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ENTROPY, LINEARITY AND CHAIN-RECURRENCE (1)
by DAVID FRIED and MICHAEL SHUB

Queens College of the City
University of New York

We dedicate this paper to Rufus Bowen. Rufus suggested that we write it, and we have
done so largely out of respect for him. We held Rufus dear as a friend and as a mathematician.
We miss him sorely on both counts.

We will prove two new cases of the entropy conjecture, using volume estimates to
bound the growth rate of forms as in [13]. The Cr entropy conjecture (r^ i) holds that
the topological entropy h{f) of a G7' diffeomorphism y:M—^M of a compact manifold M
is bounded below by the logarithm of the spectral radius of f^: H^(M; R) -> H^(M; R).
Several cases of the entropy conjecture are already known ([3], [16]), but it fails for C°
and PL homeomorphisms [12]. The new cases we deal with are affine mappings and
diffeomorphisms with finite chain-recurrence.

In section i we will describe the volume estimates we will use in later sections.
The G'' entropy conjecture is shown to hold whenever the sets B^(£, n) {xeM., s small)
lose volume at the asymptotic rate predicted by the differentials D/^).

We demonstrate in section 2 that this volume decay does occur when M is a
compact affine manifold and f is an affine map. This establishes the entropy conjecture
for many endomorphisms of infrasolvmanifolds ([2], [8]). We note that most known
Anosov diffeomorphisms and expanding maps are affine [5]. Our result shows that
the difficulties in the CV entropy conjecture lie in the nonlinearity of smooth mappings.

In section 3 we reprove the entropy conjecture for Axiom A-No Cycle diffeo-
morphisms [16]. The volume estimates we need are contained in the Bowen-Ruelle
Volume Lemma [4] (actually we use a C1 version).

In section 4 we show that the C1 entropy conjecture holds whenever the chain-
recurrence set R(/) is finite. Here the necessary volume estimates arise from a local,

(]) This research was supported by the N.S.F. It was in part accomplished at I.H.E.S.

451



204 D A V I D F R I E D A N D M I C H A E L S H U B

nonhyperbolic version of the Volume Lemma. This generalizes the known results for
Morse-Smale/by omitting the hyperbolicity conditions at the periodic points ([15], [i6]).

We conclude by showing that the necessary homological conditions for a homotopy
class to contain a map/with finite R(/) are sufficient on nilmanifolds. If /: M-^M
is a nilmanifold automorphism and /: H^(M, R) -> H,(M; R) has spectral radius i
then / is G^-approximable by Morse-Smale diffeomorphisms. This extends recent
independent work of B. Halpern [6]. In an appendix, we prove the two variations
of the Bowen-Ruelle Volume Lemma that we use in sections 3 and 4.

We emphasize that section 4 supplies a computable topological criterion for a
diffeomorphism to have infinite chain-recurrence, namely to verify that some homology
eigenvalue is not of length i.

We note that the counterexample to the PL entropy conjecture in [12] has finite
chain-recurrent set. This contrast in the behavior of PL and C1 maps with finite chain-
recurrence adds to the evidence for the C1 entropy conjecture.

Section 1. — Entropy and Volume.

When /: M->M is a diffeomorphism of a compact Riemannian manifold, let
B^(s, n) == {y | d(fkx, /^)<^s for k = o, i , . . . , % } . We will relate the entropy conjecture
for/ to the asymptotic change in the volume of B^(£, n} as n—^oo.

To state the asymptotic behavior we might expect to find, it is necessary to consider
the unstable expansion ̂  (A) of a linear map A : Vo->Vi, where the V, are inner product
spaces of equal (finite) dimension. One may define J"(A) as the norm of the induced
map A* (A) : A^V^-^A^Vg), where the exterior algebras A^V,) are given the usual
inner product. Clearly J" is submultiplicative, that is J^AoB^J^A) J^B). It is
well-known that J^A) is the product of the unstable eigenvalues of (A^A)^2. For a
smooth map f:M->M on a Riemannian manifold, we denote ]^{f)=JU(^yf{x))
(===max Q^{x) in the notation of [13]). If M is compact, it is easy to show (using sub-
multiplicativity) that J^(/) changes by a bounded amount if one considers a different
Riemannian metric. The unstable expansion of a linear map is related to volume in
the following way:

Lemma 2. — Suppose A : If-^If is a linear map. For the usual inner product on K1,
JWvoKBoMn A- ̂ (r^W

Proof. — Since A-l(Bo(r)) ==(A<A)~ l /2(Bo(r)) we may assume A is positive definite.
Consider If^E^E'5, where E" is the span of the unstable eigenvectors and E'8 is
the span of the eigenvectors whose eigenvalues are of modulus ^i. For yeE^nB^r),
J^A^vol^y+E^nBoMnA-^r))^^, where here we use the ^-dimensional
volume of E^, u = dim E". An easy application of Fubini's Theorem shows that the
inequality holds. Q.E.D.
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ENTROPY, LINEARITY AND CHAIN-RECURRENCE 205

For a diffeomorphism y, we ask whether vol(Bp(s, 72)) decays asymptotically at
the rate predicted by the linearized iterates ly^). Explicitly, we have the

CY Volume Question: Suppose f: M->M is a CT diffeomorphism, for some r^i,
of a compact Riemannian manifold. Given 8>o, do there exist G, s>o so that,
for any xeM. and n^o,

^.^^

To see the importance of this question, note

Proposition 1. — An affirmative answer to the CY volume question implies that the CT entropy
conjecture holds.

Proof. — By passing to a double cover, we may assume M is orientable and study
the eigenvalues on de Rham cohomology H^M; R)==(H,(M; R))*. Let X be an
eigenvalue and c an eigenvector for /*: H^M; R) -> H*(M; R). Ifois a form in class c,
we may estimate as in [13, section 3]

l^nMHIC/^II^Kjji/^iirfvoi
for any norm on H*(M; R) and some constant K.

Let S be a minimal {n, s)-spanning set, that is M== U B^s, n) and the cardinalitya;es
of S is minimal. We will estimate || /^coll rfvol. Since the Volume Question

jB^n)1117 " -<

is assumed to have an affirmative answer, we may choose s so that
volB^^J^/^G^+Sr.

^^eB.(.,»), w.h.v. B.(.,»)CB,(,.,,), so J;(/")̂ ,̂ )̂<^ ,̂.

J^^|]/+nco|lrfvol^||co||,J^^^(/n)rfvol^||<o||,.G(I+8^

Altogether, we have
|XN|dKK. S f H/^colJrfvol^K.cardS.[[^[[^^(i+S)7 1 .

x e S J Bx[e, n)

Taking logarithms, dividing by n and letting %->oo gives

log|X|^^(/)+log(i+8)^A(/)+log(i+S).

Letting S-»o, we obtain h{f)^\og\\\, as desired. Q^.E.D.

Section 2. — The A/fine Entropy Conjecture.

We will answer the volume question affirmatively for affine maps. A map
Ax+b : R^ -> R^, with A linear and ^eR^, is an affine transformation. An affine structure
on a manifold M is determined by an atlas of coordinate systems where the transition
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206 D A V I D F R I E D A N D M I C H A E L S H U B

maps are the restrictions of affine transformations. A map f: M-^M is qfjine if it is
represented in local coordinates by affine transformations.

Theorem 1 (the affine entropy conjecture). — The entropy conjecture holds for an affine
map f of a compact affine manifold M. Moreover, the volume question has an affirmative answer
for such f.

Proof. — We fix a finite atlas of affinely related coordinate systems on M, say
< p ^ : U^—^R^. We may assume diam(U^)^r<oo and that the Jacobians of the <p^ are
bounded away from o and infinity.

By selecting s less than a Lebesgue number for {UJ, we may assume B^(s) CU^.
If a=^{x), b=^n^fnx) and A =9^) o/^oy^, then Lemma i gives

(2^
vol(<p^B,(s, ̂ voHD^nA-1^))^^^.

JaW

Passing from this computation in coordinates to one on M, we obtain

vo"!•(••'•)^• ^
Section 3. — Entropy and Volume for Axiom A Diffeomorphisms.

We reprove the entropy conjecture for Axiom A-No Cycles diffeomorphisms [16]
in a natural way, using relative versions of the volume considerations of section i. We
will need the following relative version of a result in [13].

Lemma 2. — Let M() and M^ be oriented compact m-dimensional manifolds with M.Q C int M^.
Let f be a G1 diffeomorphism with /(M,)CintM,, for i=o, i. For fixed B>o, let

V^)=/B(Ml)--/-(n+B)(Mo).

Then the logarithm of the spectral radius of /*: H*(Mi, Mo; C) -> H^Mi, MQ; C) does not

exceed l imsupf^logf WWvolYn->oo \n Jv^ /
I ft \

proof. — For any Riemannian metric on Mi, [ | C | [ = m i n | [ 7 ] | | ^ v o l | [ 7 ] ] = = C
is a norm on H^M^, Mo; C), where T] runs over closed relative forms {dr^ = o == T] | M^).
(The definiteness property is [13, Prop. (3.1)], using the appropriate relative De Rham
theory [17, Prop. (4.2)].)

We choose G=(=o to be an eigenclass, say/*G ==XC, where G=[G)], ^<o==o==co|Mo,
X+o. Thensupport(/^n+2B^)CMl-/-(M+2B)Mo=/-BV(n). Hence

ll^^'Cll^^JI/^^'^ll^vol^^ll/^^^collrfvo^

^Kj^ll/^^^coll^vol^KII/^^II.J^/^rfvol,
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ENTROPY, LINEARITY AND CHAIN-RECURRENCE 207

where K. is a constant arising from the change of variables formula. Taking logarithmic

growth rates gives log | X [ ==lim sup ̂ -log H^^GH^lmi sup-1-log J^X/^vol.
n-^co n n^co n Jy^)

Q.E.D.
We recall that a filtration for ^(/), where/is a C1 diffeomorphism of a compact

manifold M, consists of a sequence of compact submanifolds M^, i = o, i, . . ., k, where

1) Mo=0, M^=M, dimM,=dimM;
2) M^CintM^i;
3) /(M,)CintM,, and

4) Q(/)=^UA,, where A—^n^/^M.-M^,).

Proposition. — If {MJ ^ a filtration for Q.{f) and if for each z = = i , . . ., ^

A(/1 A,)^ Imrnf^lim^sup ̂  logj^ ^ ̂ (/n)^ vol)

^TZ ^ entropy conjecture holds for f. (As in the previous lemma, for given i, B^o,
V(72)==/BM,--/-(n+B)M,_l.)

Proo/. — By passing to an oriented cover, we may assume M is orientable.
By an induction on the length of our filtration using the cohomology sequence

of a triple, the spectral radius of /*: H*(M; C) -> H*(M; C) does not exceed the spectral
k

radius of © f;, where /,*: H*(M,, M,_i; C) -> H*(M,, M,_i; C) [16].
1=1

On the other hand, Z?(/)^A(/|A,) for all z. Our conclusion follows from the
preceding lemma. Q.E.D.

We now reprove [163 Theorem i].

Theorem 2. — Iff is an Axiom A-No Cycles diffeomorphism of a compact manifold M,
then the entropy conjecture holds for f,

Proof. — Smale has shown that there exists a filtration for 0.{f) [14]. By our

proposition, we need to estimate J^f^^^^y f01' fixed i and suitable B>o.
J V(n)

Given 8>o, choose c as in the G1 Volume Lemma for Basic Sets (see Appendix).
By Bowen's Shadow Lemma [i] we may pick a neighborhood U of A==A^ such that,

n

if j^e.D y'^U, then j^B^(s/2, n) for some xeA. We select B large enough so that

V^i/'^M^-y-^M^^CU.
If ye'B^{n, s), with xeAy we estimate J^f^ as follows. Introduce a continuous

inner product on TM agreeing with our Riemannian metric on E^ but in which E^lE^

455



ao8 D A V I D F R I E D A N D M I C H A E L S H U B

for all xeA. For this inner product, we may find T)>O so that for all teA, meM with
d(f, m)<_s. we have J^(/)^(i+'»))J?(/), where T)->-O as s->o. We compute

W")<W) • • • • •J?"-i,(/)^(i+^)"^(/) • • . • •3^{f)
=(i+7))"Jac(D/":E^->E^).

Passing back to our Riemannian metric, we find that for xeA and j'eB^(re, s)

(*) W)^Co(i+^"Jac(D/": E^Ey,

where Go is some positive constant and where T)-»-O with s.
Now let S be a minimal (n, e/2)-spanning set fory| A. By our choice of U and B,

V(?^)=/BM,-/•-(»+B)M,_l

c^.n/-v(o)c^.n/-uc^UB,(s,»).
Thus L^^^0 ,̂̂ ,̂,̂ ^")^01

^ S Co(i+7i)".Jac(D/-": E;^E^).volB,(s,n)
X c o

^CardS.Go(I+7])n.C(I+8)n

where we have used (*) and the C1 Volume Lemma for Basic Sets (see Appendix).
Taking logarithmic growth rates,

lim^sup^logj J^/n)^vol^^(/|A)+log(I+^(I+8)

^(/|A)+log(i+^(i+S).

Letting 8->o, we have s-^o, T]->O and B->4-°°5 so the proposition applies. Q^.E.D.

Section 4. — Quasi-unipotence and Finite Chain-recurrence

We now prove the entropy conjecture for diffeomorphismsy whose chain-recurrence
set R(/) (see [14]) is finite. As A(/)=A(/ |R(/))==o, this amounts to showing that
all eigenvalues of f^: H^(M; R) -> (H^(M; R)) are of modulus i (that is, f^ is quasi-
unipotent). We show, as a partial converse, that any nilmanifold diffeomorphism
which is quasi-unipotent on homology is homotopic to a diffeomorphism with finite R
(indeed, to a Morse-Smale diffeomorphism).

Theorem 3. — The entropy conjecture is valid for diffeomorphisms f: M->M when M is
compact and R(^) is finite.

Proof. — We will show f^ is quasi-unipotent. By passing to a power, we may
assume R(/) consists of fixed points. Then [14] shows that there is a filtration {MJ
for Q(/)=R(/). ^

By Proposition 2, we need only show lim sup - log J^/^^vol-^o as B-^oo,n Jv(n)
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ENTROPY, LINEARITY AND CHAIN-RECURRENCE 209

where i is fixed and V(7^)==/BM,—/~(n+B)M,_.l. Given 8>o, choose s as in the
Local G1 Volume Lemma (see Appendix). Choose B large enough that V(o)CB^(s),
where A^=={^}.

Choose an inner product on TM that agrees with our Riemannian metric on E^
and satisfies ||D/|E^||<i, ||D/|E^|^I+£. Then for j^eB^c, n), we have

W^W) • . . . -J^(/)
^(i+VW)-...-J:;(/)

^{i+^r^+^ruwiw
-(i+^ni+^TmE;)
^(i+^ni+^j^)

where ^Q-^O as s-»o. Setting (i+'^^i+^oK1 '^2)6 an(^ Posing back to our
original Riemannian metric, we obtain

(*) ^(/^Co^+^m/^
for j^eB^s, n), where Co is independent ofy and n and where T]->O as c->o.

n

Since V(^)== .(1 V(o) CB^(£, n), we have

J^J;;(/w)^vol^Go(I+7])^(/n).volB,(c^)

^00(1+^.0(1+8)'

w^here we have used (*) and the Local G1 Volume Lemma (see Appendix). Taking
logarithmic growth rates, we obtain

lim sup ^3uy{fn)d^Tol^log{l+^{l + 8).

As 8->o, we have s->o, T]->O and B->+oo.
Thus proposition 2 does apply. Q.E.D.

We finally consider the case where M==N/r is a nilmanifold. Then any diffeo-
morphism of M is homotopic to one induced by a Lie group automorphism of N which
preserves F. The product of the latter with a translation by an element of N will here
be called an automorphism of N/F [n]. We now show:

Theorem 4. — If a is an automorphism of a compact nilmanifold N/F and if a induces
a quasi-unipotent map on Hi(N/F; R), then a is C00 close to a Morse-Smale diffeomorphism.

Proof, — We first perturb the translational part of a to be rational (relative to
the lattice F).

Using the standard form of [9, Theorem III. 12] for the map

a*: H^N/r^^H^N/I^Z),

457
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210 D A V I D F R I E D A N D M I C H A E L S H U B

we find a fibration n: N/F—^TT which induces a factor map a : T^T7' with
a*: H^T"; Z) -> H^T"; Z) irreducible. Since a* was quasi-unipotent, a* is also. But
by [14, p. 149], the eigenvalues of a* are roots of unity. Thus a* is periodic. Since
the translational part of a is rational, a is itself periodic and so admits an equivariant
Morse function /: M—^R with finite singularity set S.

The nilmanifolds n~l(S) are mapped amongst themselves by a so that each return
map is an automorphism with rational translation part. By [n, Lemma 2], these
lower dimensional automorphisms are also quasi-unipotent on H^. So, inducting on
dimension (N/F), we assume there are flows cp1, . . ., q^ on ^"^(S) so that, for any t>o,
!Q(cp^o . . . ocp^o (a [ Tr^S)) is finite, hyperbolic and has no cycles.

Extend the 9" to C00 flows on N/F tangent to the fibration TT. Introduce right
invariant Riemannian metrics on N/F and T', chosen so that TTC : T(N/F) -> T(T')
and T'TT : T*(T') -> T*(N/F) are adjoint, and let ^k+l and ^ be the gradient flows for

/OTT and/respectively. Then y^o . . . o(p}oa : N/F -> N/F factors over ^oa : T-^T'
but agrees with 9^0 . . . ocp^ooc on ^~1S ==T[:-l<^(^oa). Thus

^((p^o . . . o cp^o a) ==^(9^0 . . . ocp^oo^nTr^S

is finite, hyperbolic and has no cycles.
By the ̂ -Stability Theorem, any Kupka-Smale G00 approximation to (p^o... o 9^0 a

will be Morse-Smale [10]. Choosing t small gives the desired C00 Morse-Smale approxi-
mation to oc. Q^.E.D.

We obtain from Theorems 3 and 4 (and the discussion in between):

Corollary, — A diffeomorphism g : N/F->N/F of a compact nilmanifold is homotopic
to a diffeomorphism with finite R iff it is homotopic to a Morse-Smale diffeomorphism.

It would be interesting to understand the differences between isotopy classes of
diffeomorphisms with Morse-Smale and finite R representatives. Morse-Smale diffeo-
morphisms are virtual permutations on homology, whereas finite R diffeomorphisms
are quasi-unipotent [15]. It is known that the "virtual permutation" condition is
sufficient for isotopy to Morse-Smale, at least for M simply connected, dim M^6 [15].

We do not know in general (even for simply connected manifolds of dimension
bigger than or equal to six) whether a diffeomorphism/with R(/) finite can be approxi-
mated by a Morse-Smale diffeomorphism or even if / is isotopic or homotopic to a
Morse-Smale diffeomorphism.

M. Misiurewicz has constructed a two-dimensional Axiom A-No Cycles diffeo-
morphism with finite R for which the growth rate on i-forms is positive. Thus the
Gr Volume Question (r<oo) can have a negative answer even when Theorems 2 and 3 apply.

To conclude, we observe that by filtering P*-(/) as in [14] we may easily combine
Theorems 2 and 3 into our most general result:

Theorem 5. — Iff is a diffeomorphism of a compact manifold and R(/) is the union of
a closed hyperbolic set and a finite set, then the entropy conjecture holds for /.
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ENTROPY, LINEARITY AND CHAIN-RECURRENCE 211

APPENDIX

In this appendix we modify the Bowen-Ruelle G2 Volume Lemma to produce
the volume estimates used in the text.

We first assume that the diffeomorphism is only C1 and aim at a weaker estimate
(Bowen-Ruelle did not allow our (1+8^ factor). This lets us shorten their argument,
as follows.

The C1 Volume Lemma for Basic Sets. — Let A. be a basic set for an Axiom A diffeomorphismf.
Then., given 8>o, one may find s>o and Oi so that, for all xeA and n^o,

Vol B,(c, n) Jac(D/n : E^ Ey ̂ 0(1+8)-.

Proof. — There is a continuous splitting T^M.='E^@'E^ for xeA, of the tangent
bundle over A into unstable and stable bundles. By a result of Mather, a Riemannian
metric ( 5 ) may be chosen on M so that for xeA, y==(^,yjeT^M

11|IV(V,)1||^|||VJ|| and li|D,/(VJ|||^-^ |V,|1|

wheie o<X<i is independent of x and |||^||| =={w, w)112.
We shall use the modified inner product <( , )> on T^M, xeA, where

<y, w>==(^, 0+(^^J-

We will denote the stable and unstable seminorms (^, Vg)112 and (^, u^)112 by \\v\\s and
1 1 u [ [^ so that our modified inner product corresponds to the norm ( 1 1 v 11^ + 1 1 v \ \2^112 == 1 1 v [ |.
The letter x will denote an element of A.

For a subspace E'CT^M, E'(£)={yeE'(£) | ||y||^£}.
For ZQ small, we fix a continuous family of G1 charts near A.
For xeA, <p^: T^M(£o)->M can be chosen [4] to satisfy:

1) ^o)==x and D^: T^M-> T^M is the identity;
2) <p,(E^o))CW^ and
3) 9.(E^o))CW^

where W^ and W^ are the stable and unstable manifolds at x. The map F == <p^1 ofo (p^
represents y in these coordinates. Clearly F : TM(£()) -> TM preserves E" and E8.

Choose £i^£o an(^ (o£(o, i) so that, if LeHom(E^, E^) with yeT^M(ei) and
[ [ L [ [ < Q), one has

(*) Jac D,(F|.+graph L)^^Jac Do(F|EMJ.

Here 8 is the fixed constant mentioned in our hypothesis.
For £2^1 sufficiently small, there is a constant ye(o, i) such that

^M^^IIFJI.^Y-^MI,, and |IF.||^Y|H|,.
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212 D A V I D F R I E D A N D M I C H A E L S H U B

We may choose e^^ so that if v, weT^M(^) satisfy ||y—^||s5i^ 11^—^11^ one has

IIF.-FJL^HF.-FJL.

Hence if h: E^s) -> E^c) is G1, £^£3, and ||DA||^co then
{.EF(graphA)||H|^s}

is the graph of a G1 function r?(A) : E^(s) ->E^(£), called the graph transform of h
by F [7]. Clearly ||Dr^)||^co.

For £^£3 and ^eE^s), let
N^(s, n)=={yeT3;M y g = = w and HF^I^S for A==o, . . ., ^}.

By the properties of y, N^(£, ^)={yeT^M| Vg==w and ||F^||^s}.
Thus FnN^(£5 72) == graph g, where g : E^(s) -> E^^(£) is the graph transform

of the constant function w : E^(s) -> E^(s) by F". By the preceding paragraph, g is G1

with 1 1 D^ | |^(x). Computing areas relative to the Riemannian metric induced by < , >,
we obtain area (graph ̂ )^K, where K depends only on co and c.

We may apply (*) n times to obtain

JacD^I.+E^^.^.JacDoCF-IE;), for .eNJc^).

Thus area (graph g ) = \ Jac D^F^ | z; + E^)rf area
</N»,(£,n)

^-^——n^W1' Ea.(areaN,(s^)).

So (areaNJs^))^: ^^^
JacD^FTO

Clearly D,(s, 7z) =={^T,M | ||F^||^c, A = o , . . . , n } C U NJs^).
wEE^a;)

Thus vol ^^(c, ^z)<^ (area N^(s, 72)), so
JE^)Ei(a;)

si^areaE^K^i+S^
vol D^(£, 72)^

JacDo(Fn |EMJ

By passing back to the Riemannian metric on M, we change our distances, volumes
and Jacobians only by positive factors bounded away from o and oo, and obtain the
desired estimate. Q.E.D.

One can amend the preceding proof to obtain a lower bound (G^+S)^"1 for
vol B^(s, n) .Jac(Iyn : E^ —^ E^). Since we don't use this lower bound, we leave the
details to the reader.

Of course the Volume Lemma just proved applies to the trivial basic set composed
of one hyperbolic fixed point. We now adapt this argument to non-hyperbolic fixed
points.
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ENTROPY, LINEARITY AND CHAIN-RECURRENCE 213

The Local C1 Volume Lemma, — If f: (R", o) -> (R", o) is a C1 diffeomorphism, then
for any 8>o there are £>o and Oi such that for any n^oVOIB-^0^'-

Proof. — The idea, as in the preceding argument, is to use the graph transform
to estimate the area of slices of Bo(s, n) parallel to the unstable manifold.

The tangent space at o splits into the direct sum R^E^QE68, where E" is the
generalized eigenspace of eigenvalues of modulus greater than one and E^ is the
generalized eigenspace of eigenvalues of modulus less than or equal to one for Do/. We
may fix coordinates so that ECS^Wos(£o)=the local center-stable manifold at o, and
E^DW^s^^he local unstable manifold at o (see [7] for details about these manifolds).

We choose an inner product on J^ so that E" and E68 are perpendicular and
so that IID^/-1^)!]^^! and ^(f}^ == (i<X.

Choose (0(=(o, i) and £i<£o so ^at if LeHon^E^, E'8) with | L|[^CL) and
if |H|^, then

(*) JacD,(/|.+graphL)^^JacDo(/ E^).

For ]H|<^2^i, we have ||FJL^i|HL ^d | |FJ|cs<^il ML. where i<^<\.
We choose Cs^Sg so ^at when ||y||, H ^ H ^ S S satisfy | |^—^| |cs^^| |^—^|L

then | |Fy—Fw| |^<co| |Fy—F^|]^. This is possible because [JL<A.
For s<£3, we may apply graph transform to a G1 function h: E^s) -> E^c)

with [ [DA[ |<Q). Unfortunately F^k) : E^e) -> E'^^i.s) may no longer take values
in E^s). We therefore consider the truncated graph transform

{yE/(graphA)[ \\v\^<_z and |HL<s},

which is the graph of a function r.'(A) from a closed subset of E^c) into E^s). If h
is defined on a closed subset of E"(e) and extends to a C1 function h* with ULip^H^co
on domain(A) Cint (domain (A*)), then r^'(A) will satisfy the same properties. We may
say that h and F;(A) are C1 with |]Lip(A)||^co and ]|Lip(r;(A))||^G).

By applying this truncated graph transform n times to a constant function
w: E"(£) -> E^c) we obtain graph ^, where domain {g) C E^c), g is C1 and | [ Lip(^) | |^co.
Clearly

/-(graph ^)=N,(8,^)
={.|^^,|]F^||^£ and HF^H.^S for k=o,...,n}.

Also Bo(c^)C U^ NJs,7z).w e £"(8)
Just as in the conclusion of the preceding proof, we may estimate the area of N^,(£, n)

from above (using the change of variables formula, n applications of (*), and a bound
on area(graph g)) and Fubini's Theorem yields the desired estimate of vol Bo(£, 72).

Q..E.D.
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