary--assuming they are necessary]:or deciding quadratic
residuacity of x in Z*(+l)--to have even an e-advantage,7 e l/IN[t, in guessing in
poly-time any pair (l, bt) (i.e., any bit bt and its location in the sequence bl, bk),
1 --<_ <- k poly (INI given N and Xk/l, where b parity (x).

Proof. Assume to the contrary that the probabilistic poly-time procedure P has
an e-advantage in guessing a pair. This P can be used to obtain a probabilistic poly-time
procedure that has an e/poly (INI)-advantage in deciding quadratic residuosity of a
randomly-chosen x Z*(+1)" Select l, 1 <- =< poly (INI), at random with the uniform

X2probability distribution, set x/l mod N, and generate Xk/l. Compute PIN, Xk/l].
The chances are 1/poly (INI) that PIN, Xk/]=(l, b) for the above-chosen and some
b. If so, the. guess that x is a quadratic residue if and only if parity (x)= b. If not,
toss a fair coin to decide quadratic residuacity of x. The advantage (in guessing quadratic
residuacity of x) will be e/poly (INI). QED

(2.2) Having constructed a number NA PA" QA with the prescribed properties,
Alice. can compute A(N) and use it, by Theorem 10a, to quickly compute xi
Xo2’mdx(N) mod N (for any Xo QRv). This means she can use word as address to
retrieve word xi or bit bi efficiently--as if the x2 mod N generator were a random
access memory that is storing a pseudo-random sequence. [Brassard] has suggested
applications, e.g., to the construction of unforgeable subway tokens, where this jumping
ahead is desirable.

(2.3) Cryptographically secure pseudo-random sequence generators (such as the
x2 mod N generator) may be viewed as amplifiers of randomness (short random strings
are amplified to make long pseudo-random strings).

(2.4) One often uses pseudo-random sequences (rather than random sequences)
because they are reproducible [von Neumann]. For the pseudo-random sequences
produced by the x2 mod N generator, one has only to store a short seed in order to
reproduce a long sequence; one does not have to store the entire random sequence.

11. Briet history relevant to this paper. W. Diftie and M. Hellman [Diffie-
Hellman] first introduce the notion of a trapdoor function and public-key cryptography.

R. Rivest, A. Shamir and L. Adleman [Rivest-Shamir-Adleman] propose the first
concrete example (and implementation to public-key cryptography) of a trapdoor
function relying on (but not yet proved equivalent to) a number theoretic conjecture
(which they propose) that factoring is hard. The RSA trapdoor function is x mod N
(where N P. Q, P, Q are distinct odd primes and gcd (s, p(N)) 1). Later [Shamir-
Rivest-Adleman] utilize a private-key commutative function in their solution to the
problem of mental poker posed by R. Floyd.

DEFINITION. A probabilistic poly-time procedure P[N, Xk+l] has an e-advantage]:or N in guessing a
pair (l, b), <-l<= k =poly (INI) (given arbitrary Xk+l selected uniformly from QRN) if and only if

I..Xk.+leQR Prob (vkt=l {P[N, Xk+l] =(/, parity (x,))}) _>(1/2) +] E.
((N))/4

382 L. BLUM, M. BLUM AND M. SHUB

M. O. Rabin [Rabin ’79] introduced for his signature scheme the many-one
trapdoor x2 mod N (where N P. Q for distinct odd primes P, Q), which he proves
is as hard to invert as factoring.

M. Blum [Blum] for his coin-flipping algorithm first chose P= Q-= 3 mod 4 to
construct a trapdoor (the 3 mod 4 trapdoor) x2 mod N (as hard to invert as factoring)
which is 1-1 on the quadratic residues mod N.

S. Goldwasser and S. Micali [Goldwasser-Micali] use these properties (of the
x2 mod N trapdoor and the 3 mod 4 trapdoor) and the quadratic residuacity assumption
which they first propose, to construct a protocol for mental poker and an encryption
scheme that hides partial information. This directly addresses the problem pointed out
by R. Lipton [Lipton] that partial information can be preserved and transmitted by
trapdoor functions (e.g. the set of quadratic residues is invariant under the RSA
function) giving rise to an advantage, and enabling trapdoors to be inverted on certain
message spaces.

A. Shamir [Shamir] proposed the first example (based on RSA) o a cryptographi-
cally strong (i.e. polynomial-time unpredictable) pseudo-random sequence generator.

M. Blum and S. Micali [Blum-Micali] present general conditions on predicates
that will ensure a cryptographically strong generator. Using these conditions and the
Discrete Logarithm Conjecture they construct cryptographically strong sequences of
pseudo-random bits.

A. Yao [Yao], in his foundational paper on complexity based information theory,
constructs a "perfect" pseudo-random sequence generator on the very general assump-
tion that there exists a so-called "stable" one-way function.

Our x2 mod N generator is based directly on a 3 mod 4 trapdoor and the QRA.
We believe that the 3 mod 4 scenario, because o its nice mathematical properties (e.g.
Lemma 1) will continue to lead to fruitful applications. We also believe that an in-depth
analysis of sequences produced by unpredictable pseudo-random sequence generators,
as begun in this paper, will provide useful information concerning the nature of these
generators, and lead to insights about the number theoretic assumptions that have
been made.

Acknowledgments. We thank Silvio Micali for pointing us to the literature
on de Bruijn sequences, and for his numerous helpful and encouraging suggestions.
We are grateful to a number of people for valuable discussions on this work, including
G. Brassard, S. Even, A. Lempel, L Levin, J. Plumstead, M. O. Rabin, D. Rich,
S. Smale, R. Solovay and A. Yao. Umesh Vazirani provided a necessary ingredient
for our proof of Theorem 5 [Yao]; Rene Peralta did the same for Theorem 10b.

Note added in proof. The assertion "modulo the QRA" and/or its equivalent in Theorems 4, 5 and
12 can be replaced by "modulo the assumption that factoring is hard". This is a consequence of the main

theorem in W. ALEXI, B. CHOR, O. GOLDREICH AND C. P. SCHNORR, RSA/Rabin bits are (1/2)+
(1/poly (log N)) secure, IEEE 25th Symposium on Foundations of Computer Science, 1984, pp. 449-457.

REFERENCES

[1] L. ADLEMAN, On distinguishing prime numbers from composite numbers, Proc. 21st IEEE Symposium
on Foundations of Computer Science, 1980, pp. 387-408.

[2] E. BACH, How to generate random integers with known factorization, submitted for publication.
[3] P. BILLINGSLEY, Ergodic Theory and Information, John Wiley, New York, 1965.
[4] M. BLUM, Coin flipping by telephone, in Proc. IEEE Spring COMPCON, 1982, pp. 133-137.
[5] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences of pseudo random bits,

IEEE 23rd Symposium on the Foundations of Computer Science (1982), pp. 112-117.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 383

[6] G. BRASSARD, On computationally secure authentication tags requiring short secret shared keys, in
Advances in Cryptology, Proc. of Crypto 82, ed. D. Chaum, R. L. Rivest and A. T. Sherman,
Plenum Press, New York, 1983, pp. 79-86.

[7] L. DICKSON, History of the Theory of Numbers, Chelsea Pub. Co., 1919 (republished 1971).
[8] W. DIFFIE AND M. HELLMAN, New directions in cryptography, IEEE Trans. Inform. Theory, IT-22

(Nov. 1976), pp. 644-654.
[9] S. EVEN, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[10] C. G. GAUSS, Disquisitiones Arithmeticae, 1801; reprinted in English transl, by Yale Univ. Press, New
Haven, CT, 1966.

[11] S. GOLDWASSER AND S. MICALI, Probabilistic encryption and how to play mental poker keeping secret
all partial information, 14th STOC, 1982, pp. 365-377.

[12] S. GOLOMB, Shift Register Sequences, Aegean Park Press, 1982.
[13] J. HOPCROFT AND J. ULLMAN, Formal Languages and Their Relation to Automata, Addison-Wesley,

Reading, MA, 1969.
[14] M. KAC, What is randomness?, American Scientist, 71 (August 1983), pp. 405-406.
[15] D. KNUTH, The Art of Computer Programming: Vol. 2, Seminumerical Algorithms, Addison-Wesley,

Reading, MA, 1981.
[16] W. LEVEQUE, Fundamentals of Number Theory, Addison-Wesley, Reading, MA, 1977.
17] R. LIPTON, How to cheat at mentalpoker, Univ. California, Berkeley, preliminary report, August 1979.
[18] G. MILLER, Riemann’s hypothesis and testsforprimality, Ph.D. thesis, Univ. California, Berkeley, 1975.
[19] J. PLUMSTEAD, Inferring a sequence generated by a linear congruence, IEEE 23rd Symposium on

Foundations of Computer Science, 1982, pp. 153-159.
[20] S. POHLIG AND M. HELLMAN, An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance, IEEE Trans. Inform. Theory, IT-24 (1978), pp. 106-110.
[21] M. O. RABIN, Digital signatures and public-key functions as intractable as factorization, MIT/LCS/TR-

212 Tech. memo, Massachusetts Institute of Technology, 1979.
[22] ., Probabilistic algorithm for testing primality, J. Number Theory, 12 (1980), pp. 128-138.
[23] R. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and public key

cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.
[24] A. SHAMIR, R. RIVEST AND L. ADLEMAN, Mental poker, in The Mathematical Gardner, D. Klarner,

ed., Wadsworth, New York, 1981, pp. 37-43.
[25] A. SHAMIR, On the generation of cryptographically strong pseudo-random sequences, ICALP, 1981.
[26] D. SHANKS, Solved and Unsolved Problems in Number Theory, Chelsea, New York, 1976.
[27] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977), pp.

84-85.
[28] J. VON NEUMANN, Various techniques used in connection with random digits, Collected Works, vol.

5, Macmillan, New York, 1963, pp. 768-770.
[29] A. YAO, Theory and applications of trapdoor functions, IEEE 23rd Symposium on Foundations of

Computer Science, 1982, pp. 80-91.

