SUSPENDING SUBSHIFTS*

By CHARLES C. PUGH and MICHAEL SHUB**

1. Introduction. Every full shift on k-symbols is conjugate to a
basic set of an Axiom AS diffeomorphism of $2, Smale [12], but the
same is false for a subshift of finite type (ssft), as shown by an example
of Franks [5]. The corresponding question on a general compact 2-
manifold M2, instead of S2, remains open. Partial results may be found
in Franks [5] and Batterson [1]."

Here we show that the situations for flows is quite different. For
Axiom A flows one can pass from basic sets to sub-basic sets on the
same manifold, Theorem 6 below. In particular for ssft’s we have

THEOREM 1. The suspension of any basic subshift of finite lype (ie a
ssft with dense periodic orbits and a dense orbit) is conjugate to a basic set
of some Axiom AS flow on S® — or any other M™, m > 3.

Theorem 6 is proved in §4. We are indebted to R. Mafié for
simplifying our proof of Theorem 6. Sections 2 and 3 set the notations
we use, define the terms, and put the problem in context.

Remarks. 1) The Axiom AS flow we produce in Theorem 1 has
singularities. It is not known if they can be eliminated on S>.

2) Basic ssft’s are identical to those which arise from irreducible
matrices. See [4,11] and §2.

2. Cascades. Betore proving Theorem 1, we explain the general
problem to which it relates. Background references are Smale [12] and
Shub [11]). Let f: M - M be a diffeomorphism, M compact. Its cascade
is {/":n € Z}. Let © be the nonwandering set of f. Then f obeys A xiom
Aif

(Aa) @ is a hyperbolic set of f

(Ab) The periodic points are densc in £.
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If, in addition, all invariant manifolds of 2 meet transversally then f is
said to obey Axiom AS and it follows that f is structurally stable. Smale
shows that Axiom A implies a finite disjoint decomposition

Q=9 uU---uUQ

where the £, are the basic sets of Q. Each ©; is compact, f-invariant,
contains an f-orbit which is dense in @, and f|Q; is expansive.
“Expansive” means that for some § > 0 and some metric d, if d(f"x,
fy)<dforalln € Z then x = y.

Embedding Problem. Given a compact metrizable A, a homeomor-
phism g:A — A, and a manifold M, when are there an Axiom A (or
AS) diffeomorphism f: M — M and an embedding i: A<>M onto a
basic set of f making

M L »

Ji Ji
7 CEEhce TN

commute? Obviously, necessary conditions are

(1) g is expansive, g has a dense orbit, the periodic points of g are
dense in A, and (A, g) embeds in some diffeomorphism of M.

A well behaved sort of (A, g) is furnished by symbolic dynamics.
Let 2 < k < oo be fixed and let 3 = $* denote the bi-infinite se-
quences of letters 0,1, . . ., k— 1, ie.

=0l k— 1)

The general clement of 3 is written @ = (...a_, - a,a,a, . . . ) where
each g, is a letter from 0 to k — 1. Note the convenient decimal point.
Put the product topology on 3. It is compact, zero dimensional, and
metrizable. Let 6: 3 — ¥ be the map:

a=(...0_, ... )>(...a_,a," aa,...) = o(a)
which shifts the decimal point to the right, i.e., o shifts the entries of a to
the left. o is an homeomorphism called the full shift on k symbols, In [12),
Smale shows
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THEOREM 2. Each full shift is conjugate to a basic sei of some
Axiom AS diffeomorphism on S*, or any other m-manifold m > 2.

Definition. Let 6:3 — 3 be the full shift on k& symbols. If
S’ C 3 is o-invariant then 0|3’ is a subshift. It is of finite type if for
some fixed N thereisalist L C (0,1,.... k — 1}* such that

ac€ " iff each N-string of a appears in the list L.

An N-string of a is just N consecutive entries of a. All ssft’s are
compact. This definition of ssft is conjugacy-invariant and is equivalent
to the transition matrix definition in [11]. See [4, p. 121].

Definition. A ssftis basic if it has a dense orbit and a dense set of
periodic points.
In [14] R.F. Williams shows

THEOREM 3. Each basic ssft is conjugate to a basic set of some
Axion AS diffeomorphism on S*, or any other m-manifold m > 3.

Thus the Embedding Problem for zero-dimensional sets A is fairly
well understood. Let g: A > A be a homeomorphism of the compact
metrizable space A and ask: when does it embed onto a basic set? The
necessary condition of expansiveness in (1) implies that (A, g) is conju-
gate to some subshift 3’ C 3, provided A has dimension zero [10]. By
[4, p. 244), for a subshift to be conjugate to a basic set it must be ssft.
Thus

(2) A zero-dimensional (A, g) is conjugate to a basic set iff it is a
basic ssft.

Here, what is left to know is which subshifts embed as basic sets in
which 2-manifolds.

Basic sets of higher dimension are grossly messier than shifts, so (2)
is far from a full solution to the Embedding Problem for cascades. See
the example of Guckenheimer [6,2] for a basic set that is topologically
bizarre.

3. Flows. In a straight forward manner, the notion of Axiom AS
generalizes from cascades to flows. The Embedding Problem is the same.
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Definition. Let g: A - A be a homeomorphism. The identification
space Susp(A, g) is the set

[0, 1 ] X A /a.x~10. g0

The suspension of g is the flow ¢ on Susp(A, g) whose trajectory through
0, x)E0X Ais

$(0.x)=(r,x) O0=<r<]

The time-one map of ¢ caries 0 X A onto itself by g: (0. x)—(0, gx).
Let (S.¢) be the suspension of the full k-shift. We have

THeOREM 4. (S.9) embeds'onto a basic set in any M™,m > 3.

Proof. See [12] as for Theorem 2.
A result of Bowen essentially solves the embedding problem for 1
dimensional basic sets.

THEOREM 5 [3]. A one dimensional basic set for a flow is conjugate
to the suspension of a subshifi of finite type.

Theorem 3 would allow us to embed a suspension of a basic ssft in
any M*. Here we accomplish the embedding in any M -

4. Embedding Sub-objects. Let 3 be the full shift on & symbols,
let )" be a basic ssft in 3, and let S”, S be the suspension of ', 3. By
Theorem 3, embed S as a basic set of some Axiom A flow ¢ on (any)
M?3. Call A the image of S” in M.

THEOREM 6. There is an Axiom A no cycle flow & on M* such that
A is a basic set of ,¢|A = Y|A, and QY) — A is finite.
In fact, our proof of Theorem 6 is more general and gives

Tueorem 7. Let A be any locally maximal compact invariant set for
the flow & on M. Then there is a flow § on M such that

(i) ¢ = ¢ on a neighborhood of A

(i) Q) C A U P where P consists of finitely many hyperbolic fixed
poinis of ¥ prs P2 - - -+ Pa

(iil) There are no cycles among p,, . . .. p,. A

(iv) Moreover, if A is hyperbolic for ¢, has a dense orbit and dense set
of periodic points then  is Axiom A and one of its basic sets is A

Note that (iii) and (iv) include Theorem 6. We need the following
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lemma, referred to in [9). and for which we give a direct proof below,
avoiding the subtleties of Wilson [15].

LeMMa 1. Ler A be a compact invariant set for the C” flow ¢ on M
and suppose U is a neighborhood of A in which A is the maximal
¢-invariant subset. Then there exists a C* Lyapunov function A: U— R
for & at A.

This means

AlA=0= DA|A

. def
Ax)= %A(qb,x) >0 xeU-A
-

Remark. The authors cannot agree on the sign of Mx) in the
definition of Lyapunov function. In this section we have taken it

positive.
Proof of Theorem 7. A is the maximal ¢-invariant set in some
neighborhood U D A. Let A: U — R be the Lyapunov function supplied

by Lemma 1. Since A is nonsingular off A, it extends smoothly to all of
M

A: M-SR

such that, except for A, A has only nondcgenerate critical points:
singAd) =AU PwhenP={p,...p,Jand PN U=0

Fix a smooth bump function 8: M — [0, 1] which has support in U
and is identically equal to | on a neighborhood of A. Set

Y = BX + (1 — B)gradA

where X = é. Let ¢ be the Y-flow: we claim that y verifies Theorem 7.
(1) is clear.

Consider { fX,gradA) where {,) is the inner product defining the
gradient. If B(x) = 0 or x € A then this quantity equals 0. If B(x) = 0
and x & A then x € U, B(x) > 0, gradA(x) # 0, and by Lemma 1, A
increases along the X-trajectory at x, so

{B(x)X(x).gradA(x)> > 0
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Thus
{BX.gradA) = 0

everywhere on M. Adding (1 — 8) grad A to BX only improves the
inequality and we get

{Y(x).gradA(x)) = 0 xEM
with equality only at sing(A) = A U P. This proves (iii) and
Qy) C Sing(A)

which gives (i1)). For A is continuous and A(y,x) increases (strictly)
monotonically with ¢ if x € M — sing(A), so all x € M — sing(A) wan-
der under the flow .

(iv) Since 8 = | on a neighborhood of A, D¢,JA = Dy,|A for all ¢
and A is a hyperbolic set for . Since the periodic orbits are dense in
A A C Q). Thus, by (i), ¢ is Axiom A and A is basic set. Q.E.D.

Remark. The function A may be chosen so that A(p)) are distinct
from one another and from 0 = MA), j = 1....,n. Thus, there is a
¢ > 0 such that for M. = A" '[~¢,¢]

MIMNUAY) CA

(vi) Y is transverse to M, = A" '(—¢c) UL (¢)

(vil) On M — M_, Y is a gradient-like Morse smale flow.
Moreover by the Kupka-Smale Theorem, all the stable and unstable
manifolds of p,. . ... p, may be assumed transverse: W*(p) M W*(p).
1 <i,j < n. To get Theorem 1 we must deal with W¥(A), W*(A) as
well. This we do in §5.

Now we return to our construction of Lyapunov functions.

Proof of Lemma 1. If x € U then the orbit of x exits U in at least
one direction of time orelse x € A. If g x € U forall 7 > 0 then «(x) is
a ¢-invariant subset of U, which is contained in A by maximality of A.
Similarly for 1 < 0. Thus, each x € U has an orbit O, of preciscly onc
of the four types

(@0, CA

(b) O, exits U in forward and reverse time

(c) O, exits U in forward time and has a(x) C A

(d) O, exits U in reverse time and has o(x) C A.
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The points obeying (c) form the local unstable set for A, W*, and those
obeying (d) form the local stable set W*. Note that all orbits off A cross
3U in at least one direction of time, and that by proper choice of U,
(W* N aU), (W N aU) are compact disjoint subsets. Denote by B the
set of points with orbits of type (b); B is open in U. Let x € B. Choose
Xo = ¢, X € M — U for some 7, < 0, choose a smooth compact (m —
1) — disc D at x, transverse 0 ¢, suppose ¢.x, € M — U for some
7 > —t, and consider the flowbox

F={(¢y:yEDand0 < <7}

Choose D small enough so that D and ‘¢, D lie outside U, see Figure 1.
This is a flowbox of type (b) around x.

Let x € W™ Choose x, = ¢, x € M — U for some ¢, > 0, choose
a smooth compact (m — l)disc D at x, transverse 0 ¢, choose 7 > {;,
and consider the flowbox

F={¢y:yEDand —7<1<0]
F is a flowbox whose forward endface is D and reverse endface is

é_,(D). Choose D small enough so thatD C M — U. This is a flowbox
of type (c¢) around x.

Figure |. A flowbox of type (b).
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Let x € W* and construct a flowbox of type (d) around x symmet-

ric to one of type (c).
On each type of flowbox there is a C* function Ap: F— R such
that

As > 0 on Interior(F)
3) Ar=0 on AFNVU
max]As(x)) €1 maxAg(x) < L.

For consider the three graphs of A, over the straightened-out flowbox in
Figure 2. Set A, =0o0n U — F,s0 Ap: F U U - [— 1,1]. The flowbox
chart is C", so Ag is C". [If we want more differentiability we can
C-approximate A by a C™ map X,.: F U U—[-1.1] such that (3)
holds for A, also. This requires a little care near dF.]

Cover U — A by the interiors of countably many such flowboxes
F,F,, ... and set

4) A(x) = § ¢Mr(x) x€EU

n=1
where 0 < ¢, < 1/2". Observe that A is continuous, A is continuous,

A>0forall x € U= A, and AJA = 0 = DAJA. To make A € C” we
choose ¢, = 0 rapidly.

! s
6 &Pl <z n=l2..

where | |, denotes the C” size of a function. Then A is C". [To get
A € C*. even if ¢ is only C', we replace A with A, in (4) and instcad

===

(b) (<) (d)

Figure 2. Lyapunov functions on flowboxes.
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of (5), we choose ¢, — 0 so rapidly that
T 1
&|As| < 3% nxr

foreachr = 1,2,3,.... Then A is C*.] Q.E.D.
We also state the one-sided result

LEMMA 2. Suppose A is a compact forward invariani set for ¢ which
has a neighborhood U in M such that

(6) O (x)CU=0_(x)CA4 xevu

where O  denotes the reverse ¢-orbir.. Then ¢ has a Lyapunov function
AMU->R,andA<0on U - A.

Remark. (6) implies A attracts in U.

Proof. Each x € U~ A has O_(x) C U. Forward invariance of
A then says O_(x) N A =0, so we get a flowbox F around each
x€ U— A of type (d) above. Cover U — A with the interiors of
F,,Fy,F; ... and set A = Y ¢ A, as above. Q.E.D.

5. Proof of Theorem 1. We suppose that M has dimension 3 and
return to the construction of the flow ¢ in Theorem 7 and the remark
after its proof. We must make the stable manifolds of the fixed points
transverse to the unstable manifolds of the orbits in A. There are
infinitely many of the latter so we must go beyond the Kupka-Smale
Theorem. Each orbit O in A has W*(0) and W*(0) of dimension 2.
Since the flow is transverse to A~ '(c) so are the W*(0). Thus W*(A) N
A~ '(¢) is “laminated” [7,§7) by the individual 1-dimensional curves
W*(0) N A~ '(c) where O ranges over all y-orbits in A. Since dim
A =1, W*(A) N A~ '(c) has empty interior.

Suppose ¢ is a fixed point of .

If dim W*(g) = 1 then W'(g) N A~ '(c) is at most two points, g,
and g, and we perturb { near ¢ to make g,.g; lie off W*(A) N A~ (0.

If dim W*(g) = 3 then g is a sink and W*(q) is transverse to all
W*(0) for any orbit O.

If dim W*(g) =2 and W’(q)r‘l)\“'(c);fﬁ, note first that g
€ A~ '(c. ). As the flow is Morse-Smale on A~ (¢, o). we see that
Wi(g) N A~ Y(c) is a one-dimensional manifold which can accumulate
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only at points of W*(¢') N A~"(c) where dim W*(g’) = 1. These points
already lic off the compact set W*(A) N A~ '(c). Thus, generally, this
I-manifold can be tangent to the one dimensional lamination W*q) N
A '(c) in isolated points, so we can push these tangencies off W*(A) N
A~ '(c) since W*(A) N A~ (c) has no interior in A '(c). See Figure 3.

It each case, we get transversality, so working one at a time on the
fixed points of ¢ we make ¢ satisfy Axiom AS. Do the same for unstable
manifolds of fixed points, W*(A) and A~'(—c¢). This completes the
proof in dimension 3.

Next, suppose m = dim(M) > 4 and that we have embedded our
suspended subshift A as a basic set of an Axiom AS flow ¢ on $™~'. We
assume ¢ has some point sinks by induction.

Let B™ be the ball of radius 2 in R™ and extend ¢ from $™~! C B™
to a flow ¢ on B™ such that

S$™~!is an attractor, 3B™ is a repellor, the origin is a point source,

v|dB™ is a north-pole south-pole flow.

Let go.9, be the source and sink of ¢|dB™. Clearly ¢ is Axiom A. The
only transversalily in question for Axiom AS is W*(gq,) N W*(Q,) where
©, are the basic sets of Y|S™~". Since W*(g,) has dimension 1, we push
it into the basin of attraction of one of the point sinks of ¥|S$™ . This
gives Axiom AS on B™ and leaves A as a basic set.

In M™, glue a copy of ¢ on B™ onto any m-ball B and extend ¥ to
M-B as a Morse-Smale gradient flow. The resulting flow obeys Axiom
ASon M. Q.ED.

Clearly, we wanted to prove Theorem 6 with Axiom AS instead of
Axiom A. Forcing transversality between a single stable manifold and a

_L/-—ML'

S e

Figure 3. Removing tangency.
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lamination is no easy task when both have high dimension. Consider
Smale’s hook [13] and Newhouse’s hooked horseshoe [8). In our case, we
are willing to make large perturbations to get transversality, so we retain
hope for an Axiom AS Theorem 6.

UNIVERSITY OF CALIFORNIA, BERKELEY
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REFERENCES

[1] S. Batterson, Constructing Smale diffeomorphisms on compact surfaces, Trans. A.M.
S. 256 (79). 237-245.
{2] L. Block, Diffeomorphisms obtained from endomorphisms, Trans. 4.M.S. 214 (75).
403-413.
[3] R. Bowen, One dimensional hyperbolic scts for flows, J.D.E. 12 (72), 173-179.
[4] M. Denker, C. Grillenberger. K. Sigmund, Ergodic Theory on Compact Spaces, Lecture
Notes in Math no. 527. Springer-Verlag, N.Y., 1976.
[5] J. Franks, Homology and Dynamical Systems, preprint, 5-24, 5-25.
[6] J. Guckenheimer, Endomorphisms of the Riemann sphere, Proc. Symp. Pure Math,
AMS. 14 (68). 95-124.
(7] M. Hirsch, C. Pugh, and M. Shub, Invarians manifolds. Springer-Verlag. N.Y.. 1977.
[8] S. Newhouse, Non density of Axiom A(a) on S°. Proc. Symp. Pure Marh, AMS., 14
(68), 191-202.
[9] C. Pugh and M. Shub, The 2-Stability Theorem for flows, Inventiones Math 11 (70),
150-158.
[10] W. Reddy, Lifting expansive homecomorphisms to symbolic flows, Math. Syst. Theory
2 (68). 91-92.
[11] M. Shub, Stabilit¢ globale des systémes dynamiques, Asterisque, S6, Paris, 1978.
[12] S. Smale, Differential dynamical systems, Bull 4. M.S. 73 (67), 747-817.
3] . Structurally stable systems are not dense, Amer. J. Marh. 88 (66), 491-496.
[14] R. F. Willaims, Classification of Subshifts of finite type. Annals of Math 98 (73),
120-153; Errata, ibid, 99 (74). 380-381.
[15] F. W. Wilson, Smoothing derivatives of functions and applications. Trans 4.M.S. 139
(69), 413-428.




