SUSPENDING SUBSHIFTS*

By Charles C. Pugh and Michael Shup**

1. Introduction. Every full shift on k-symbols is conjugate to a basic set of an Axiom AS diffeomorphism of S^2 , Smale [12], but the same is false for a subshift of finite type (ssft), as shown by an example of Franks [5]. The corresponding question on a general compact 2-manifold M^2 , instead of S^2 , remains open. Partial results may be found in Franks [5] and Batterson [1].

Here we show that the situations for flows is quite different. For Axiom A flows one can pass from basic sets to sub-basic sets on the same manifold, Theorem 6 below. In particular for ssft's we have

THEOREM 1. The suspension of any basic subshift of finite type (ie a ssft with dense periodic orbits and a dense orbit) is conjugate to a basic set of some Axiom AS flow on S^3 — or any other M^m , $m \ge 3$.

Theorem 6 is proved in §4. We are indebted to R. Mañé for simplifying our proof of Theorem 6. Sections 2 and 3 set the notations we use, define the terms, and put the problem in context.

Remarks. 1) The Axiom AS flow we produce in Theorem 1 has singularities. It is not known if they can be eliminated on S^3 .

- Basic ssft's are identical to those which arise from irreducible matrices. See [4,11] and §2.
- 2. Cascades. Before proving Theorem 1, we explain the general problem to which it relates. Background references are Smale [12] and Shub [11]. Let $f: M \to M$ be a diffeomorphism, M compact. Its cascade is $\{f^n: n \in \mathbb{Z}\}$. Let Ω be the nonwandering set of f. Then f obeys $Axiom\ A$ if
 - (Aa) Ω is a hyperbolic set of f
 - (Ab) The periodic points are dense in Ω.

^{*}Supported by NSF Grant MCS 77-17907

^{**}Supported by NSF Grant MCS 78-02721

⁽¹⁾ P. Blanchard and J. Franks have produced subshifts of finite type which cannot occur on any compact M².

If, in addition, all invariant manifolds of Ω meet transversally then f is said to obey Axiom AS and it follows that f is structurally stable. Smale shows that Axiom A implies a finite disjoint decomposition

$$\Omega = \Omega_1 \cup \cdots \cup \Omega_k$$

where the Ω_j are the basic sets of Ω . Each Ω_j is compact, f-invariant, contains an f-orbit which is dense in Ω_j , and $f|\Omega_j$ is expansive. "Expansive" means that for some $\delta > 0$ and some metric d, if $d(f^nx, f^ny) \leq \delta$ for all $n \in \mathbb{Z}$ then x = y.

Embedding Problem. Given a compact metrizable Λ , a homeomorphism $g: \Lambda \to \Lambda$, and a manifold M, when are there an Axiom A (or AS) diffeomorphism $f: M \to M$ and an embedding $i: \Lambda \hookrightarrow M$ onto a basic set of f making

$$\begin{array}{ccc} M & \stackrel{f}{\longrightarrow} & M \\ f & i & f \\ \Lambda & \stackrel{E}{\longrightarrow} & \Lambda \end{array}$$

commute? Obviously, necessary conditions are

(1) g is expansive, g has a dense orbit, the periodic points of g are dense in Λ , and (Λ, g) embeds in some diffeomorphism of M.

A well behaved sort of (Λ, g) is furnished by symbolic dynamics. Let $2 \le k < \infty$ be fixed and let $\sum = \sum^k$ denote the bi-infinite sequences of letters $0, 1, \ldots, k-1$, i.e.

$$\sum = \{0, 1, \dots, k-1\}^2$$

The general element of Σ is written $\underline{a} = (\ldots a_{-1} \cdot a_0 a_1 a_2 \ldots)$ where each a_i is a letter from 0 to k-1. Note the convenient decimal point. Put the product topology on Σ . It is compact, zero dimensional, and metrizable. Let $\sigma: \Sigma \to \Sigma$ be the map:

$$\underline{a} = (\ldots a_{-1} \cdot a_0 a_1 a_2 \ldots) \mapsto (\ldots a_{-1} a_0 \cdot a_1 a_2 \ldots) = \sigma(\underline{a})$$

which shifts the decimal point to the right, i.e., σ shifts the entries of \underline{a} to the left. σ is an homeomorphism called the *full shift on k symbols*. In [12], Smale shows

THEOREM 2. Each full shift is conjugate to a basic set of some Axiom AS diffeomorphism on S^2 , or any other m-manifold $m \ge 2$.

Definition. Let $\sigma: \sum \to \sum$ be the full shift on k symbols. If $\sum' \subset \sum$ is σ -invariant then $\sigma \mid \sum'$ is a subshift. It is of finite type if for some fixed N there is a list $L \subset \{0, 1, \ldots, k-1\}^N$ such that

$\underline{a} \in \sum'$ iff each N-string of \underline{a} appears in the list L.

An N-string of \underline{a} is just N consecutive entries of \underline{a} . All ssft's are compact. This definition of ssft is conjugacy-invariant and is equivalent to the transition matrix definition in [11]. See [4, p. 121].

Definition. A ssft is basic if it has a dense orbit and a dense set of periodic points.

In [14] R.F. Williams shows

THEOREM 3. Each basic ssft is conjugate to a basic set of some Axion AS diffeomorphism on S^3 , or any other m-manifold $m \ge 3$.

Thus the Embedding Problem for zero-dimensional sets Λ is fairly well understood. Let $g: \Lambda \to \Lambda$ be a homeomorphism of the compact metrizable space Λ and ask: when does it embed onto a basic set? The necessary condition of expansiveness in (1) implies that (Λ, g) is conjugate to some subshift $\Sigma' \subset \Sigma$, provided Λ has dimension zero [10]. By [4, p. 244], for a subshift to be conjugate to a basic set it must be ssft. Thus

(2) A zero-dimensional (Λ, g) is conjugate to a basic set iff it is a basic ssft.

Here, what is left to know is which subshifts embed as basic sets in which 2-manifolds.

Basic sets of higher dimension are grossly messier than shifts, so (2) is far from a full solution to the Embedding Problem for cascades. See the example of Guckenheimer [6, 2] for a basic set that is topologically bizarre.

Flows. In a straight forward manner, the notion of Axiom AS generalizes from cascades to flows. The Embedding Problem is the same. Definition. Let $g: \Lambda \to \Lambda$ be a homeomorphism. The identification space $Susp(\Lambda, g)$ is the set

$$[0,1] \times \Lambda/_{(1,x)\sim(0,gx)}$$

The suspension of g is the flow ϕ on Susp (Λ, g) whose trajectory through $(0, x) \in 0 \times \Lambda$ is

$$\phi_t(0,x) = (t,x) \qquad 0 \le t \le 1$$

The time-one map of ϕ caries $0 \times \Lambda$ onto itself by $g:(0,x)\mapsto (0,gx)$. Let (S,ϕ) be the suspension of the full k-shift. We have

THEOREM 4. (S, ϕ) embeds onto a basic set in any $M^m, m \ge 3$.

Proof. See [12] as for Theorem 2.

A result of Bowen essentially solves the embedding problem for I dimensional basic sets.

THEOREM 5 [3]. A one dimensional basic set for a flow is conjugate to the suspension of a subshift of finite type.

Theorem 3 would allow us to embed a suspension of a basic ssft in any M^4 . Here we accomplish the embedding in any M^3 .

4. Embedding Sub-objects. Let Σ be the full shift on k symbols, let Σ' be a basic ssft in Σ , and let S', S be the suspension of Σ' , Σ . By Theorem 3, embed S as a basic set of some Axiom A flow ϕ on (any) M^3 . Call Λ the image of S' in M^3 .

THEOREM 6. There is an Axiom A no cycle flow ψ on M^3 such that Λ is a basic set of ψ , $\phi | \Lambda = \psi | \Lambda$, and $\Omega(\psi) - \Lambda$ is finite.

In fact, our proof of Theorem 6 is more general and gives

THEOREM 7. Let Λ be any locally maximal compact invariant set for the flow ϕ on M. Then there is a flow ψ on M such that

(i) $\psi \equiv \phi$ on a neighborhood of Λ

(ii) $\Omega(\psi) \subset \Lambda \cup P$ where P consists of finitely many hyperbolic fixed points of ψ , p_1 , p_2 , . . . , p_n

(iii) There are no cycles among $p_1, \ldots, p_n, \Lambda$

(iv) Moreover, if Λ is hyperbolic for ϕ , has a dense orbit and dense set of periodic points then ψ is Axiom A and one of its basic sets is Λ .

Note that (iii) and (iv) include Theorem 6. We need the following

lemma, referred to in [9], and for which we give a direct proof below, avoiding the subtleties of Wilson [15].

LEMMA 1. Let Λ be a compact invariant set for the C' flow ϕ on M and suppose U is a neighborhood of Λ in which Λ is the maximal ϕ -invariant subset. Then there exists a C^{∞} Lyapunov function $\lambda: U \to \mathbb{R}$ for ϕ at Λ .

This means

$$\lambda | \Lambda \equiv 0 \equiv D \lambda | \Lambda$$

$$\dot{\lambda}(x) \stackrel{\text{def}}{=} \frac{d}{dt} \lambda(\phi_t x) \Big|_{t=0} > 0 \quad x \in U - \Lambda.$$

Remark. The authors cannot agree on the sign of $\lambda(x)$ in the definition of Lyapunov function. In this section we have taken it positive.

Proof of Theorem 7. Λ is the maximal ϕ -invariant set in some neighborhood $U \supset \Lambda$. Let $\lambda: U \to \mathbb{R}$ be the Lyapunov function supplied by Lemma 1. Since λ is nonsingular off Λ , it extends smoothly to all of M

$$\lambda: M \to \mathbb{R}$$

such that, except for Λ , λ has only nondegenerate critical points: $sing(\lambda) = \Lambda \cup P$ when $P = \{p_1, \dots, p_n\}$ and $P \cap U = \emptyset$

Fix a smooth bump function $\beta: M \to [0, 1]$ which has support in U and is identically equal to 1 on a neighborhood of Λ . Set

$$Y = \beta X + (1 - \beta) \operatorname{grad} \lambda$$

where $X = \dot{\phi}$. Let ψ be the Y-flow; we claim that ψ verifies Theorem 7. (i) is clear.

Consider $\langle \beta X, \operatorname{grad} \lambda \rangle$ where \langle , \rangle is the inner product defining the gradient. If $\beta(x) = 0$ or $x \in \Lambda$ then this quantity equals 0. If $\beta(x) \neq 0$ and $x \notin \Lambda$ then $x \in U$, $\beta(x) > 0$, $\operatorname{grad} \lambda(x) \neq 0$, and by Lemma 1, λ increases along the X-trajectory at x, so

$$\langle \beta(x)X(x), \operatorname{grad}\lambda(x)\rangle > 0$$

Thus

$$\langle \beta X, \operatorname{grad} \lambda \rangle \geq 0$$

everywhere on M. Adding $(1 - \beta)$ grad λ to βX only improves the inequality and we get

$$\langle Y(x), \operatorname{grad} \lambda(x) \rangle \ge 0 \quad x \in M$$

with equality only at $sing(\lambda) = \Lambda \cup P$. This proves (iii) and

$$\Omega(\psi) \subset \operatorname{Sing}(\lambda)$$

which gives (ii). For λ is continuous and $\lambda(\psi_t x)$ increases (strictly) monotonically with t if $x \in M - \text{sing}(\lambda)$, so all $x \in M - \text{sing}(\lambda)$ wander under the flow ψ .

(iv) Since $\beta \equiv 1$ on a neighborhood of Λ , $D\phi_t | \Lambda = D\psi_t | \Lambda$ for all t and Λ is a hyperbolic set for ψ . Since the periodic orbits are dense in Λ , $\Lambda \subset \Omega(\psi)$. Thus, by (ii), ψ is Axiom A and Λ is basic set. Q.E.D.

Remark. The function λ may be chosen so that $\lambda(p_j)$ are distinct from one another and from $0 = \lambda(\Lambda)$, $j = 1, \ldots, n$. Thus, there is a c > 0 such that for $M_c = \lambda^{-1}[-c, c]$

- (v) $M_c \cap \Omega(\psi) \subset \Lambda$
- (vi) Y is transverse to $\partial M_c = \lambda^{-1}(-c) \cup \lambda^{-1}(c)$
- (vii) On $M M_c$, Y is a gradient-like Morse smale flow.

Moreover by the Kupka-Smale Theorem, all the stable and unstable manifolds of p_1, \ldots, p_n may be assumed transverse: $W^u(p_i) \stackrel{f}{\pitchfork} W^s(p_j)$, $1 \le i, j \le n$. To get Theorem 1 we must deal with $W^u(\Lambda)$, $W^s(\Lambda)$ as well. This we do in §5.

Now we return to our construction of Lyapunov functions.

Proof of Lemma 1. If $x \in U$ then the orbit of x exits U in at least one direction of time or else $x \in \Lambda$. If $\phi_t x \in U$ for all $t \geqslant 0$ then $\omega(x)$ is a ϕ -invariant subset of U, which is contained in Λ by maximality of Λ . Similarly for $t \leqslant 0$. Thus, each $x \in U$ has an orbit O_x of precisely one of the four types

- (a) O_v ⊂ Λ
- (b) Ox exits U in forward and reverse time
- (c) O_x exits U in forward time and has α(x) ⊂ Λ
- (d) O_x exits U in reverse time and has ω(x) ⊂ Λ.

The points obeying (c) form the local unstable set for Λ , W^u , and those obeying (d) form the local stable set W^s . Note that all orbits off Λ cross ∂U in at least one direction of time, and that by proper choice of U, $(W^u \cap \partial U)$, $(W^s \cap \partial U)$ are compact disjoint subsets. Denote by B the set of points with orbits of type (b); B is open in U. Let $x \in B$. Choose $x_0 = \phi_{t_0}x \in M - U$ for some $t_0 < 0$, choose a smooth compact (m - 1) - disc D at x_0 transverse to ϕ , suppose $\phi_{\tau}x_0 \in M - U$ for some $\tau > -t_0$, and consider the flowbox

$$F = \{ \phi_t y : y \in D \text{ and } 0 \le t \le \tau \}$$

Choose D small enough so that D and $\phi_r D$ lie outside U, see Figure 1. This is a flowbox of type (b) around x.

Let $x \in W^u$. Choose $x_1 = \phi_{t_1} x \in M - U$ for some $t_1 > 0$, choose a smooth compact (m-1) disc D at x_1 transverse to ϕ , choose $\tau > t_1$, and consider the flowbox

$$F = \{ \phi_t y : y \in D \text{ and } -\tau \le t \le 0 \}$$

F is a flowbox whose forward endface is D and reverse endface is $\phi_{-\tau}(D)$. Choose D small enough so that $D \subset M - U$. This is a flowbox of type (c) around x.

Figure 1. A flowbox of type (b).

Let $x \in W^s$ and construct a flowbox of type (d) around x symmetric to one of type (c).

On each type of flowbox there is a C^{∞} function $\lambda_F: F \to \mathbb{R}$ such that

$$\dot{\lambda}_F > 0$$
 on Interior(F)

(3)
$$\lambda_F \equiv 0$$
 on $\partial F \cap U$
$$\max |\lambda_F(x)| \leq 1 \quad \max \dot{\lambda}_F(x) \leq 1.$$

For consider the three graphs of λ_F over the straightened-out flowbox in Figure 2. Set $\lambda_F \equiv 0$ on U - F, so $\lambda_F \colon F \cup U \to [-1, 1]$. The flowbox chart is C', so λ_F is C'. [If we want more differentiability we can C'-approximate λ_F by a C^{∞} map $\tilde{\lambda}_F \colon F \cup U \to [-1, 1]$ such holds for $\tilde{\lambda}_F$ also. This requires a little care near ∂F .]

Cover $U - \Lambda$ by the interiors of countably many such flowboxes F_1, F_2, \ldots and set

(4)
$$\lambda(x) = \sum_{n=1}^{\infty} \epsilon_n \lambda_{F_n}(x)$$
 $x \in U$

where $0 < \epsilon_n < 1/2^n$. Observe that λ is continuous, $\dot{\lambda}$ is continuous, $\dot{\lambda} > 0$ for all $x \in U - \Lambda$, and $\lambda | \Lambda \equiv 0 \equiv D\lambda | \Lambda$. To make $\lambda \in C'$ we choose $\epsilon_n \to 0$ rapidly.

(5)
$$\epsilon_n |\lambda_{F_c}| < \frac{1}{2^n}$$
 $n = 1, 2, ...$

where $| \cdot |$, denotes the C' size of a function. Then λ is C'. [To get $\lambda \in C^{\infty}$, even if ϕ is only C^{1} , we replace $\lambda_{F_{\alpha}}$ with $\tilde{\lambda}_{F_{\alpha}}$ in (4) and instead

Figure 2. Lyapunov functions on flowboxes.

of (5), we choose $\epsilon_n \to 0$ so rapidly that

$$\epsilon_n |\tilde{\lambda}_{F_s}| < \frac{1}{2^n} \quad n \ge r$$

for each $r = 1, 2, 3, \ldots$ Then λ is C^{∞} .] Q.E.D.

We also state the one-sided result

LEMMA 2. Suppose A is a compact forward invariant set for ϕ which has a neighborhood U in M such that

(6)
$$O_{-}(x) \subset U \Rightarrow O_{-}(x) \subset A \quad x \in U$$

where O_{-} denotes the reverse ϕ -orbit. Then ϕ has a Lyapunov function $\lambda: U \to \mathbb{R}$, and $\lambda < 0$ on U - A.

Remark. (6) implies A attracts in U.

Proof. Each $x \in U - A$ has $O_{-}(x) \subset U$. Forward invariance of A then says $O_{-}(x) \cap A = \emptyset$, so we get a flowbox F around each $x \in U - A$ of type (d) above. Cover U - A with the interiors of F_1, F_2, F_3, \ldots and set $\lambda = \sum \epsilon_n \lambda_{F_n}$ as above. Q.E.D.

5. Proof of Theorem 1. We suppose that M has dimension 3 and return to the construction of the flow ψ in Theorem 7 and the remark after its proof. We must make the stable manifolds of the fixed points transverse to the unstable manifolds of the orbits in Λ . There are infinitely many of the latter so we must go beyond the Kupka-Smale Theorem. Each orbit O in Λ has $W^u(O)$ and $W^s(O)$ of dimension 2. Since the flow is transverse to $\lambda^{-1}(c)$ so are the $W^u(O)$. Thus $W^u(\Lambda) \cap \lambda^{-1}(c)$ is "laminated" $[7, \S 7]$ by the individual 1-dimensional curves $W^u(O) \cap \lambda^{-1}(c)$ where O ranges over all ψ -orbits in Λ . Since dim $\Lambda = 1$, $W^u(\Lambda) \cap \lambda^{-1}(c)$ has empty interior.

Suppose q is a fixed point of ψ .

If dim $W^s(q) = 1$ then $W^s(q) \cap \lambda^{-1}(c)$ is at most two points, q_1 and q_2 and we perturb ψ near q to make q_1, q_2 lie off $W^u(\Lambda) \cap \lambda^{-1}(c)$.

If dim $W^s(q) = 3$ then q is a sink and $W^s(q)$ is transverse to all $W^u(O)$ for any orbit O.

If dim $W^s(q) = 2$ and $W^s(q) \cap \lambda^{-1}(c) \neq \emptyset$, note first that $q \in \lambda^{-1}(c, \infty)$. As the flow is Morse-Smale on $\lambda^{-1}(c, \infty)$, we see that $W^s(q) \cap \lambda^{-1}(c)$ is a one-dimensional manifold which can accumulate

only at points of $W^s(q') \cap \lambda^{-1}(c)$ where dim $W^s(q') = 1$. These points already lie off the compact set $W^u(\Lambda) \cap \lambda^{-1}(c)$. Thus, generally, this 1-manifold can be tangent to the one dimensional lamination $W^u(q) \cap \lambda^{-1}(c)$ in isolated points, so we can push these tangencies off $W^u(\Lambda) \cap \lambda^{-1}(c)$ since $W^u(\Lambda) \cap \lambda^{-1}(c)$ has no interior in $\lambda^{-1}(c)$. See Figure 3.

In each case, we get transversality, so working one at a time on the fixed points of ψ we make ψ satisfy Axiom AS. Do the same for unstable manifolds of fixed points, $W^s(\Lambda)$ and $\lambda^{-1}(-c)$. This completes the proof in dimension 3.

Next, suppose $m = \dim(M) \ge 4$ and that we have embedded our suspended subshift Λ as a basic set of an Axiom AS flow ψ on S^{m-1} . We assume ψ has some point sinks by induction.

Let B^m be the ball of radius 2 in \mathbb{R}^m and extend ψ from $S^{m-1} \subset B^m$ to a flow ψ on B^m such that

 S^{m-1} is an attractor, ∂B^m is a repellor, the origin is a point source, $\psi | \partial B^m$ is a north-pole south-pole flow.

Let q_0, q_1 be the source and sink of $\psi | \partial B^m$. Clearly ψ is Axiom A. The only transversality in question for Axiom AS is $W^u(q_1) \cap W^s(\Omega_i)$ where Ω_i are the basic sets of $\psi | S^{m-1}$. Since $W^u(q_1)$ has dimension 1, we push it into the basin of attraction of one of the point sinks of $\psi | S^{m-1}$. This gives Axiom AS on B^m and leaves Λ as a basic set.

In M^m , glue a copy of ψ on B^m onto any m-ball B and extend ψ to M-B as a Morse-Smale gradient flow. The resulting flow obeys Axiom AS on M. Q.E.D.

Clearly, we wanted to prove Theorem 6 with Axiom AS instead of Axiom A. Forcing transversality between a single stable manifold and a

Figure 3. Removing tangency.

lamination is no easy task when both have high dimension. Consider Smale's hook [13] and Newhouse's hooked horseshoe [8]. In our case, we are willing to make large perturbations to get transversality, so we retain hope for an Axiom AS Theorem 6.

UNIVERSITY OF CALIFORNIA, BERKELEY QUEENS COLLEGE, C.U.N.Y.

REFERENCES

- S. Batterson, Constructing Smale diffeomorphisms on compact surfaces, Trans. A.M. S. 256 (79), 237-245.
- [2] L. Block, Diffeomorphisms obtained from endomorphisms, Trans. A.M.S. 214 (75), 403-413.
- [3] R. Bowen, One dimensional hyperbolic sets for flows, J.D.E. 12 (72), 173-179.
- [4] M. Denker, C. Grillenberger, K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math no. 527. Springer-Verlag, N.Y., 1976.
- [5] J. Franks, Homology and Dynamical Systems, preprint, 5-24, 5-25.
- [6] J. Guckenheimer, Endomorphisms of the Riemann sphere, Proc. Symp. Pure Math, A.M.S. 14 (68), 95-124.
- [7] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds. Springer-Verlag, N.Y., 1977.
- [8] S. Newhouse, Non density of Axiom A(a) on S², Proc. Symp. Pure Math, A.M.S. 14 (68), 191-202.
- [9] C. Pugh and M. Shub, The Ω-Stability Theorem for flows, Inventiones Math 11 (70), 150-158.
- [10] W. Reddy, Lifting expansive homeomorphisms to symbolic flows, Math. Syst. Theory 2 (68), 91–92.
- [11] M. Shub, Stabilité globale des systèmes dynamiques, Asterisque, 56, Paris, 1978.
- [12] S. Smale, Differential dynamical systems, Bull. A.M.S. 73 (67), 747-817.
- [13] ———, Structurally stable systems are not dense, Amer. J. Math. 88 (66), 491–496.
- [14] R. F. Willaims, Classification of Subshifts of finite type, Annals of Math 98 (73), 120-153; Errata, ibid, 99 (74), 380-381.
- [15] F. W. Wilson, Smoothing derivatives of functions and applications. Trans. A.M.S. 139 (69), 413-428.