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PERHAPS THE simplest smooth discrete time dynamical systems are the Morse-Smale 
diffeomorphisms. Among structurally stable systems they exhibit the simplest recur- 
rent behavior-a finite set of hyperbolic periodic pionts and no other recurrence. 
These systems have been the object of considerable research. Palis and Smale[l3] 
proved that they are structurally stable. More recent work has dealt with the 
relationship of the homotopy class of a diffeomorphism to the kind of dynamics it 

exhibts [5,9, 11, 161 and the question of the existence of a Morse-Smale 

diffeomorphism in a given homotopy class. This latter topic is the subject of this 
article. 

In[l6], Shub and Sullivan showed among other things that a necessary condition 
for the existence of a Morse-Smale diffeomorphism is that all eigenvalues of the 
induced maps on homology be roots of unity. In the case of simply connected 
manifolds of dimension greater than five. they reduced the question of existence to an 
algebraic condition on the chain level for the diffeomorphism (1.2, below) and using 
this condition pionted out the existence of additional obstructions related to the ideal 
class groups of the cyclotomic fields. 

In this article we identify the group in which the obstruction lies, express it in terms 
of the algebraic K-theory of the induced endomorphisms f*: H,(M)+H,(M) and 
show that there are no further obstructions. More precisely, we consider the category 
QI of abelian groups with quasi-idempotent endomorphisms (i.e. having all eigen- 
values zero or roots of unity) and show the obstruction lies in the torsion subgroup G 
of Ko(QI). The obstruction depends in fact only on the elements d(Lf*k]) in G, where 
Lf*k] denotes the class in Ko(QI) of the quasi-idempotent endomorphism 
f*L: H,(M, Z) + H,(M, Z) and c$: K,(QI)+ G is a projection onto the summand G. Of 
course if f is a diffeomorphism f *Ir will be quasi-unipotent (having only roots of unity 
as eigenvalues) since it is an automorphism. Our main result is the following. 

THEOREM. Suppose f: M --, M is a diffeomorphism of a compact manifold and for 
all k, f *k : Hk( M; Z) + H,(M; Z) is quasi-unipotent. Then if f is homologous to a 
Morse-Smale diffeomorphism, x(f*) = C( - l)k+(Lf*k]) is zero in G. If M is simply 
connected and of dimension greater than five then x(f,,J = 0 implies that f is isotopic to 
a Morse-Smale diffeomorphism. 

The map 4 is defined in 02. We do not know how to identify nonzero elements of 
G or even if G is non-trivial! We would find either result extremely interesting. If 
G = 0, then the characterization of which isotopy classes of diffeomorphisms of 
simply connected manifolds of dimension greater than five contain Morse-Smale 
diffeomorphisms would be particularly simple. If a nonzero element of G were 
exhibited we would construct an isotopy class of diffeomorphisms of a manifold with 
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boundary as in[16] such that xcf*> represents the element. We would then be 
confronted by the problem of determining the simplest dynamics of diffeomorphisms 
in this isotopy class. The best description of G that we know are by Bass[2] and 
Grayson [6]. 

The group G may be of interest in the study of the monodromy isolated sin- 
gularities. The monodromy map is quasi-unipotent on homology and may be isotopic 
to a Morse-Smale diffeomorphism. 

01. BACKGROUND AND DEFINITIONS 

We begin by recalling a few definitions. If f: M + M is a diffeomorphism and 
x EM then x is said to be chain-recurrent provided that given any E > 0 there exist 
points x = xl, x2, x3, . . . , X, = x such that dCf(Xi), Xi+!) < E where d is a fixed metric on 
M. The set of chain recurrent points 9? is a compact invariant set (e.g. 131). If 9? is finite 
it clearly consists of a finite set of periodic orbits. If x is a periodic point of period p 
then x is called hyperbolic if dfXp: TM, + TM, has no eigenvalues of absolute value 
one. 

If x is a hyperbolic periodic point then its stable manifold W”(x) and unstable 
manifold W”(x) are defined by W”(x) = {y/dCf”x,f”y) >O as n +m} and W”(x) = 

{~IdCf”x,f”y)+O as n +-m}. They are injectively immersed Euclidean spaces with 
dim (W’(x)) = index of x (see [ 171). 

1.1 Definition. A diffeomorphism f: M + M is called Morse-Smafe provided its 
chain recurrent set 99 consists of a finite set of hyperbolic periodic points and for any 
x, y E 93 the stable and unstable manifolds wS(x) and W”(y) intersect transversely. 

The condition that 9 consists of hyperbolic points implies that f satisfies Axiom A 
of [17]. 

We now quote a result of Shub and Sullivan ([16], see[14] also) which is the basis 
of our further work. We have specialized the results of [16] to fit our setting. 

1.2 THEOREM [16] Suppose M is a simply connected compact manifold of dimen- 
sion n greater than jiue and f: M + M is a diffeomorphism. Then a necessary and 
su&ient condition that there exists a Morse-Smale diffeomorphism isotopic to f is 
that there exists a finitely generated n-dimensional free chain complex 5%’ with C, = 
C._, = 0 and an endomorphism r : Vi’ -+ V such that: 

(1) If u: 9 + 9 is a chain level representation of f then there is a chain homotopy 
equivalence h: % + 9 such that ooh - ho?, aoh is chain homotopic to her, and 

(2) for each 1 5 k 52 n, Tk: Ck + Ck is representable by a virtual permutation matrix. 

1.3 Definition. A matrix will be called virtual permutation (or V.P. for short) 
provided it has the form 

where each Pi is the 0 matrix, + 1, or has the form 

010 0 
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A matrix in the above form but with each Pi a companion matrix will be called 
companion-like. 

We will also need a fact from[5] concerning similarity classes over the integers of 
companion matrices. We will denote by C(p) the companion matrix of the manic 
polynomial p(x) and the n x m matrix with 1 in nth row and 1st column and 0 
elsewhere will be denoted by E(n, m). 

1.4 PROPOSITION[~]. Let p(x) be a manic polynomial with integer coefficients. If 
p(x) = f,(x)f(x). . . fk(x), then C(p) is similar over the integers to the block triangular 
matrix 

E(44) 0 . . . 0 

af2) E(d,d,) * * . 0 

0 
0 

O... C&,) E(dk-,dk) 
d... 0 ccfk) I 

where d; = deg fi(X). 

1.5 LEMMA. Suppose C is a companion-like matrix whose eigenvalues are all roots 
of unity or zero. Then there are matrices 

P,* * 
0 *. * 

and ‘P, * 
0 0 c 

which are similar over Z where each Pi is a permutation matrix and each Qj is a 
permutation matrix or the zero matrix. 

Proof. We first consider the case where C is actually a companion matrix, say 
C@(t)). The characteristic polynomial p(t) of C has the form tm TO,,) where the Qln 

is the n th cyclotomic polynomial. A simple induction shows that any polynomial of this 
form can be written in the form 

tm (yr”k ( - l)/y(tpj - 1)) 

for some sets of positive integers {mi} and (pi}. The inductive step uses the fact that 
the nth cyclotomic polynomial an equals (t” - 1) divided by a product of @j’s, j < n. 

Thus we have 

p(t)I/(t” - 1) = tmn(tmk - 1). 
k 

Now according to 1.4, C(p(t))T(tpj - 1)) is similar over 2 to a matrix of the form 



216 JOHNFRANKSANDMICHAELSHUB 

hypothesis a matrix 

A 

1 

and C(t”lI(r”~ - 1)) is similar to a matrix of the form 

To prove the result for any companion-like C we induct on the number of 

, there is by the induction 

PI 0 
0 --. 

'P, 0 

0 Cl 

.O 

which is similar to a matrix of the form 

[ 

Q! 

0 

On the other hand A is similar to 

‘PS 
Pi . 

0 

Pi 

* 

1 Qr . 

0 

* . 
* P: 

0 

so this completes the proof 

0 

0 * 

P; 0 

0 c,. 

92. THE SUMMAND G OF K,(QI) 

Let a denote the category whose objects are pairs (F, e) with F a finitely 
generated free abelian group and e an endomorphism of F which is quasi-idempotent 
(an endomorphism is called quasi-idempotent if all its eigenvalues are roots of unity 
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or zero). A morphism h: (F,, e,)+ (F,, e2) in this category is a homomorphism h: 
F, + F2 such that he1 = ezh. 

2.1 Definition. Let QI denote the category of finitely generated abelian groups 
with quasi-idempotent endomorphisms, and let QU (for quasi-unipotent) denote 
the full subcategory of QI consisting of automorphisms from QI. 

An object in one of these categories is a pair (G, e) with G a finitely generated 
abelian group and e an endomorphism (or automorphism) such that the endomorphism 
(automorphism) induced by e on G/torsion is quasi-idempotent. An exact sequence in 
QI or a is a sequence O+ (A, a)+ (B, b) --) (C, c) +O which is exact on the level of 
abelian groups. 

2.2 PROPOSITION. The map Ka(@)+ &(QI) induced by inclusion is an isomor- 
phism. 

Proof. This follows easily using (7.1) of [l] when one observes that each object of 
Q1 has a finite’resolution by objects of g. To demonstrate the latter fact it suffices to 
consider the case of (G, e) with G finite. Then let ZG be the free abelian group with G 
as a set of generators and a: ZG + G the obvious map. If el: ZG+ZG is the 
endomorphism induced by the action of e on generators then clearly it is quasi- 
idempotent and Q is a morphism in QI. Finally, if K is the kernel of a, then 

O+(K, e,JK)+(ZG, e,)+(G, e)+O 

is the desired resolution. 

Because of the result above, every element of &(QI) can be represented in the 
form [e,] - [e2] where el and e2 are endomorphisms of free abelian groups and [ ] 

denotes their class in K0 (henceforth we will generally write simply the endomorphism 
e for an object (G, e) in @ or QI, suppressing the abelian group on which it acts). We 
can now define a homomorphism p: &(QI) + 9 where 9’ is the multiplicative group 
of rational functions whose numerators and denominators are manic polynomials with 
roots either zero or roots of unity. It is given by p([e,] - [e*]) = fr(f)/f~(f) where fi(t) is 
the characteristic polynomial of ei. It is easy to see that p is well defined and a 
homomorphism. 

2.3 PROPOSITION. The homomorphism p: K,,(QI)+ 9 has a right inverse. That is, 9 
is isomorphic to a direct summand of KO(QI). 

Proof. Define i: 9 + &(QI) by i(fl(t)/fi(t)) = [CCfl(t))] - [CCfi(t))] where C(fi(t)) 
is the endomorphism induced by the companion matrix of fi(t)e Clearly poi = id: 
P-*9. 

Two immediate corollaries of 1.5 are: 

2.4 PROPOSITION. If (C, c) is companion-like then there is an exact sequence O+ 
(A, a)+(& b)+(C, c)+O where (A, a) and (B, b) are V.P. 

2.5 PROPOSITION. The subgroup of K,,(QI) giznerated by the classes of permutation 
endomorphisms and the zero endomorphism is i(9). 
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We remark that a similar proof shows that i(P) is generated by companion 
matrices or by virtual permutations and zero. 

We now turn to a more categorical description of i(P). 

2.6 Dejinition. Let P denote the full subcategory of QI whose objects are objects 
of QZ equivalent in K. to a linear combination of permutation endomorphisms and the 
zero endomorphism, or equivalently by 2.5 to a linear combination of companion 
matrix endomorphisms. 

Now we show that in a very strong sense, for each endomorphism e in m, There is 
another endomorphism e’ in a which represents an inverse of e in &(QZ) modulo 

ZG(P). 

2.7 PROPOSITION. Zf (F, e) is an object of QZ with F free, then there exists 
(F’, e’) E QZ with F’ free such that (F@F’, e@e’) is representable by a componion-like 
matrix, i.e. u matrix of the form 

c,* * 

i 1 OS... o 

0 

; 

I 

with each Ci u companion matrix. 

Proof. It is a well known fact (see[l2, p. SO]) that we can choose a basis for F 
such that the matrix A corresponding to e has the form 

where each Ai has irreducible characteristic polynomial. It will suffice then to prove 

the existence of a matrix A: such that 

companion matrix of the characteristic polynomial of Ai, since the desired endomor- 
phism e’ is then endomorphism induced by the matrix 

We note that the existence of A; is trivial if Ai is the zero matrix, so we may 
assume the characteristic polynomial of Ai is a cyclotomic polynomial &. 

Now let w be a primitive kth root of unity and let A = z[o]. Then isomorphism 
classes of elements of QZ with characteristic polynomial @‘r are in one-to-one 
correspondence with the elements of the ideal class group of A (e.g. [ 12, p. 531). The 
correspondence is given as follows: If Z is an ideal in A then it is a free 2 module and 
multiplication by o is a 2 linear endomorphism and hence determines a similarity 
class of matrices with characteristic polynomial &. It is easy to see that the principal 
ideal class, i.e. the class of A, corresponds to the companion matrix C. 
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Now A is a Dedekind domain so the ideal classes form a group and given ideals II, 
12 we have I@& = A@I& as A modules (e.g. [lo]). Let I be an ideal representing the 
similarity class of Ai and I’ an ideal representing the inverse element of the ideal class 
group. Then 

I@I’ = AI - I’ = ABA as A modulus. 

Let h be the endomorphism of I@I’ obtained by multiplication by w. By choosing a 2 
basis of 101’ appropriately we see h can be represented by a matrix of the form 

for some A:. On the other hand, since 101’ = ABA, (as A modules), with a 

different choice of 2 basis, h will be represented by the matrix . 

2.8 LEMMA. Suppose (E; ei) E a i = 1,2, and Wi, ed = W2, &I in KdQO. Then 
there are companion-like endomorphisms (C, c) and C’, C’) and Xi: c' + C, i = 1,2, 
such that 

where M = C@C’ and 

mi = 
C Xi ( > 0 c” 

Hence (M, ml) is companion like and [(M, m,)] = [(M, mz)] in K,(P). 

Proof. Since &(QI) = K,,(a), wemayworkin&,(a). By[1,9(4.10)], thereareexact 
sequences in QI 

O+(X,X)+(rVi, ni)+(Y, y)+O i = 1,2, 

such that (F,@N,, e&z,) = (F2@N2, e&n*). Now using 2.7 we take inverses, i.e. we 
pick (X’, x’) and (Y’, y’) such that 

O+(X@X’,X@X’)+(N@X’@Y, ni@X’@Y’)+(Y@Y’, y@y')+O 

is exact for i = 1,2. 

Let (Mi, mi) = (Ni@X’@Y’, ni@x’@y’) for i = 1,2. Since Mi is free, iI41 s M2 and 
we denote it simply M. Now 

and one checks easily that mi has the desired form and hence [M, m,] = [M, m2] in 

Ko(P). 

2.9 LEMMA. Suppose (H, h) E P; then there is a short exact sequence 

0+(X,, x,)-,(Xz, xz)+(H, h)+O 

withXifree, i= 1.2 and (Xi,Xi)EP, i= 1,2. 
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Proof. As in 2.1 we have ’ 

O+(A, a)+(& b)+(H, h)+O 

with(A, a)and(B, b)in@. By(2.7) we have(B’, b’) with(B@B’, b@b’)companion-like, 

SO 

O+(A, a)@@‘, b’)+(B, b)@(B’, b’)+(H, h)+O 

is exact. the two right hand elements in the sequence are in P so the left hand one is, 
too. 

We now collect some facts about the category P. We will say that a subcategory .s? 
of a category B is closed with respect to short exact sequences if whenever two terms 
of a short exact sequence in B are in d so is the third. 

2.10 PROPOSITION. (a) The category P is the smallest full subcategory of QI 
containing companion matrix endomorphisms (or virtual permutation endomor- 
phisms) which is closed with respect to short exact sequences. (b) The map K,,(P)+ 
KdQI) induced by inclusion is an isomorphism onto the summand i(9) of K,,(QI). 
(c) If (F, e) E P and Fis free then th ere is an (F’, e’) E P with F’ free and e’ companion- 
like such that e@e’ is companion-like. 

Proof. (a) The category P is closed under short exact sequences and contains 
companion matrix endomorphisms. To prove P is contained in the category described 
we take (F, e) E P (by 2.9 we may in fact assume F is free) and show (F, e) is in this 
category. Now [(F, e)] = [(Ci, cl)] - [(CZ, cz)] in &(QI) with ci companion-like, so by 2.8 
there are (M, mi) with mi companion-like such that 

Thus e@cz@mz is companion-like and 

0 + (C2, c2BXM m2) + UT eKHC2, c2)@(M, m2) + (E e) -+ 0 

is exact and (F, e) is in the aforementioned category. The same is true for .virtual 
permutations by 1.4 and 1.5. 

(b) We first show the map K,,(P)+ &(QZ) induced by inclusion is injective. By (a) 
any element of K,(P) can be expressed as [(Ci, cl)1 - [(C,, c2)] in K,,(P). If such an 
element is in the kernel, then [(C,, cl)] = [(Cz, cz)] in KO(QI). Hence by 2.8 there are 
(M, mi) with mi companion-like such that (Cl, c,)@(M, ml) = (C,, c2)@(M, m2) and 

W, ml)1 = KM mdl in KoU? so [CC,, chl = [(G cJ1 in KoW. 

Now the image of K,(P) in Ko(QI) and i(9) C Ko(QI) can both be described as the 
subgroup generated by the classes of companion endomorphisms, so (b) follows. 

(c) As in (a), (E e)@(G, cz)O(M m2) = (Ci, ci)@(M, ml). 

2.11 Definition. Let G be the group K,(QI)/K,(P) so thaf 

K,,(QI) = G@K,(P) = G@J’. 

Let 4: K,(QI)-+ G be the projection. 
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2.12 Remark. The group G can be identified with the torsion subgroup of &(QI). 
It is not difficult to show that every element of G has finite order. This uses the 
arguments of 2.7 together with the fact that the ideal class group of the ring A from 
the proof of 2.7 is a finite group. Thus since every element of 9 has infinite order, G 
is isomorphic to the torsion subgroup of &(QI>. 

53. REALIZING HOMOLOGY ENDOMOBPHISMS BY VIRTUAL PERMUTATION CHAIN MAP!3 

In this section we will consider the category of finitely generated chain complexes 
with chain map endomorphisms. In this category a morphism h : (%, 7) + (W, 7’) is a chain 

map h : V + %’ such that her - #oh, ho7 is chain homotopic to +oh. Thus when we refer to a 
chain homotopy equivalence h from (%, 7) to (V, 7’), we assume tacitly that ho7 - +h. 

Most often we will be concerned with QI (or QU) chain complexes, that is, pairs 
(Ce, 7) where %’ = {C;} is a finitely generated complex and 7 = {Ti} is a chain map such 
that for each i, (Ci, Ti) is in QI (or QU). Our object is to determine when there is a 
chain homotopy equivalence h: (‘8, ~)+(9, a) to another Q1 chain complex with 
Ui: Di -+ Di representable by a virtual permutation matrix for all i, and hence with Di 
free. 

We first recall from 2.11 that we defined’the projection 

4: K-dQI) + K,,(QI)/K&') = G. 

If (F, e) E QI, we will abuse notation slightly and refer to 4(e) when we mean d([e]). 

3.1 Definition. 1. (%, 7) is a QI chain complex we define X(T) = 2( - l)i~(7i). 

3.2 PROPOSITION. If (Ce, 7) is a QI chain complex and T*: H,(q) + H,(V) is the 
map induced on homology then X(T) = x(7*). 

Proof. The fact that a map $I is defined on &(QI), i.e. depends only on [e] rather 
than e means that 4 is an Euler-PoincarC mapping that is, additive on short exact 
sequences. The result claimed is well known for such mappings (see[8, pp. 98,991). 

3.3 THEOREM. If (%', 7) is a finitely generated free chain complex with (Hk(%), 
Tag) E QI for all k, then a necessary and suficient condition that (59,~) be chain 
homotopy equivalent to a free QI complex (9, a) with ai representable by virtual 
permutation matrices is that x(7*) = 0, where 

X(7) = % - l)i4(Ti*) E G = &(QI)/&(P). 

The first step in the proof of this theorem is to show that it suffices to prove the 
theorem when %’ is a free Q1 chain complex. 

3.4 PROPOSUION. If (Ce, 7) is a finitely generated free chain complex with chain 
endomorphism 7 such (H,(q), relr) E QI for all k, then (%‘, 7) is chain homotopy 
equivalent to a QI chain complex (V, r’) with W free. 

We will actually prove a slightly more general proposition, which is of interest in 
light of [ 163. First we need two definitions. 

3.5 Definition. Let h: G + G be an endomorphism of a finitely generated abelian 
group. ‘A resolution of h is a collection of finitely generated free abelian groups fi 
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with endomorphisms hi: Fi + Fi, 0 - i -C in for some finite h and maps di: Fi+ 4-1, 

e: F,, + G such that 

0 

I 
El 

I 4 

F,-, 

I 4-l 

FO 

i 
G 

1 
0 

hn 

h-1 

h 

commutes and the columns are exact. 

3.6 Definition. If h: G-, G is an endomorphism of a finitely generated abelian 
group we denote by r(h) the largest modulus of an eigenvalue of the induced 
endomorphism on G/torsion. Given a finitely generated chain complex with 

endomorphism (%, 8) we define y(S) = max r(Ei) where ‘8 = {Ei}. 

3.7 LEMMA. If h: G + G is an endomorphism then there is a resolution 

0 0’ 

4 J 

F, 2 F, 

J 5- 
0 0 

such that r(hi) 5 max (y(h), 1) for i = 0,l. Moreover, if A: G + H is an isomorphism 
and h’: H + H is an endomorphism such that 

h 

G---*G 
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commutes then there is a resolution 

J 
4 

- Fo 

i 
h 

- H 

such that y(h&) = y(ho), y(h;) = y(h,). 

The proof is very similar to the proof of 2.1 and hence we omit it. 
Given a finitely generated free chain complex with chain endomorphism (%‘, Q, we 

can always write Ci = &@Bi-1, the i-cycles plus the i - 1 boundaries. With this 
decomposition Ei has a matrix representation which we denote 

3.8 LEMMA. Let (%, $‘) and (%, S*) be a free chain complex with two chain 
endomotphisms. Suppose that H,(8’) = H*(S*) and that in the matrix representation 

we have 9,’ = $2,’ for all i. Then 8’ and 8* are chain homotopic. 

Proof. Given x E Zi, g/(x) is homologous to g?(x) so g;(x)- g?(x) = au for a 
unique v in Bi_1 C Ci. Let Q(X) = v and let Di : Ci + Ci+l be Di@O : Zi@Ei_l+ Zi+l@Bi. 
Then the Di define a chain homotopy $’ - $* = aD + Da. 

3.9 PROPOSITION. If (%, 7) is a finitely generated free chain complex with chain 
endomorphism r, then (93, r) is chain homotopy equivalent to a finitely generated free 
chain complex (V, 7’) with ~(7’) I max (y(r*), I), where T*: H,(V)+ H,(g). 

Proof. We will argue inductively. Let N be the dimension of the chain complex %. 
Assuming that (%, 7) is chain homotopy equivalent to (U’, 7’) with CA = 0 for all n L N 
and y(ri)I y(7.J for all ilk <N- 1, we will produce (U”, 7”) chain homotopy 

equivalent to (U’, 7’) with CA= 0 for all n 1 N and y(r’~~max(y(r*), 1) for all 
i I k + 1. If k = N - 1 we produce ((e”, 7”) chain homotopy equivalent to (U’, 7’) with 
c” = 0 for all n 1 N + 1 and y(r)il) I max (y(r*), 1). We have two resolutions 

TOP Vol. 20, No. 3-E 
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0 

1 
h Fl - 

1 4 

F. --% 

I 
Hk(U) = 

1 
0 

0 

I 
6 

I 4 

FO 

I 
f&(q) 

1 
0 

0 

I 
& 

rk 
- 

dk+I I 
rk 

zk - 
I 
t&(v) A 

I 
0 

0 

I 
& 

I dk+I 

zk 

1 
H,(q) 

I 
0 

with r(hi) 5 max (y(rk*), 1). We could add contractible free chain complex A with 
Mi=O for i#k+1,k,Mk=itfk+[ = KI for some finitely generated free abelian group 

and at+1 = id with chain endomorphism 0 to (%, T). Our new boundary, cycle exact 
sequence would then be 

I 
?. 

Hk(q) - 

1 
0 

Hk(z) 

1 
0. 

Similarly, if K2 is a free abelian group we have the resolution 

0 0 

1 1 
US4 

F&B& - F,OK, 

I I 
0 0 
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By the appropriate choice of K, and K2 we may assume in (I) that rank (F,,) = rank 
(&), which we now do. By the structure theorem for finitely generated abelian groups 
there is an isomorphism A: I%+& such that A(F,) = &. 

We write (Ce’, 7’) with respect to cycles and boundaries in the appropriate dimen- 
sions 

ak+2 

. * * + c;+,- Zk,,@Bk 
ak+I 

- Zk@B,_, - ak c;_,+.*- 

I 7i+2 
I 

II 
I 

B 
I 

++I 

ak+2 ak+l 
. . . 

+ CL+,- &+,@& 
ak -Z&B,_, - c;_, + * * * 

where 

Z 
(Y= 

k+l gk+l 

0 Bk+I 
andP=(: 2). 

This chain complex with endomorphism is isomorphic to 

ak+2 ,4-lak+,,4 ak 
. . . 

-9 CL, - zk+,@F, - &@Bk-, _____, CL_,+* * * 

. . . 
+ CL+, 

ak+2 

- zk+,@F, 

A-‘ak+lA 

p &-@Bk-, 

ak 

PC;+,+. . * 

where 

a, = gk+, 
0 

A2zi:A) and p, = (A-y AiFt-,) 

which in turn is isomorphic to 

ak+2 
. . . 

+ CL+, - zk+,@F, dl &,@B,_, L c;_, + * * ’ 

I 7i+2 I a2 I h I 6-l 
zk+,@F, dl 

ak 
. . . 

+ CL+, - h@&-, - c;_,+**. 

where 

And now by Lemmas 3.7 and 3.8 this chain complex with chain endomorphism is 
chain homotopy equivalent to 

ak+2 

zk+,@Fl dl ak . . . +c ;+2 - F@Bk-, - c;_,+- * * 

I ‘ir2 I =3 I B3 I ri-I 
ak +2 

. . . 
--) c;,2 - &+,@F, 2 Fo@Bk_, dl c;-,+* *. 
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where 

z.7 
a3 = 

k+l ad;+, 

0 h; 
and p3 = (y gi), 

with r(hh) 5 max (y(r*k), 1) and since y(&) I y(r;_,) this completes the proof of 3.9. 

Proof of 3.4. By the above we obtain a chain complex (U’, 7’) with ~(7’) 5 1. This 
implies (e.g. [ IS, p. 1491) that all the eigenvalues of the T: are roots of unity or zero and 

hence that the T{ are QI. 

3.10 LEMMA (splicing). Suppose C is a free chain complex with chain map T and 

O-,(A, a)+(& b)+(Ck, Tk)+O 

is a short exact sequence of elements of a. Then (C, T) is chain homotopy equivalent 
to (C’, 7’) with (Cl, TI) = (Cj, rj) for j# k, k + 1, (C;, 72 = (B, b), and CL+, = Ck+@A, 

T;+, = (; a:,,). 

Proof. We define Cl as in the statement of the lemma and let 8;: Cj+C;_, be equal 
to 8,: Cj+Cj_r if j#k+2,k+l,k. Define a;+*: Ci+E,z-*C;+r by 

(0. dk+2) 

c;,, = ck+2- A@Ck+, = CL+,, 

and a;+, by 

CL+, = A@Ck+, 
(id. Jk+t) 

- .‘@ck = B = c;, 

and a, by the COt'XIpOSitiOn 

c; = A@ck + c, 
Jk - c,_, = &. 

Now the short exact sequence O+(A, a)+(& b)+(Ck, Tk)+o hph B = A@Ck 

and that b corresponds to an endomorphism of the form 
a e 

( > 
o Tk for some e: C, -+A. 

Thus if we define T;: C;+ CL by 
(I e 

C;=B=A@Ck ’ ” ( >, A@Ck = C; 

and T;: C;,, + C;,, by 

C;+, = A@Ck+, 
(:: 2) , AOC 

k+l 
=c, 

k+l 

it fOl]OWS that d;+,oT;+, = Tkai+,. One also checks easily that if we define T;= Tj, 

j# k, k + 1 then &oTj = T;_fdj for all j so T’ is a chain map of (e’. 
Finally the inclusion i: V + W is a chain map which induces an isomorphism on 

homology and hence is a chain homotopy equivalence. 
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We now continue with the proof of 3.3 henceforth assuming that % is free. We first 
alter (Ce, 7) by adding contractible QU chain complexes in such a way as to achieve a 
new QZ complex (U’, 7’) with <C{, 7:) representable by a companion-like matrix for 
every i. We do this using 2.7. Thus if (F’, e’) is the inverse of (C’i, 7;) given by 2.7 we form 
the complex 9 with (Bi, bi) = (Bi-1, bi-1) = (F’, e’), ai = id, and all other Z3i ~0. Then 
%‘@a is chain homotopy equivalent to % and (C’i@B;F ri@bi) is representable by a 
companion-like matrix. We have, however, altered Ci_1. Alternatively we could have 
defined (Bi+l, bi+l) = (Bi, bi) = (F’, e’) and altered Ci+l. Thus we can start at the top of 
‘6 and work down creating companion-like endomorphisms on each level, or start at 
the bottom and work up, or both. In any case we ultimately arrive at a QZ complex 
(2, +) with a single (&, &) remaining that cannot be altered by the previous method 
without possibly disturbing other levels. However, by 3.2, do = x(e) = X(T) = 0, so 
(& fk) E P. Thus we can apply 2.10 and choose (F’, e’) with e’ companion-like and 
+..e’ companion-like. Defining 58 as before, we see that (@@9, i@b) has 
endomorphisms on all levels representable by companion matrices. 

Thus we may assume that (Ce, 7) has the property and proceed to alter it further to 
achieve virtual permuation endomorphisms. 

The proof now follows from repeated applications of 2.4 and splicing 3.10. This 
completes the proof in one direction. The other direction is immediate from the 
definitions of d and P and 3.2. 

3.11 Remark. If we assume C,,, =Co=Z,C,,,_,=C,=0,mr6andC~=Ofork<0 
or k > m, then we can construct 9 satisfying the conclusion of 3.3 and in addition 
with D,,, = Do = Z and D,,,_, = D, = 0. 

This can be done using the technique of folding (see Appendix A of [16]). Or 
alternatively we could use a little more care in the proof of 3.3. The last stage of that 
proof-the splicing argument-could have been done equally well by changing C, and 
C,_, to CL and CL_, instead of making the change on levels k and k + 1. 

In that case we use a short exact sequence 

O+(Ck, ~k)-j(B, b)+(A, a)+0 

where (B, 6) and (A, a) are V.P. which obtained by applying 3.10 to the transpose of 
CC,, TV) and taking the transpose of the sequence thus reversing the arrows. The 

. . 
definmon of T;_, is then c7k1 ‘r). By using both of these changes we can preserve 

the dimension of % and the property that C, = C,_, = 0. 

We now have all the elements of our main result. 

3.12 THEOREM. Suppose f: M + M is a diffeomorphism of a compact manifold and 
f*k: Hk(M; Z) is quasi-unipotent. Then if f is homologous to a Morse-Smale 
diffeomorphism xcf,) = 2( - 1)‘4cf,.) is zero-in G = &(QI)/&(P). If M is simply 
connected and of dimension greater than five then x(f*) = 0 implies that f is isotopic to 
a Morse-Smale difleomorphism. 

Proof. If f is homologous to a Morse-Smale diffeomorphism then by 1.2 it can be 
represented on the chain level by (9, o) where each ak: Dk + Dk is representable by a 
virtual permutation matrix. Thus by 2.11 &(Uk) = 0 for all k and by 3.2, xcf,) = X(U). 
Hence xcf,) = 0. 
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Conversely, suppose x(f*) = 0; then if M is simply connected and has dimension n 
greater than five we can assume (see Appendix A of [ 161) that it is represented on the 
chain level by (%, T) with C,, = Co = 2, and C.+ = C, = 0. It now follows from 3.3 and 
3.4 that we can satisfy the hypothesis of 1.2 which guarantees a Morse-Smale 
diffeomorphism isotopic to f. 

We return for a moment to one of our original questions. Given a finitely generated 
free chain complex with endomorphism (V T) when is there a chain homotopy 
equivalence h: (Ce, ~)*(9, u), where 9 is a finitely generated free chain complex with 
ai representable by a virtual permutation matrix? We let X be the category of finitely 
generated free chain complexes with chain endomorphisms. An object in our category 
is a pair (%, 7) where V is a finitely generated free chain complex and T is a chain 
endomorphism of %. A morphism h : (%, T) + (9, a) is a chain map h : %’ + 9 such that 
ho7 = aoh. An exact sequence 

is a sequence such that 0 + %‘,- h’ % h2 2-%s +O is exact. We will say that (%, T) is 
V.P. if there is a matrix representatives for T such that Ti is V.P. for each i. Our question 
then is: When is (%, T) chain homotopy equivalent to (9, o) with (9, (T) V.P.? 

Let ‘Y be the full subcategory of %? whose objects are all (%, T) where (Ce, T) is 
chain homotopy equivalent to (9, U) with (9, a) V.P. 

3.13 PROPOSITION. If 

O-*@I,~,)+@~, T2)+@3, T3)-'0 

is an exact sequence und two of the (%i, Ti) UE chain homotopy equimzlent to (Si, Vi) 
with the (9ip ai) V. P. then so is the third. Thus Y is closed under short exact sequences. 

Proof. Since two of the Ti* are Q.I. it follows from the long exact homology 
sequence that the third is Q.I. as well. 

by 
Now since X(71*) -I- ,y(~~*) = ,y(~& if two of these are zero the third is as well, so 
3.3 we are done. 

We now give another description of the category P. 

3.14 Definition. Let P’ be the full subcategory of QI consisting of elements which 
have V.P. resolutions, i.e. (G, h) E P’ iff there is a resolution such that each hi: E + I? 
is V.P. 
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0 0 

I I 
F, h. F. 

I I 
h 

G -G 

I I 
0 * 0 

Remark. By “folding” we could always assume that n = 1. 

3.15 PROPOSITION. P’ is closed with respect to short exact sequences that is, if 

O+(G,, h,)- i’ (G2, h2) i2 __* (G,, h,)+O is exact with (Gi, hi) E QI, i = 1,2,3, and 
if two elements of the sequence are in P’, so is the third. 

Proof. By[4, (Chap. 5, Propositions 1.1 and 2.31) we may first resolve (G,, h,) and 
(G,, h,) and fill into a resolution of (Gz, h2). Now by assumption two of the unaug- 
mented resolutions are in “v, therefore the third is as well and this third resolution is 
chain homotopy equivalent to a V.P. resolution. 

3.16 COROLLARY. P =P’. 

Proof. By definition elements of P’ are equivalent in &(QI) to a linear com- 
bination of virtual permutations and hence permutations, so P’C P. On the other 
hand, P’ contains the permutations and is closed under short exact sequences so by 
2.10 P’> P. 

Proposition 3.16 besides giving another characterization of P which might be 
useful in determining G provides another insight into the proof of our main theorem. 
It is not very difficult to prove Proposition 3.13 directly and thus to deduce 3.15 and 
3.16. 

More categorically, our proof is more less the following: 
(1) Let V.P. be the full subcategory of QI consisting of V.P. endomorphisms of 

finitely generated free abelian groups, i.e. they have a V.P. matrix representation. Let 
P’ be the full subcategory of QI consisting of objects with V.P. resolutions. Then P’ 
is closed under short exact sequence and in particular extensions, i.e. if O+(G,, h,)+ 
(Gz, hz)+(G3, h,)-+O is exact in QI and (G,, h,), (G3, h,) E P’, then so is (G2, h2) (this 
is actually very simple using[4, Chap. 5, Proposition 2.31 and if (G,, h,) E P’, (Gz, h,) E 
QI and (G,, hl)@(G2, hJ E P’ then (G2, h,) E P’). 
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(2) Given (G,, h,)E QI there exist (Gz, hr) E QI such that (G,@G,, h&J = 
(G,, h,)@(G*, h2) EP’. This follows from 2.7, the proof of 2.1 and 2.4. 

(3) Elements of Q1 have resolutions by elements of a. This is 2.1 again. The 
identity or zero endomorphism is in QI. 

3.17 PROPOSITION. We claim that (1) and (2) imply: If (G,, h,) E P’ and (Gz, h2) E 

QI and KG,, Ml = [(Gz, Ml in &(QO, then (G2, M E P’ and KG,, Ml = KG,, hdl in 
KOW. 

The proof is essentially the same as the proof of 2.8 or 2.10. 
Thus K,,(F) injects in &(QI). The obstruction group G is K,-,(QI)/&(P’). 

Now (3) allows us to prove 3.4 by splicing the unaugmented resolution of 
Tk*: H,(%)+(u)) into % in place of O-*(&, q)+(&, q.). 

Once we have 3.4 we add the inverse mod P’ as in the proof of 3.3 to give us a 
chain complex with endomorphism (Ce, 7) such that (Ci, 7;:) E P’ except perhaps in one 
dimension, say (Ck, rk). But if x(7*) is zero in G, then [(Ck, rk)] E &(P’) and (Ck, q) E 
P’. Thus each (Ci, ri) E P’. By splicing the unaugmented V.P. resolutions of the (Ci, ri) into 
the chain complex in place of the (Ci, ri) we produce our virtual permutation complex. The 
splicing is all possible since the Ci are free. 

Added in Proof. It has come to our attention that some of these arguments appear 
in [G?]. 
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