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Axiom A Actions 

Charles Pugh* (Berkeley) and Michael Shub** (New York) 

w 1. Introduction 

In this paper we generalize (2-stability theory to actions by Lie groups other 
than ~ and IR. Our results include [15, 17]. They are in answer to the suggestion 
of Steve Smale in [ t6]  that differentiable dynamical systems be investigated for 
smooth group actions. 

Main Theorem. An Axiom A group action with no cycles is g2-stable. 

See w for definitions of these terms and for more introductory discussion. We 
are grateful for the help given us by Moe Hirsch, John Stallings, and Joe Wolf. 
Except for the end theory in w this paper is an application of the invariant 
manifold techniques developed in our work with Moe Hirsch, which we refer to 
bibliographically as HPS. 

w 2. Lie Group Dynamics 

In this section we lift some basic ideas of flow theory to action theory. An 
action of a group G on a set M is a homomorphism ~p from G into the group of 
bijections of M. The action is of class C r, r>0 ,  iffG, M, and the evaluation map 
(g, x) ~--*~p(g)(x) are of class C r. Since q~(g-1)=q)(g)-l, the bijections ~p(g) are 
homeomorphisms if r=O and C r diffeomorphisms if r > 1. Whenever convenient, 
we write ~p(g, x) for q~(g)(x). 

The set of C r actions r>0 ,  of G on a compact M, Ar(G, M), has a natural C" 
topology (under which A'(G, M) is a Baire space) defined as follows. Each C" 
action is a certain kind of continuous map G-~  Diff'(M), so we may consider 
A'(G, M ) c  C~ DifP'(M)). The latter space has the natural compact open topol- 
ogy and thereby endows A'(G, M) with a natural C" topology by restriction. 
See [12]. Convergence q~ ,~q~  in A'(G, M) means: for each compact set S c G ,  
~p,(g) ~ q~(g) in the C" sense uniformly over geS. 

Although this topology on A'(G, M) is the only natural one, it leads nowhere 
unless we restrict G somewhat. See w for an example where G is too general. 
From now on, standing hypotheses are: G is a Lie group with a compact set of 
generators, M is a compact, smooth, boundaryless, connected manifold, and the 
actions discussed are at least of class C ~ When G is discrete, "compact"  means 
"finite" and then we are assuming G is finitely generated. 

Let ~p be a G-action M. The q~-orbit of pEM is O(p) [or Op] = {gp: geG}. 
[Following the standard practice, we often think of geG as the diffeomorphism 
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p(g)~Difff(M).] A point x 6 M  is nonwandering for p iff for each neighborhood 
U of x in M and each compact set S c G ,  there exists g ~ G - S  with gUc~ U:4=0. 
The set of nonwandering points of p is denoted by fJ~. Clearly, ~ is p - inva r i an t -  
i.e. consists of whole o-orbits. Also t?~0 is a closed subset of M. If G is compact 
then Q~ is empty and vice versa. The boundary of an orbit O(p) is the set of all 
limit points of sequences g.p where {g,} is a sequence in G having no cluster point 
in G. Clearly t?O(p) = •O(q) if O(p) = O(q). 

(2.1) Proposition. The boundary of each orbit lies in gJ~. 

Proof Let xEPO(p) and let {g,} be a clusterless sequence in G with g,p--~x. 
Let S be a given compact subset of G and U a given neighborhood of x in M. 
Fix k large with x '=gkPeU.  Clearly g, g k l ( X ' ) ~ , X .  Since {g,} has no cluster 
point in G, neither does {g, gk-1}. Hence, for large n, g = g ,  gk ~ e G - - S  and gx ' e  U, 
i.e. gUc~ U =I=~. Hence x ~ .  

Next we discuss when two actions p, 0: G ~ Diff(M) should be called equiv- 
alent. We say p and 0 are parametrically conjugate iff there is a homeomorphism 
h: M ~ M such that 

M ~(g) , M 

M 0(g)~ M 

commutes for all geG. This says O ( g ) - h o p ( g ) o h  -1. When G=IR, such a con- 
jugacy preserves the parametrization of the trajectories, hence the name. 

A homeomorphism h: M - - , M  which sends each o-orbit  onto a 0-orbit is an 
orbit conjugacy between p and 0; the orbit pictures (or "phase portraits") of p 
and 0 are the same, although the parameterizations of corresponding orbits may 
be different. The equivalence relation of orbit-conjugacy is well adapted to 
dynamical systems; parametric-conjugacy implies orbit-conjugacy (clearly) but is 
too restrictive. We write p ~ 0 to denote orbit conjugacy. 

A G-action p is structurally stable iff p ~ 0  for each G-action 0 near p;  p is 
~2-stable iff p l f J ~ 0 l Q  0 for each 0 near p. 

Palais [ 13] proves: 

Theorem. I f  G is a compact Lie group then any p action is parametrically 
structurally stable. 

That is, any C ~ perturbation of p is actually parametrically conjugate to p. 
For this reason our interest is non-compact G with emphasis on the ultimate 
behavior of the orbits. 

As for ~ and IR actions, hyperbolicity is a crucial idea in studying structural 
and ~?-stability. One version of this is presented in [6]. 

Definition. Suppose G is a connected Lie group and p is a C ~ locally free 
G-action such that some f in G is normally hyperbolic at the orbit foliation. 
Then p is called an Anosov Action and f is called an Anosov element. See [HPS]  
and w 3 for the definition of"normal ly  hyperbolic." 

(2.2) Theorem. I f  ~o is an Anosov Action then p is structurally stable. 
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Proof Local freeness of (O implies the orbits of (O foliate M. Clearly the same 
is true for any (O' near (O. Let Y be the (0-orbit foliation. Since (O is C a so is ~.  
Let foeG be an Anosov element and let f=(o(fo) .  By [HPS, (7.2)], ( f Y )  is 
plaque expansive. Let (o ' (Jo)=f '  for (O' near (O. By [HPS (7.1)], ( f  ~ )  is struc- 
turally stable and so there is a canonical leaf conjugacy hi.: (f~,~)--,(f',50') 
where 50' is an J" invariant lamination with T50' near T~. We claim 50' = the  
(o'-orbit foliation. Since Tf  leaves both T~'  and T50' invariant and since both 
are near T~ ~, [HPS (2.12)] implies T~- '=  T50'. Since o~' is C 1 this implies that 
lamina of 5 ~ are contained in (o'-orbits. Since G is connected and lamina are 
Riemann-complete, the lamina coincide with the (o'-orbits and (2.2) is proved. 

Remark. In [6] a stronger result is given: if (O is C 2 then the (o-orbit foliation 
is structurally stable "as a foliation." Besides, it is enough to assume the Anosov 
element lies in connected component of the identity, G 1, or that GIG 1 is finite. 

Although (2.2) is elegant, it does not include the case of an Anosov diffeo- 
morphism f, considered as a ]g-action, n ~-,f". For :g is too disconnected. Also, 
the assumption that (O be locally free prohibits s ingulari t ies-for  iN-actions no 
fixed points are allowed. Here are two definitions answering these objections. 
(O is a G-action on M. 

Definition. (O is a hyperbolic G-action if the (o-orbits foliate M and some f in 
the center of G is normally hyperbolic to the (o-orbit foliation of M. 

Definition. (O is an Axiom A G-action iff the (o-orbits laminate f~  and 

(a) Some f in the center of G is normally hyperbolic to the orbit lamination 
of f2~. 

(b) The compact orbits are dense in f2 .  

Such an f is called a hyperbolic element. Axiom A(a) could be called "f~-hyper- 
bolicity of (O" and hyperbolicity of (O could consistently be called "M-hyperbolicity 
of (O'. Even for N-actions it is not known whether A(a) ~ A(b). 

Remark 1. Centralness of f is a big assumption. But hyperbolic G-actions 
include the N-action of an Anosov diffeomorphism, the iN-action of an Anosov 
flow, and indeed all Anosov actions by Abelian groups. We need f in the center 
of G to prove structural stability, see (3.1). If G is not connected and centralness 
o f f  is dropped, structural stability fails. See w 

Remark 2. A lamination is a foliation with less smoothness assumed. See 
[HPS]  and w 

Remark 3. If (O is a hyperbolic G-action then it satisfies Axiom A(a). If C2=M 
and (O satisfies Axiom A(a) then (O is hyperbolic. (3.10) establishes structural 
stability for Axiom A(a) G-actions with C2= M. If G is connected, this was proved 
already in more generality in (2.2). 

Remark 4. As a natural specialization of Axiom A, one might say (O is a Morse- 
Smale Action iff (O is Axiom A and f2o is finitely many orbits. When G = Z or IR 
this agrees with the standard notion. For G=lR  2, however, there is another 
definition of Morse-Smale action which has been investigated largely by Cezar 
Camacho [1, 2]. He does insist f 2  be a finite union of orbits but only requires 
normal hyperbolicity to the compact orbits. Non compact orbits in f2 are per- 
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mitted which connect n-basic sets of different splitting-types. It remains to be 
seen what turns out to be the most fruitful definition of Morse-Smale a c t i o n -  
or Axiom A action. 

Here is a basic result of Smale's Theory [17] generalized to actions. 

(2.3) F2-Decomposition Theorem. Let ~o be a C 1 G-action satisfying Axiom A. 
Then there is a unique decomposition O r = Q1 • " " u O k such that the O i are compact, 
disjoint, q>invariant, and indecomposable. On Oi, q~ is topologically transitive. 

The proof of (2.3) occurs after (3.3) in w The Oj are basic sets for ~0. "In- 
decomposable" means O i cannot be divided into two disjoint compact nonempty 
q~-invariant subsets. Since M is connected, O is indecomposabte if M = 9. "Topo- 
logical transitivity" of q) on O+ means that any two relatively open, nonempty, 
(p-invariant subsets of O~ meet. 

To a hyperbolicelement f are associated stable manifold structures by [HPS].  
Through each orbit O(x) in O~, there pass unique f-invariant manifolds, WU(x) 
and W+(x), transversally intersecting in O(x). The stable manifold WS(x) is 
f-invariantly fibered by strong stable manifolds W'~+(x'), x'~O(x), consisting of 
points sharply asymptotic with x' under positive iteration by f Similarly the 
unstable manifold. Centralness of f and these characterizations imply that the 
strong stable and strong unstable fibrations are invariant by the entire G-action, 
not just by f For if g~G and y~WSSx then f "g (y )=g f" (y )  is equally sharply 
asymptotic with f "  g ( x ) = g f " x  as f " y  is with f " x  when n--, or. Similarly for W"". 
Since WS(x) consists of the fibers WSS(x') with x' in the invariant set O(x), WS(x) 
is ~p-invariant. Likewise W"(x). 

There is a partial order on the basic sets of an Axiom A action 

OI<O j iff W"(x)r~WS(y)r  forsome x e O  i, yeOj .  

A cycle is a sequence Oi~ < . . . < O i ,  = Oil, n > 2. A self cycle occurs when n = 2. 
In (4.14) we show that the existence of cycles is independent of which hyperbolic 
element f we choose in G. 

Our Main T h e o r e m - t h a t  Axiom A plus no cycles implies n-stability for 
G-ac t ions -has  already been proved when G=2g [17], G=IR [15], or O = M  
and G is connected [6] or (2.2). It turns out, to our surprise, that all Axiom A 
actions are "essentially" one of these types. Precisely, there is an alternative: for 
Axiom A actions either 

O o = M  
or 

G is hyperbolic. 

A group G is hyperbolic if it has two ends and they are invariant under right- 
multiplication by all elements of G. See w for a discussion of ends and (4.12) for a 
proof of this alternative. 

If G is two-ended and is connected then G is isomorphic to the direct product 
of a compact Lie group K and IR. This was conjectured by Zippin [20] and proved 
extemporaneously for us by Joe Wolf. 1 Thus, when G is connected, the new 

i Afterwards, we find that this result is due to Freudenthal. 
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part of our Main Theorem amounts to Q-stability for flows equivariant by a 
compact group action and is an extension of Mike Field's thesis [4] on equi- 
variant dynamical systems. If G is two-ended, is not connected, and supports the 
Axiom A action ~0 then we thought that G was isomorphic to K x 7Z, K being a 
compact group. (When G is discrete and two-ended it does contain a copy of 7Z. 
having finite i ndex- see  (4.6) and [5, 6.14, 10, Satz V].) John Stallings showed us 
an example of a group G casting doubt on this conjecture and Moe Hirsch showed 
us how to make G act on a n  M 3 obeying Axiom A, f2~o 4= M, and having no cycles. 
See w But no m a t t e r - o u r  proof of Q-stability is independent of such factori- 
zations. G = K x IR, G = K x Z. 

w 3. Hyperbolic Sets for Actions 

In this section we apply [H PSI to the hyperbolic element f of our Axiom A 
action. As in the flow case, much of the stability theory for f2 works equally for a 
hyperbolic set A, so 

Definition. A C 1 G-action q~ is hyperbolic at A c M iff the connected components 
S~, x~M,  of the q~-orbits laminate A and G has some f in its center so that f is 
normally hyperbolic to the orbit lamination of A. Such an f is a hyperbolic element 
for ~o at A and the lamination ~o is called the (p-orbit lamination. 

Recall from [HPS]  that a lamination 5fl of A is a continuous foliation of A 
with smooth leaves 2~'~ and continuous leaf tangent bundle T~ .  (That is, x ~-* T~(SYx) 
is a continuous map A ~ Grass(TM).) The diffeomorphism f is normally hyper- 
bolic at Lf iff it permutes the laminas (=  leaves of Lf) and T A M splits Tf invariantly 

TAM=N~OT~LPON s, TAf = N ~ f ~ ) ~ f ~ ) N S f  
with 

infm(N~ f ) >  1 sup I[N] fl] < 1 
A A 

in fm(Nff f )  II~x f l [ - '  > 1 sup IlN2fll m(SCx f )  -x < 1. 
A A 

By m(A) we mean the "minimum norm" or "conorm" of the linear transformation 
A: m(A)=l in f l tAx  ]. 

The existence of such a hyperbolic element f already puts certain limitations 
on G. Either all of M is a single orbit (i.e. M is a homogeneous space) or else {j"} 
has no cluster points in G. For if N" is nonzero then m(NUf")-- ,~ as n - ~  and 
liNer"f[-~0 as n ~  - o o ,  whereas for each g6G, the tangent to ~0(g) has bounded 
norm and conorm. Likewise if NS4:0 then {f'} has no cluster point in G. On the 
other hand if N u = 0 = N  ~ then TxM= T,,O x for all x~A.  Since M is connected, 
this implies M is a single orbit. Hence: either G contains a center with a copy of Z 
embedded in it or else M is a single orbit. The latter sort of action is always structur- 
ally stable. (This is easy to check and has nothing to do with Axiom A) and we 
can ignore it in all that follows. 

For an f normally hyperbolic at the lamination Y of A there exists a natural 
stable manifold theory from [ H P S ] - e v e n  if f is not part of an action. For some 
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> 0, each p e A has a strong stable manifold W~(p) characterized by 

W~(p)= {xem:  dM(ff x, f f  p)<e for all n > 0  and dM(ff x , f f  p)-->O, 
as n ~ oo, faster than is possible along LPp}. 

Moreover, W~'*(p)is C a, is tangent to N~, andfW~S'(p)c W~S(fp). Taking the union 
of W~(x) over all xeL,~ gives the e-stable manifold of the lamina ~p,  W~(L, ep). 
This W~(~9~ is a C ~ immersed manifold, but it has a boundary and may have 
self intersections or branching. See [HPS w167 6, 7]. 

To get rid of the boundary, we can globalize by iteration 

WS~(x) = U f -" W ~ ( f f  x) 
n>>_O 

w~(s.): U w~~(x) . 
x ~ ,  

From the characterization of strong stable manifolds it is clear that any W~5(x~), 
W~(x2) are equal or disjoint. 

In general, branching of W~(2'p) seems possible. But when ~o is hyperbolic 
at A then centralness o f f  and the characterization of W~(p) imply that 

g w~(p) = w - ( g p )  

for all geG and all peA. Thus, either WS(L,~ equals W ' ( ~ )  or they are disjoint. 
Likewise W~(SDp) intersects itself only in relatively open sets. Since WS(LPp) has 
no boundary, this means that WS(L,~ is injectively immersed. 

To make this clearer, consider an Anosov flow, say ~bt, on M 3. Let 7 be a closed 
orbit of ~k and W~7 its local stable manifold, a cylinder with boundary. Consider 
one of the other orbits, say Yl, on W'7. Clearly, W~71 = W'~. Although W'~(pi)= 
WS'(p'a) for many distinct Pa, P'I e~a, it is still true that W'~y is injectively immersed. 
What is not true is that the map sending the abstract union U w"(p~) onto 
W~(T1) is injective, p,~, 

Of course, replacing f by f - i ,  we get the corresponding unstable manifold 
theory. 

Definition. L e t fbe  normally hyperbolic to the lamination 2/' of A. Then (J; A) 
has local product structure iff 

W~"(A) c~ W~(A) = A 

for some e>0. If in addition, each lamina 5~ meets each WuOy and W~Oy in 
relatively open subsets of 5~ then we say ( f  L~ ~ has local product structure. 

(3.1) Local Product Structure Theorem. I f  f is a hyperbolic element of an Axiom A 
action q~ then (f, 2~') has local product structure when 2P is the o-orbit lamination 
of  O~. 

Several preliminaries are required to prove this theorem. First we prove a 
simple 

(3.2) Intersection Lemma. Let q~ be hyperbolic" at A with hyperbolic element f 
Let 01, 0 2 be ~o orbits in A. l f  x is a point of transverse intersection between W" 01 
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and Ws O2 then x is also a point of transverse intersection between the strong unstable 
fiber through x and W ~ 02 . 

Proof Byf-invariance, it suffices to prove this when ,c6 W~"O1 and e is small. 
Let xE VC~""(p), pEO 1 . Let G 1 be the connected component  of 1, the identity, in G. 
Each X~T~ G generates a 1-parameter subgroup in G 1, exp X, where exp is the 
exponential of G. Each e x p X  generates a C 1 flow (t, z)w-~p(exp(tX), z). By van 
Kampen 's  Uniqueness Theorem [11], 

(exp(tX),p)-p  (eXpttx)'p)=~ 

Thus, the restricted tangent-map TO: T~ G x p ~ T p O  1 is surjective and so the 
local isotropy subgroup Iv= {geGl:  r p)=p} is a C 1 submanifold of G by the 
Implicit Function Theorem. 

Let D be a small smooth disc in G transversally meeting I v at t. Then q~]D x p 
is a diffeomorphism to a neighborhood of p in O 1 and, since O I meet W""(p) 
transversally at p, ~o(D, x) meets W""(p) transversally at x, x near p. Since 
~p(D,x)~O(x), O(x) also meets W""(p) transversally at x. Since W~Oz meets 
W"O 1 transversally at x, T~(W~Oz) contains a complement of Tx(W"01). Hence, 
T~M is spanned by Tx(WSO2) plus T~O(x) plus Tx(W""(p)), proving (3.2). 

The next lemma is the key to many problems. 

(3.3) Cloud Lemma. Let ~p be hyperbolic at A with hyperbolic element f Let 
01, 02 be compact q~-orbits in A. I f  WuOx, and WsO2 have at least one point of 
transverse intersection then W ~ 01 ~ W" 0 2 ~ ~-~qT" 

Proof See Fig. 1. Let ysW""(pz)c~W~(p'l) where p'le01, p'2EO2. Let 
x e W""(pl) ~ WS~(p2 ) when Ple  01 , P2 e 0 2, and W" O 1 intersects W 2 02 transver- 
sally at x. By the Intersection Lemma, W""(pl) intersects W~O2 transversally at x. 
Let U be any neighborhood of y in M and let S be a compact  set in G. We must 
show that g U n  U+g  for some g e G - S .  

Since O 1 and 0 z are compact  there is a large compact subset Q c G  such that 

Qpl =01 Qp2=02 

for all piE01, pz~02. By Qz we mean {qz: qeQ}. Then choose q, eQ so that 

f ,  (P'~) = Pl where f ,  = q,f".  
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Since {~0(g): geQ} is a compact subset of Diff(M) it is clear that f ,  [y)-~pl 
as n-+oo. By the usual 2-1emma [14] plus the q>invariance of WU01, WsO~, 
plus the commutativity o f p  and g, it follows that f ,  U contains a disc D, nearly 
equal to much of W""pl. In particular, for large n, D, intersects W~O2 near x 
at say x, ef.  Uc~ WaSS(p2n), for some x,-+x, pzn--~p2, and fixed (large) a. 

Again, choose q',EQ such that 

q',f"(p2,)=p2 . 

The 2-temma applied again produces discs D', in q'. of"of,(U) nearly equal to much 
of W""(p'z). Thus, 

g, Uc~U+O 
t I 2 n  when g , = g , j ~ q , f " = q . q , f  . Since {f"} has no cluster point in G and since the 

q,, q', all lie in a Q which is compact, {g,} has no cluster point in G, so most of the 
g. lie outside the given compact set S. This proves that g U n  U4=0 for some 
g e G - S  and completes the proof of the Cloud Lemma. 

Proof of the Local Product Structure Theorem (3.1). By assumption (p is an Axiom 
A action, so 9 is a hyperbolic set for q). Since the splitting T~+ M = N" |  TSfQ N + 
is continuous, it is clear that 

Wy"(p) a~ ~+(Oq) " 0  

W~""(q) tfi W~*(0,) 4:0 

for all nearby p, q in Q•. By Axiom A, the compact orbits are dense in 9~ and so p, 
q can be approximated by p', q' in 9~o with 0p, 0q compact. By the persistance of 
transversality, the corresponding intersections W2" ~ (p') c~ W~ (0q,) and Wz"~" (q') c~ 
W~ (0p,) continue to be nonempty and near the ones for p, q. By the Cloud Lemma, 
the former are in 9~0. Since 9~ is a closed subset of M, so are the latter. This 
proves that (f,, 9) has local product structure. As we observed in w 2, stable and 
unstable manifolds of orbits are 9-invariant. Thus, the orbit lamination of Q 
is subordinate to # " ,  ~qr~ and so (f, s also has local product structure. 

As a consequence of local product structure we get 9-decomposition, just as 
for flows. 

Proof of the Q-Decomposition Theorem (2.3). Let q~ be an Axiom A G-action 
on M with hyperbolic element f Let e be small enough so (f, 9~0 ) has 2e-local 
product structure. Let p~9o.  Consider any neighborhoods V, V' ofp having diam- 
eter < e. Then 

Sat (Vc~ 9) = Sat (V' m Q) (,) 

where Sat(X) = Closure(~g~G gX)is thesaturate of the set X. To verify (,)it  suffices 
to prove V'c~9cSat(Vc~9).  If zeV'c~9 then AxiomA says p and z can be 
approximated by p' and z' such that O(p') and O(z') are compact and p'e Vc~ 9. 
By 2e-local product structure, W~(p') tfi W~,(O(z')) 4=0 + W~U(z ') tfi W2~(O(p')) and 
so z'eSat(Vc~Q) by the Cloud Lemma proof. Since z' is arbitrarily near z and 
Sat(Vc~ 9) is closed, z is also in Sat(Vc~ 9) completing the proof of (,). 

Let 9(p)= Sat(Vc~ f2) for any neighborhood V of p having diameter < e. Then 
9(p) is compact, non-empty, and ~o-invariant. From (,) we see that either f2(p)= 
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f2(p') or ~ ( p ) n  f2(p')= 0, P, p 'e f2. In this sense the family {Q(p)}p~e is a nonover- 
lapping covering of (~ by neighborhoods, f2 being compact, finitely many of 
the g2(p)'s cover (2 and they form the f2-decomposition (2~--f21 w.. .  w ~?m- 

Let V, V' be open neighborhoods of p, p'ef2 i. Then f2(p)=f2(p')=~2i proves 
that g(Vcaf2i)n(V'c~f2~)+O for some geG, i.e. ~o[f2~ is topologically transitive. 
Clearly, topological transitivity implies indecomposability. 

Uniqueness of Q =  Q~ u- - .  u ~,,, assuming the ~2~ are q~-invariant, compact, 
disjoint, and indecomposable, is immediate: if E2' t u . . . w ( 2 '  is another E2-de- 
composition then so is (2=Ui,if2ic~f2), a contradiction to indecomposability 
unless the Qi are the f2). 

Here is another qualitative result about E2 for an Axiom A action. 

(3.4) Theorem. An Axiom A action has no self cycles. 

Proof Suppose f2~ has a self cycle, i.e. suppose ze W"f2~ c~ W+f2i for some point 
z of M - f2 i. Then z e W""(p) n W ss (p') for some p, p' e ~ .  Let U be a given neighbor- 
hood of z and S a given compact subset of G. By topological transitivity on f2~, 
any small neighborhood of p meets a q~-orbit in ~2~ passing arbitrarily near p'. 
By Axiom A it can be approximated by a compact orbit O passing arbitrarily 
near p and p'. In particular, Uc~ W"O and Uc~ WsO will be nonempty. Fix such 
an O and choose a compact set Q c G such that Qx = O for all xeO. By the 2-1emma 
as in the proof of the Cloud Lemma, there is an element f ,  in G of the form 

g, =+[~ o q, o.f~ = f 2 .  o q, 

such that g, U c~ U+O, q, eQ, and n is arbitrarily large. Since {f"} has no cluster 
point in G, neigher does {g,}. Thus most g, lie outside S and z is proved to be 
nonwandering, i.e. ze~2; for some j. I f j@i then - ~2j being compact, invariant, 
and disjoint from f2~ - f "z  could not tend to f2~. Thus zef2i, a contradiction. 
This proves (3.4). 

The next theorem is the intent of the remark after (7.4) of [8]. According to 
(3.1), it applies to f2 o =A when 9 is an Axiom A action. 

(3.5) Theorem. Let the G-action p be hyperbolic at A with hyperbolic element f .  
Suppose ( f  s has local product structure where ~ is the p-orbit lamination of A. 
Then there exists a neighborhood U of A such that any point x whose forward 

f-iterates remain in V lies on W~(x') for some x' e A. Similarly for backward f-iterates 
and W"". 

Proof This is a special case of [HPS, (7A.1)]. 

(3.6) Corollary. I f  r is an Axiom A G-action with hyperbolic element f and ~2 
decomposition f2= QI u . . .  u ~2,, then r meets at least two ~2[s, x e M -  ~2. 

Proof (?O c~2 by (2.1). If 00~c  f2~ for some single i then f " x - ~ 2  i as n-~ _ oo. 
By (3.5), x e  W""(x') n WS~(x '') for some x', x "e  Q~, i.e. ~ has a self cycle, contradict- 
ing (3.4). 

Finally, we discuss perturbations of q~ when q~ is a C a G-action with hyperbolic 
set A and LP is the q>orbit lamination of A. The perturbation theory of [HPS]  
requires that (f, 5r be "plaque expansive". A lamination L~ of A is called C a- 
smoothable iff2~ ~ extends to a C t local foliation near each peA. The local foliations 
need not be coherent. 
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(3.7) Proposition. I f  (p is a G-action and the (p-orbits laminate a compact set A 
then this lamination of  A is CX-smoothable. 

Proof  The construction in the proof (3.2) gives these C ~ local foliations. 

(3.8) Corollary. I f  (p is an Axiom AG-action with hyperbolic element f and if 5O 
is the (p-orbit lamination off2+ then (f, 5O) is plaque expansive. 

Proof  By (3.7), 5O is C 1 smoothable. By (7.4(i)) of [HPS], ( f  5O) is plaque 
expansive. 

The next result says that the canonical perturbation theory of [HPS, w 7] 
is natural respecting G-actions. 

(3.9) Persistence Theorem. Suppose <4? is a G-action with hyperbolic .set A ~ M. 
Then (p has a neighborhood U in A 1 (G, M) such that to each (p' G U there corresponds 
an orbit conjugacy 

h,,: ((p, A) -+ ((p', A') 

where A' is a canonically determined (p'-invariant set near A. Also, ho, +inclusion 
as (p ' --> (p . 

Proof  Let 5O be the <?-orbit lamination of A. LetfoGG be a hyperbolic element 
for (p and let f=(p(fo),f '=(p'(f0 ). By (3.8), ~ 5O) is plaque expansive and clearlyf '  
is a C 1 perturbation o f f  By [HPS, (7.4(ii))] there is a canonical f '-invariant 
lamination 5O' near 5 ~ and a canonical leaf conjugacy h I, : (f, 5O) -~ ( f ;  ~ ' )  near the 
inclusion A~-,M. We must show 5O' is the <?'-orbit lamination of A '=  h I,A and 
that h I, carries (p-orbits to (p'-orbits. 

hf, is characterized as follows, using a fixed smooth bundle t/in TAM, comple- 
mentary to TSO, and a fixed small plaquation ~ of 5O. Given x e A ,  hi,(x) is the 
unique point of exp t/(e) whose J' orbit can be closely shadowed by an.f-pseudo- 
orbit which respects 5 ~. 

Let Wbe a seed of G, i.e. a compact set of generators with W -1 = W. Let {x,,} 
be an ]:pseudo-orbit through x which respects ~ and closely shadows {f"(x')}, 
x ' = h l ,  x. Thus x,+: =q)(g , , fx , ) ,  g, is near 1, and Xo=X. Let gGW. Then g',g" 
can be found near g such that 

z' = (p'(g', x')+exp+<=, x)q(e) x' =hf ,  ~ 

z" = (p'(g, x')e exp+<~,,, =)t/(e). 

To find g', g" reconsider the proof of (3.2): let D be a smooth disc in G transverse 
at 1 to the isotropy subgroup of x and regard the map 

D x eXPxq(e)-->M 

(d, z)-~ (p(gd, z) 

which is a local diffeomorphism to a neighborhood of (p(g, x) in M. Since it sends 
O x 0  to a neighborhood of (p(g,x) in 5s ), since (p'-(p, and since h l , - i n -  
clusion we can find d, d'+D such that g' =gd,  g" =gd"  work. 

We claim that {(p(g, x,)} and {(p(g", x,)} are f-pseudo-orbits which respect N. 
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By centralness of./o we can write 

(P(g,x,+ l)=qo(g, qo(g,,f x,)) 
=qo(g g .g-  l fog, X,) 
=qo(g g, g-  ~, f q~(g, x,)). 

When the g, are very near 1, the gg,  g-1 are near 1 and so {(p(g, x,)} is an f-pseudo- 
orbit which respects :A Since g" is near g, and is thus also confined to a compact  
set, tile same is true of {q)(g", x,)}. 

Also we claim that {tp(g, x,)} closely shadows {f'"(z')} while {q~(g", x,)} closely 
shadows {f'"(z")}. Again by centralness of/o 

= f L  x')) = f '"(x ' ) ) .  

Since ~o'- (p, x, is close tof'"(x'), g' is near g, and g is confined to compact  set of G, 
this ~0'(g',f'"(x')) is near q)(g, x,). Similarly 

t n X t  ! t n  
f ' " (z")  = (p (f~, (p ' (g , ) )  = (p (g, f x') 

is near (p(g",x,). Hence the pseudo-orbits do closely shadow {f'"(z')} and 
{f'"(z")}. By the characterization of h I, we conclude hi,(q)(g, x))= z', hi,(~0 (g", x)) 
=z".  That is, for any gc  W a n d  all x e A  

(1) h I, (q) (g, x)) = tp' (g', h I , x) 
for some g', g" near g. 

(2) h,, (~o (g", x)) : q)' (g, h I, x) 

Next we extend these equations to all geG. We claim that for any geG and 
all xEd  

(3) h I, (tp (g, x)) = (p' (g', h I, x) for some g', g" in the same connected 

(4) hi,(q0(g", x))=tp'(g, hi, x) component  of G as g. 

By (1), (2) it suffices to prove (3), (4) for g of the form gl g2 when (3), (4) are known 
for gl and g2. Then 

hi, (q~ (g, g2, x)) = h I, (~0 (gl, (P (g2, x))) 

= (p'(g',, hf, q~(g2, X)) 
=  o'(gi hi, x) 

t t t ! for some gl,  g2 in the same components  of G as g~, g2. The product g~ g2 lies in the 
same component  as g~ g2, since G a, the component  of 1, is a normal subgroup 
of G. This proves (3) for g = g~ g2. The proof of (4) is similar: 

q/(g, gz, hf, x)=q)'(gl, (P'(g2, hi, x)) 

= (P' (gl, hi, (P (g2, x)) 

= h I, (gi', x))) 
= h I, (qo (g'[ gj, x)) 

for some g'l', g2 in lhc same component  of G as gl, g2. The product g~' g2 lies in the 
same component  as gt g2, proving (4) for g=g~ g2. 
2 lnven l iones  math . ,  Vol. 29 
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From (4) we deduce that each 5e~ is invariant by ~p'(g, ), geG~. For  

~p' (g, x') = ~p' (g, h f, (x)) = h f, (4o (g", x)) = h f, ( Sflx) = .SF~, 

since g " e G  1 when g e G l .  By (3) and the fact that 5~ =~0(G~, x), we also have 

LP', = hi,(LP:, ) 

=hs,( U U x) 
g~Gl g' eGt 

=r x'). 

Thus, the connected component  of the ~p'-orbit through x '~A'  is exactly 5a~,, 
i.e. the ~o'-orbits laminate A' and ~q~'=hi, LP is that lamination. Also, from (3), (4) 
we deduce 

hy, (L-~ (g, x)) = ~#s (~'(g,-~)) = 5~'~ ~ (~:, hs, x) 

which shows that not only is hf, an orbit conjugacy but it is also a GIG 1 parameter  
preserving conjugacy. This completes the proof  of (3.9). 

(3.10) Corollary. I f  4o is a hyperbolic G-action then it is structurally stable. In 
particular, if q~ satisfies Axiom A and if O= M then 4o is O-stable. 

Proof Apply (3.9) to A = M and ~0' near q). Since h~, is near the identity and is 
continuous,  h~o,(M)=M. Thus q/~q~ and p is structurally stable. We observed 
in w that if q~ satisfies Axiom A(a) and O~o=M then it is hyperbolic.  Structural  
stability always implies O-stability. 

w 4. Ends  o f  a Group  

In [5] Hans Freudenthal  defines the concept  of " e n d "  for a topological  
group or space. See also [3]. It is a not ion concerning "direct ions that lead to ~ ". 
The ends maximally compactify the group. Intuit ion says that in IR there are two 
directions leading to ~ ,  t ~  + ~ and t -~  - ~ ,  i.e. IR has two ends. In IR2 there is 
only one direction leading to ~ ,  i.e. all directions are equivalent and IR a has only 
one end. Likewise, Z • 7/. The cylinder IR • S 1 has two ends. A compact  space 
has no ends, because there is no way to go toward ~ .  

It turns out that groups have exactly 0, 1,2, or e ends [53. Examples are: 
compact  group have 0 ends, IR2 has 1 end, IR has 2 ends, and the free group on 
two generators has e ends. We shall show that if ~p is an Axiom A G-action then 
either O r = M or else G has exactly two ends. It is reasonable that G has at least 
two ends when O~4:M because there are G orbits in M - ~ 2  connecting different 
basic sets of  O r. See he figure below and use (2.1). The hard part is to eliminate 
the possibility ofe  ends. The presence in G's center of a copy ofT/ tu rns  the trick. 

Fig. 2. Ends of an orbit in different basic sets 
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In [5], Freudenthal mainly develops end theory for finitely generated discrete 
groups whereas we are interested in general Lie groups. In [10] Hopf  develops 
end theory for his groups but usually assumes they are connected. In this section, 
we present a self-contained treatment of end theory for compactly generated 
topological groups, not only because we need an end theory in exactly this general- 
ity, but also because we want to stress the existence of an end theory working 
simultaneously in the discrete and continuous categories. 

CONVENTION:  " L E F T "  VERSUS " R I G H T " .  In everything done below, 
our order of group multiplication is the reverse of Freudenthal's. Our end theory 
is a left end theory, his a right end theory. This is not mere perversity, but the un- 
happy accident that left end theory is adapted to left group actions (homomorphisms 
(p: G--,Diff(M)) while right end theory is adapted to right group actions (anti- 
homomorphisms ~b: G~Dif f (M) ,  I ) (glgz)=t)(gz)~(gl)  ). Not being British, we 
prefer left group actions and accordingly develop a left end theory. Of course, 
right and left end theories are equivalent, but we apologize to the reader if extra 
reflection is needed when comparing our ends to Freudenthal's. 

It is first necessary to do some topology in G, even though G may be discrete. 
We say that U is a seed of the topological group G ill" U is a compact neighborhood 
of the identity, U -1 = U, and Int(U) generates G. One may imagine the group G 
as growing from U: U"TG as n ~  oe, where U"=al l  products of <n  elements of U. 
Any compactly generated group has a seed: let V be a compact neighborhood of 
the identity generating G, then put W = a  compact neighborhood of V and 
U = W w  W -L. 

Definitions. The U-hull of a set S c G  is 

#fv(S)={xEG: x = u s  for some ueU,  seS} .  

Thus, .X~v S = US is a "thickening" of S. The U-frontier of S is 

~v (s) = ~ v  (s) r ~u  (so) 

when S C = G - S .  (Freudenthal calls ~uS the "Franse"  which literally means 
"fringe".) The set S is U-bounded iff S ~ U" for some n. 

(4.1) Proposition. Let G be compactly generated with seeds U, U'. A set S is U- 
bounded if[ U'-bounded: Or(S) is bounded iff ~v,(S) is bounded. I f  S is closed then 
Jfv(S) is closed. A set is closed and bounded iff compact. 

Proof The sets (Int U) ~ are open, increase monotonically with n, and cover G. 
Since U' is compact, U '~( In t  U)"~ U" for some n. Symmetrically, U c  U'"' for 
some n'. This proves the first two assertions of (4.1). 

The U-hull of S is just the product U.S .  Since U is compact, U.  S is closed 
whenever S is closed (a general fact). 

Let S be a closed bounded set in G. Being bounded, S is contained in some U". 
Since U" is compact and S is a closed subset of U", S is compact. Let S be a compact 
subset of G. Since {(Int U)"} is an ascending open cover of G, S c ( I n t  U)"c  U" for 
some n. Hence S is bounded. Any compact set is closed. This completes the proof 
of (4.1). 

Although these notions of "hul l"  and "frontier"  are reminiscent of correspond- 

2* 
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ing topological  notions, they do not arise from some topology  on G. The structure 
they define more  closely resembles a Zeeman  tolerance-space [19]. 

Definition. A set S is U-connected iff S cannot  be divided, S = S 1 u S 2, where 
S 1, S 2 are nonempty  and S 1 c~ 3(~v($2)=~3= $2 nJgv(S1). 

It is easy to see that S is U-connected iff each pair of its points g, g' can be 
joined by a chain in S, g, ulg, ulu2g . . . . .  u s ...Ukg=g' where u 1 . . . . .  uk~U. In 
part icular,  the whole group  G is U-connected.  

Definition. A neighborhood of ilfinity in G is an unbounded  set Q c G having 
?vQ bounded.  

Definition. If G is a compact ly  generated group then an end of G is a class e 
of subsets Q c G such that  

(a) each Q e e  is a ne ighborhood  of infinity. 

(b) ifQ, Q '~e  then Qc~Q'~e. 

(c) e is maximal  respecting (a), (b). 

The set of ends of G is denoted g~. By (4.1), it does not mat ter  which seed U 
is used in the definition. 

If G is compac t  then (a), (b) are incompat ib le  and G has no end. Conversely,  
any noncompac t  G has a least one end: let e o consist of all the complements  of  
bounded  sets. By Zorn 's  lemma,  enlarge e o as much as possible without  contradic t -  
ing (a), (b). The result is an end e of G. Note  that  e o is conta ined in every end by (c) 
but if e o is an end of G then e o is the only end of G. 

If e~g~ and if P ~ G  has Pc~Q a ne ighborhood  of infinity for all Q~e then (c) 
implies P~e .  For  ~ = e  ~ { P ~  Q}e~ satisfies (a), (b), and ~ ~ e. Similarly, if P A Qo 
is bounded  for some QoEe then P s e .  (By A A B  we mean the symmetr ic  difference 
(A - B) u (B - A).) For if Q e e then 

c~ v (P c~ Q) c ~t, (Q A Qo) u (?v (Q c~ Qo) 

which is bounded,  and so ~ = { P ~  Q}Q~ satisfies (a), (b), and ~ ~e .  In par t icular  
the U-hull  of any Q~e has ~ v Q - Q = O v Q  and so 3/fvQ~e. 

In a natural  way, the ends of  G can be adjoined to G, forming a compac t  space G. 
In fact, the set of ends of any space X is the maximal ,  totally disconnected set 
compact i fy ing X [5]. A sequence a, in G converges to an end e iff for each QEe, 
a, EQ for all large n. A sequence e, of ends of G converges to an end e iff for each 
Q~e and all large n there exist Q,E% with Q,~Q.  (This definition of sequential  
convergence in G is equivalent  to taking as ne ighborhood  basis at e, {Q}Q~.) 

Products  between ends are not defined but the products  ae  and ea  for aeG 
make  sense: 

ae={aQ}o~ ea={Qa}o~ .  

First note that  aQ is unbounded  and if a~U '~ then ~3v(aQ)=@~+,(Q) which is 
bounded.  Also Qa is unbounded  and (?c(Qa)=(~?vQ)a. Clearly {aQ}o~ ~ and 
{Qa}o~, satisfy (b), (c) so ae, ea  are ends. 

Let us observe that  ae---e. It suffices to show that  (aQ)A Q is bounded,  Q~e.  
Let a ~ U". If x ~ Q - a Q then q = x = aq' for some q ~ Q, q'~ Q~ and so a- ~ x ~ Ygw(Q~), 
1 x ~ Jgv,,(Q) imply x e Ov,.(Q). Thus (aQ) A Q ~ Ow(Q) which is bounded.  Similarly, 
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left multiplication by a fixed element a e G does not affect convergence x,--,  e e d~ 
i.e. (ax,) and (%) have the same limit points in ga. 

Right multiplication is another matter. Each a~G defines a homeomorphism 
~i: C, ~(~ whose inverse is r ,. Some ends may move, others remain fixed. 

It would seem natural to define 

e - ' = l Q - ' I e .  Q ~={q-'}.~e 

Unless G is Abelian, e ~ is not a left end, it is a right end. For i fQee  then, 

(C,Q) ' =(xv O)-' a(xb(O~) -' =(uo)- '  ~(v(O~) -') 
=(O-i g-1)(_.l(O-l)cg-1 =~j(Q_I) 

where ('v ~" denotes the right frontier (Freudenthal's convention). Thus 

inversion induces a natural bijection o~[; ~ g~.. 

The following proposition says that U-connectedness is no serious restriction, 
especially for ends. 

(4.2) Proposition. (i) Any S c G  with ?vS bounded has only finitely many U- 
components. (ii) Any Q e e e ~  G contains a unique maximal, U-connected Q'ee. 

Proof (i) The set ?vS has only finitely many components, say K I . . . . .  K,,, 
because @ S  is contained in a compact set and points in distinct U-components 
of a set clearly cannot accumulate. Let S1 , . . . ,S  m be the largest U-connected 
subsets of S containing K 1 . . . . .  Km. If ?vS=~J then (4.2i) is true because G is 
U-connected. Thus, we may assume (?vS+fJ. Choose any s~S and s'~?,vS. Since 
G is U-connected consider a U-chain from s to s'. By definition of (?v S, it does 
not leave S until ?:vS. Hence, every seS  belongs to S 1 u . . .  u S,,, i.e. (4.2i) is proved. 

(ii) Let Qee and let Q=QI u ... u Q ,  be the distinct U-connected components 
of Q arising from (i). By maximality, o~v (Qi) n Qj =~  for each i Hj. Thus ?'v Qi c (h U Q 
and is bounded. If all the Qi fail to lie in e then each Qi misses some S~ee and so 
Q = Q ~ u . . . w Q ,  misses S l n - . . n S . e e ,  contradicting (b) in the definition of 
ends. Also by (b), only one Q~ can lie in e since the Qi are disjoint. This completes 
the proof of (4.2ii). 

The following four theorems are what we require from end theory. They answer 
the questions: How many ends does a group have? How are the ends of groups, 
subgroups, and factor groups related? How can we recognize a one-ended group? 
How nearly does a two ended group resemble Z? 

(4.3) Theorem. I f  G is a compactly generated locally compact group then G has O, 
1, 2, or c ends. 

(4.4) Theorem. Let G be a compactly generated locally compact group and H 
be a normal compactly generated closed subgroup of G. (i) I f  H is compact then there 
is a natural bijection between CG and ~a/n. (ii) I f  G/H is bounded then there is a 
natural bijection between Ea and gn" 
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(4.5) Theorem. Let G be a compactly generated locally' compact group and H be a 
normal, compactly generated closed subgroup of G. If  H and G/H are unbounded 
then G is one-ended. 

(4.6) Theorem. Any two-ended group G with ends e ,  e+ contains a closed, infinite 
cyclic subgroup H={h"}.~ Z such that h"-~e+ as n-+ + ~  and G/H, H\G are 
bounded. 

Remark 1. If G is discrete then (4.3) is Satz 3.3 of [5], (4.4ii) is [-I0, Satz 4], 
and (4.6) is [5, 6.14]; (4.5) is a unification of Satz 6 and Zusatz zu Satz 6 of [5]. 

Remark 2. When H is not normal G/H is not a group, but by G/H being bounded 
we mean that each coset gH be contained in n~ U" for some fixed m. The map n t 
is the projection G-~ G/H. Similarly for H\G. Note that G/H is bounded iff 
H\G is bounded. For inversion in G induces a homeomorphism H\G~--,G/H 
which exchanges n,(U m) and n~(U"). Using ideas like this, versions of (4.4, 5) can 
be proved when H is not normal. For instance (4.4i) becomes g~ ~--~gm~" 

Here is the key lemma. 

(4.7) Lemma. Let el, e 2 be ends of G and a,-+ e 1 with a,~G. Then either a, i 
accumulates at r o r  else e 2 a n--~ r " 

Proof [5, 6.6]. Suppose that a~-a does not accumulate at %. Then e 2 has a 
compact neighborhood Q2 in (~ such that a, -1 does not accumulate at any point 
of 02. Let 01 be any neighborhood of e 1 and let Qi=Olc~G, i=  1, 2. Since ~?u(Q2) 
is bounded, 

~v(Q2)a,=~v(Q2a,)~Q1 n large. 

Indeed it is easy to see that any bounded set S is sent inside Q1 by S~-~Sa,, n large. 

Since #v(QO=?v(Q]) is bounded, Q~ has only finitely many U-connected 
components by (4.2). Suppose ~2 an q~ Q~ for infinitely many values of n. For each 
such n, Q2a, contains whole U-connected components of Q~ because U-chains 
in Q~ do not meet ~v(Q2a,). Since Q~ has only finitely many of them, one gets 
contained in Qz a, infinitely often, and we can choose a fixed x 

xEQ~ c~Q2a" infinitely often. 

tn other words, xaf~6Q2, and so some accumulation points of xa2 ~ lie in Q2. 
But_x a. -x and a, --a have the same accumulation points. This contradicts the choice 
of Q2- Hence QzancQ1 for all large n, i.e. e z a . ~  % . This completes the proof of 
(4.7). 

Proof of(4.3). Let G have at least three ends. We must show it has c ends, so 
it suffices to prove that the set g of ends is perfect. 

Choose any end e and a sequence a . -~  e, a n ~ G. The sequence a~ -1 is unbounded 
and so we may assume a, -~ ~ e '  some end of G. Choose two ends of G distinct 
from e' and each other, say e", e'". By Lemma 4.7, e"a,  ~ e and e'"a,--+ e, because 
a~-~ does not accumulate at e" or e'". From this it follows that e is an accumulation 
point of other ends - either of e"a, ,  e'" a,, or of both. (Note that right multiplication 
by an element a6G gives a bijection of g to itself, so e ' a .  and e '"a.  cannot both 
equal e. Since g is compact by construction, this shows that it is perfect and (4.3) 
is proved. 



Axiom A Actions 23 

Proof of (4.4i). H is a compact,  normal subgroup of G and n: G-~G/H is the 
projection. Define 

ne={nQ}~, eeeG 
n - l ~ = ( n  -1 r } r~  eegG/n. 

We claim that he, n - l ~  lie in unique ends of G/H, G, say n~ e, n ; l ~ ,  and the 
maps n#:  ga~go/n, n~l:  gom--,~o are inverse to each other. This is hardly 
surprising since the effect of H is to thicken things up by a bounded amount  and 
this does not affect ends. 

Since n is continuous, the n-image of each compact set is compact. Since H 
is compact  the n - l - image  of each compact set is compact. Thus, n and n-1 preserve 
boundedness. 

Given eEgc,, we want to show ne lies in a unique end of G/H. It suffices to 
prove that ne={nQ}Q~r satisfies properties (a), (b) in the definition of ends since 
Zorn's Lemma lets us extend ne to satisfy (c). 

(a) Let Q s e, let V be a seed of H\G = G/H and let U = n -  1 (V). Then U is a 
seed of G and U ~ H. We claim 

~v(n(2)~ n0v3((2). 
Let Hge@(nQ). Then Hg=vlHg I for some Hglen Q and some vleV. Also 
Hg=vzHg z for some Hg z in (nQ) ~ and some v2eV. Thus 

v2 h2 g2 = g = vl hi gl xl = h'l gl e Q 

x 2 - h 2 g 2 e Q  c 

for some h 1, h'l, h2, h2~H, v I , u2ff- V. Thus 

x~ =h;g, =h;hf -I v:f 1 g~ ~v~(g) 

i =  1, 2. This proves that ge0v3(Q). Since ~?v3(Q) is bounded so is Ov(nQ). Clearly 
nQ is unbounded since Q is. This proves (a) for he. 

(b) If Q , Q ' e e  and U is as above then by (c) for e, n-~nQ, n-lnQ'ee. By (b) 
for e, n-lnQc~n-lnQ'ee and so nQc~nQ'=n(n- 'nec~n-lnO')ene proving 
(b) for n e. 

Hence n # : gz -~ d~ is well defined. 
The proof that n~:go/n--,go is well defined is slightly easier. Given ~eeg~/n 

we want to show that {n -1 T}T~,= n-l~ satisfies (a), (b) in the definition of ends. 
Let U, V be as above. We observe that 

t )u(n  -1 T ) ~ n  -1 @(T) 

which is bounded, n - l  T is  unbounded since Tis.  This proves (a) for 7r-1~; (b) is 
clear since n - l (Tc~  T ' ) = n  -1Tc~n  -1T ' .  Hence n~l :  go/H--'e6 is well defined. 

Since n - l n ( Q ) e e  for all Qeee8 G, we have n , l o n ,  =ident i ty  on E~. Since 
n o n -  a = identity on G/H, we have n ,  o n ,  1 = identity on gore. Hence, l r ,  - i = n ;  1, 
completing the proof  of (4.4 i). 

Proof of (4.4ii). H is a normal, compactly generated closed subgroup of G 
and G/H is bounded. Let U be a seed of G and H so large that G/HcnU where 
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re: G --* G/H is the projection. For eeg~, ~eg~ we define 

i e={Qc~H}e~ j~ = {J~v T}r~  

and claim that i, j induce inverse bijections between #~, g~. 

Since ~z U = G/H, all points of G are in the U-hull of H, ~ v  H = G. Let Q e e e ga. 
Clearly Qr~H has bounded frontier, @~(Qc~H) .  Also Qr~H is unbounded 
since Q is unbounded and points of Q far from @ ~ ( Q c ~ H )  have their whole 
U-hulls (including thus some points of H) in the set Q. This proves (a) for ie; 
(b) is clear since (Q c~ H) ~ (Q' c~ H) = (Q c~ Q') c~ H. Thus i# : g~ -+ gn is well defined 
by i e ~ i ~  e. 

Let T ~ e r  n. We claim that 

Let g e #v(Jg~v T). ]'hen 
g=u l  gl g~ =u~ t~ 

g=u2 g2 

for some g le~vT ,  g2e(~uT)  c, ul, u2, u'IEU , tl~T. But G=.~vH so g=uh and 
g2 = u~ h 2 for some h, h 2 e H, u, u~ e U. Since g2 r ~ T, h 2 e H -  T. Thus 

Id -1  U 2 ld' 2 h 2 =u 1 u2 g2 =h=u-1  g =u-1 bll dl  t l  

for h 2 e H - T ,  tl~T. This proves h6Ov3~u(T ) and ge~v(~v~nt~(T)) as claimed. 
Since the latter is bounded, so is the former. Clearly debuT is unbounded since T is. 
This proves (a) for j ~ =  {JfvT}r~;  (b)is clear since ~v(Tc~ T')=~f~v(T)~Yfv(T'). 
Hence j# : EH---, g G is well defined by j ~ c j #  ~. 

The composition i#jg is the identity on gH because ij(T) is just the U c~ H- 
hull of T6~, and the hull of any TE~ is in ~. The composition j# i# is the identity 
on C~ since the difference between ji(Q) and Q is bounded, Qee, and so ji(Q)ee. 
Thus, j ~ = i j, i and (4.4 ii) is proved. 

Proof of (4.5). H is a normal, compactly generated closed subgroup of G 
and H, G/H are unbounded. We must prove G is one-ended. Since G contains the 
unbounded subset H, it is unbounded, noncompact,  and thus has > 1 ends. 

Let U be a seed of G and H. Let Qee6  ,~;. We shall show QC is bounded, which 
implies G is one-ended. 

Let U"~3uQ. Since G/H=H\G is unbounded there are many cosets Hg not 
meeting U". Since H is unbounded, so is coset Hg. Thus, many points of every 
coset do not lie in U" and many cosets miss U" altogether. 

As we saw before, H is U-connected and therefore so is each coset Hg. Thus, 
if H g is a coset which misses U" then (Q c~ Hg)w(Qr H g) would be a division 
of Hg  having the U-hull of one piece disjoint from the U-hull of the other. Hence, 
if r ig  misses U" then either H g c Q  or else H g ~ Q L  

Consider any coset Hg  and write g = u~ ... u a, uge U. Choose any h6 H c~ ( u" +k) ~, 
i.e. choose an element of H far from ~uQ. Since H is not bounded, this is possible. 
Then 

h,u k h . . . . .  u 1 ... u k h=gh 
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is a U-chain from h to gh avoiding OvQ. Since H is normal ,  ghegH=Hg.  Thus, 
h and some element  of  H g are bo th  in Q or both  in Q~. 

Suppose  H ~ Q  is bounded,  say H ~ Q c  Urn. Clearly m = n -  1. Every coset Hg 
contains  an element of Q~ by the preceding chain-construct ion.  Thus,  the cosets 
H g  missing U" are all in QC. On the other hand,  if g=u~  ... u k, k<n, then each 
point of H g c~ ( U 2,)~ can be joined to some h ~ H c~ (U") ~ by a U-chain avoiding (?v Q, 
and since such an h lies in Q~, we get 

H g ~ ( g Z " ) ~ Q  c 

which shows that  Q is bounded,  in fact Q c  U 2". This contradic ts  (a) in the defi- 
nition of ends, so H ~ Q cannot  be bounded.  

Since H c~Q is unbounded,  the chain cons t ruc t ion  shows that  every coset H g  
contains  an element of Q. Thus, all cosets missing U" are wholly contained in 0- 
Since H\G is unbounded ,  there is some coset, say Hg~ with gt=u~ ... u~. 
k > n + l ,  which misses U"; Hg~cQ. Let g = u l . . . u  l, l<n .  Using the cha~, 
const ruct ion twice we can find a U-chain from any x e H g ~ ( U 2, + k)~ to g~ H = H g ~, 
avoiding ?vQ: 

Hg=gH~x  

=gh 

= i t  1 . . . z i f l l , u  2 . . . t q h  . . . . .  h, u l k h ,  . . . .  u l l  . . .  U lkh  

=glH~gtH 

= H g  1. 

Thus,  Hgm(UZ"+k)C<Q and so 

QCc7 - U 2n+k. 

This proves  that  every Q e e ~ b  is the complemen t  of a bounded  set, i.e. e-=eo 
and G is one-ended.  

To  prove  (4.6) we use three lemmas.  Let r denote  right mul t ip l icat ion on G 
by a, r,:x~-,xa. 

(4.8) Lemma.  Each r ,~Homeo((~)  and a~--,r, is a continuous monomorphism 
G - ~  Homeo((~). 

Proof. Cont inui ty  of  r, at points  of G is a consequence of G being a topological  
group. If e is an end of G then the definition ea  = {Qa}Q~ makes  it clear that  r a is 
cont inuous  at e. Since r_ ,  =ra -1, r, eHomeo((~) .  Cont inui ty  of  a ~--* r a need only be 
checked at a = 1, the identity of  G, and at some  end e of G. Let a n--, 1. (If G is 
discrete then a , -  = 1.) Let 0 be a ne ighborhood  of e in G, Q=Q~G.  Then r~,,(e)= 
{Qa,}e~ ~. Clearly Q ' a c Q  for n large, Q'=Q-c?vQ, and any fixed seed U of G. 
Hence r ( e )  --, e and (4.8) is proved.  

(4.9) Lemma.  Let S be the isotropy subgroup of the ends of G, 

S= {s~G: es = e for all ends e of G}. 

Then S is a closed, normal subgroup of G. If G is two-ended then either G = S or 
G/S ~ TZ z. 
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Proof S is clearly a normal subgroup since gsg -~ fixes the ends of G, geG. 
By (4.8) it is closed. If G is two-ended then each g, g' e G -  S switch the ends of G. 
Thus, so does g-1 and g-1 g 'eS so g 'egS. This shows G/S has only two cosets, so 
G/S ,~ 7~ z . 

Definition [5]. Let G be a compactly generated group. G is elliptic, parabolic, 
or hyperbolic iff G has exactly 0, 1, or 2 ends e which are fixed under multiplication 
by all elements of G, g e = e  = eg, geG. 

It is not hard to see that a group with infinitely many ends cannot be hyperbolic. 
For if el, e z are the right invariant ends and e 3 is a third end then we can find a 
sequence in G, a,--, e 3 such that a; -I --, %, use (4.7) to conclude (by right-invariance 
of e~, %) that a~ -~ accumulates at ez and at e2, so e I = e 4 = •2' a contradiction to 
the distinctness of e~, %. Hence, by (4.3), every compactly generated group is 
hyperbolic, parabolic, or elliptic. 

Question. A problem which Freudenthal poses, but which remains open we 
think, is whether a group with infinitely many ends can be parabol ic- i .e ,  have 
exactly one invariant end. 

(4.10) Lemma. Let H be a hyperbolic group and U be a seed of H. I f  a, tends to 
one end of H then a 21 U tends to the other. 

Proof Let the ends be e+ and suppose a. -~ % but a2 ~ u, does not accumulate 
at e for some sequence u.,e U. By (4.7) e (a21 u ) - - ,  % since 

(a21 u,) -1 =u 2 '  a,E,~v(a,)-~ e + . 

Since H is two-ended, convergence means equality: e (a~ -~ u , )=e+,  n large, 
contradicting hyperbolicity. 

Remark. If hyperbolicity is weakened to two-endedness than (4.10) become 
false. For example, let G = Z  2 �9 7/ where-means semi-direct-product relative to 
the 7/z-action on 7/, m~---~-m. (Thus, writing 7/2 multiplicatively, (a, n). (b,m)= 
(ab, n+am).) Then G is two ended but ( -  1, n ) = ( -  1, n) -1 both tend to the same 
end as n --, oo. 

Question. If G is two-ended and H is the isotropy subgroup of the ends as in 
(4,9) then is G~7/2 �9 H ?  

Proof of (4.6). We may assume the ends of G are right invariant. Otherwise 
replace G by the subgroup S of index two constructed in (4.9). Let U be a seed of G. 
Let Q+ee+ be such that 

~ v  Q ~ r v  Q , =~= u c~,~v Q • . 

Let V be a large bounded set so Q_ w Vw Q~ = G, V= U. 

There is a Q'~ ee+, Q~ =Q+ ,  such that any aeQ'~ has a l e Q .  This is implied 
by (4.10). There is a Q'~ ee+,  Q+ cQ'+ c Q + ,  such that Q+ a c Q +  for all aEQ+. 
Otherwise there exists a sequence a,-- ,  e+ such that Q~ a , r  Since 8vQ , is 
bounded, (r n large. As in the proof of (4.7) this implies that Q+ a 
contains one of the finitely many U-connected components of Q~ infinitely often, 
i.e. xeQ~ a, for some constant xeQ~.  This says xa2~eQ+, for some fixed x. But 
by (4.10), a,-~-* e and left multiplication by x does not affect such convergence. 
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Hence Q'I exists as asserted. Symmetrically, there exist Q" c Q '  c Q_, Q ' ,  Q" ee_,  
such that a n y a e Q '  has a - l eQ+ and any aeQ" has Q a c Q  . 

Choose any heQ"+ with h - l e Q " .  Since heQ"~, Q+ h c Q ~ .  In particular, 
h z, h 3 . . . .  all belong to Q~. We claim h"--,e+. Otherwise there is an infinite 
sequence of powers h k occurring in some bounded subset of G. By local compact-  
ness, (4.1), a subsequence of these converge to some xEG. But h", h" being near x 
means h"(h') ~ and h"(h") ~ are near 1, in particular they are in U. We may 
assume n < m. Then 

h"(h") - l  = h " - " = h k h = u ~ U  ~ h - l = u  - l  h k 

with k = m - n - 1  >0.  We already saw that h, h 2 . . . . .  f f Q + .  Thus, 

h-1 = u - I  h k e U ~ v Q +  

which is disjoint from Q_ by our original choice of Q• This contradicts h-~sQ . 
Therefore h " - ~ e ,  as n - , oo .  By (4.10), h " - - ~ e  as n - ~ - o o .  Thus, H={h"} is a 
closed infinite cyclic subgroup of G. It remains to show G/H and H\G are 
bounded. 

If H happens to be normal then by (4.5), H\G = G/H is bounded, for otherwise 
G would be one-ended. But there is no reason to think H is normal. Instead, 
consider again the sets Q• ~e+ used above. Since Q+ h c Q ~  we get a decreasing 
sequence Q~ ~ Q + h ~ Q + h 2 ~  .... Since h"-- ,e+,  (c?vQ+)h"~e+, OvQ ~ being 
bounded. Hence ~ ,  e o Q~ h" = ~. Also, since Q +, Q + h e e +, the difference Q ~ - Q + h 
is a bounded set. Let W be a seed of G containing V and Q+ - Q .  h. Then 

Wh~(Q~ - Q +  h) h=Q+ h - Q +  h 2 

and in general Whk~Q+ hk-Q+ h k+l. Hence W u W h ~ W h 2 ~ . . . ~ Q  u V. This 
says that ~w(H)~Q+ u V  

We chose h so that h-~eQ '' . Thus everything true for h relative to Q+ is true 
for h-  ~ relative to Q .  That  means (enlarging W to also include the bounded set 
Q - Q  h -1) Ww(H)=G and so each g e G  can be expressed g = w h  for some 
hEH, weW. Thus, G/H is bounded. For each g~G, g-1 =w'h'  for some h'eH, 
w'6W. Thus each g=(h ' ) -a(w')  -1 and so H \ G  is bounded too. 

From (4.4, 5) we deduce 

(4.1 i) Corollary. I f  q~ is an Axiom A G-action on M with more than one orbit then 
G has either one or two ends. 

Proof Let H be the subgroup of G generated by a hyperbolic element f 
Since f "  does not cluster in G, H is a closed non-compact  subgroup of G iso- 
morphic to 7/. Since f is central, H is normal in G. If G/H is bounded then (4.4ii) 
says G is two-ended because H is. If G/H is unbounded then (4.5) says G is one- 
ended. 

We have now come to the main goal ofw 

(4.12) Theorem. I f  qo is an Axiom A G-action on M then either f2,o = M or else G 
is hyperbolic. 

Proof Assume f2o =t: M. By (4.11) G has either one or two ends; we must show 
it does not have just one end and that the ends are right-invariant. 
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The f2-Decomposition Theorem, (2.3), says that f 2 =  f21 w ..-wf2,, disjointly 
with q~ topologically transitive on each f2 i. Let x e M - f 2 o  and consider the orbit 
of x, O x. By (3.6), c?O x cannot be entirely in one basic set, it must meet at least two, 
say 

OOxcA w A  + A+=g2 i A _ = ~ f 2  i 
j4-i 

and f""  x ~ x + e A + for some sequence n k -~ + ~ as k-~ • ~ .  

Let U be a fixed seed of G. Let N+ be small disjoint neighborhoods of A +. 
T h e n G = L  w S w L ~  where 

S= {geG: g x e M - ( N _  w N+)} 

L+ = {g~G'gx~N+}.  

Clearly S is compact. Since A+ are ~o-invariant ~p(U, A+)= A+. Hence 

(p(U,N)c~ q~(U, N~)=13 

for small N+ by continuity of ~p. 

For each ug+ eJfv(L+), g+ eL+ ,  

~0(u g+, x )=  q~(u, q~(g +, x))e~o(U, N+) 

and so Jfv(L)n~ufv(L~)=13. [Here we must use a left-end theory.] Hence 
c~v(L+)cYt%S so dr(L+) is bounded. Since L+ contains infinitely many powers 
o f f  and since ;g,,~ {f"} is a closed noncompact subgroup of G, L_+ is unbounded. 
By Zorn's Lemma there are ends e+ containing L+. Since L m L  =13, e 4= e~, 
i.e. G has > 2 ends. By (4.11), it has exactly two, e_ and e ~. 

It remains to show e+ are right-invariant. Suppose G is two-ended but not 
hyperbolic. Consider the isotropy subgroup H of the ends as in (4.9). Choose any 
g e U n ( G - H ) .  Then g switches the ends: e~ g = e_, e_ g = e~. Hence, if f"~eL+ 
and k is very large then f"" geL_ .  (We have not yet established that f " ~  e+ as 
n ~ + ~ ,  merely that this holds for a subsequence.) Since f is central, 

~o(f"" g, x) = r "~, x )=  q0(g, ~o(f "~, x))~qo(U, N+ ). 

But ~o(U, N ~ ) ~ N  =t3, so f"~g cannot belong to L .  Thus, no such g can exist 
and the proof of (4.12) is complete. 

(4.13) Corollary. If  q) is an Axiom A G-action with hyperbolic element f and if 
( 2  4= M then f "  converges to one end of G as n -* oo and to the other as n ~ - oo. 

Proof Let A +, N+, L +, S, n~ be as in (4.12). We may assume f e  U, the seed of G. 
Since S is compact and {f '}  is closed noncompact, there is an integer N such that 
n > N  implies f"r  Since qg(U,N+)c~N =13, f "* l eL+ for any n > N  such that 
f " e L ~ .  Since nk--*oO as k--,oo we can start at any f"~eL+ with nk>N and be 
assured of staying in L+ for all f",  n>n k. Hence f " -~e+  as n--,oo. By (4.10), 
f - " ~ e _  as  n - ~  - o 0 .  

Remark. (4.12) could be paraphrased as" t2-hyperbolicity of a G-action implies 
hyperbolicity of G. This pleasant coincidence of terminology is not unique. The 
geodesic flow on the hyperbolic plane is hyperbolic and the hyperbolic trigono- 
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metric  functions appear  in its tangent  flow. It remains to involve hyperbol ic  
PDE's .  

Let us return to the p rob lem of intrinsically defining when an action has 
cycles. Let r be an Axiom A G-act ion with f2 decompos i t ion  f21 w. .-  c) f2m=f2~+M. 
By (4.12) G is a hyperbol ic  group,  say its ends are e+. Let U be a seed of G and let 
N t . . . . .  N,, be small open ne ighborhoods  of f21 . . . . .  f2,,. For  any x e M  - f 2  let 

Li={g~G:gx~Ni}  i = 1  . . . . .  m. 

Since f2 i is ~0-invariant, the Ygb L i are disjoint, just  as in the p roof  of (4.12), at least 
if the N,. are small  enough. Also as in (4.12), each L i belongs to an end e i of G. 
Since G is two-ended we conclude that  +30 x meets at most  two fl[s. By (3.6), 0 0  x 
meets at least two f2[s, say f2~, f2i2. Define 

~')+ Ox= ~ r  points  o f g x .  
OEe• g ~ e ~  

Then ? O ~ = ( 3 0 x w c ? +  O cf2~, wf2i2. We observe  that  ~3+ O~ lies in one basic set 
and +? O~ in the other. For  Lh, L~2 are disjoint, nonempty ,  one belonging to e_,  
the other  t o e + , s a y L ~ , e e  , L ~ e e + . T h e n  

0 N q,(Q,x) 0+ ox=  o(O,x) 
QEe Q~e+ 
QcLit QcLi2 

shows that  (3_ 0~ c (2~,, ~ ~ O~ c f2~. 

Without  reference to a par t icular  hyperbol ic  element of ~o define 

(2i-<(2 j iff ~3 0~ c I2  i, c?+ O~cf2~ for some  O c M - f 2 .  

This gives a partial  order  on f21, . . . ,  f2, ,  unique up to the reversal caused by 
interchanging e_ and e ~. I f f  is a hyperbol ic  element of  q~, let < denote  the part ial  
order  on the f2~ defined in w by Y 

g2i~f2j iff W"f2ic~ W~f2jdgg2 

where the stable and unstable manifolds were constructed using f. By (4.13), 
either f " - ,  e ~ or else f " - - ,  e as n ~  oo. I f f " - ~  e then -< = -% If f "  ~ e then 
< = <~. Summing  this up, we state f 

f 

(4.14) Proposition. I f  r is an Axiom A action then the cycles of any two hyper- 
bolic elements are equal up to reversal. In particular, the no cycle assumption is 
independent of which hyperbolic element is chosen. 

The next result has the consequence that  there is an order  on a hyperbol ic  
g roup  which makes  it like 77 m o d u l o  bounded  sets. 

(4.15) Proposition. Let G be a hyperbolic group with ends e +. Then G has a seed U 
and there is a map z: G -~ 77 such that z (1 )=0  and 

(1) There are positive constants q ,  C k-~ oo such that if k > 3 then 

a'a l e u k ~ l z a - - z a ' [ < C k  
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and 
Ira--za[=ck ~ a ' a -  ~U k. 

(2) There is a positive constant K such that for all a6G 

z(a')> K ~ r(a'a)> r(a) 

r(a') < - K ~ r(a' a) < "r(a). 

(3) Jgb(x)nJg~(z l (n+l))=~ft  for each xcz- l (n) ,  n~7/ 

(4) a,-*e+ iff z(a,)---~ +_oo. 

Remarks. (1) asserts bi-continuity o f t  modulo  U, (2) is a weak sort of translation 
invariance, (3) is an Archimedean  Law modulo  U. By 1 we mean the identity 
element of G. Recall that hyperbolicity of G means G is two ended with right- 
invariant ends. 

n 4 .  _ Proof of(4.15). By (4.6), G has a subgroup H = {h'} such that h - e+ as n ~  + oc 
and G/H, H\G are bounded.  Let U be a seed for G with h e U and Ygu H = G = 
Uk~Z Ygv(hk) �9 Let 

H,={h k, -oo<k<=n} T,,=of~,u(h')-~b(H,_I). 

Clearly G = U , ~  T, disjointly and the T, are bounded  sets. We claim 

(*) h u' "eT. ne7Z 

when h u is the largest positive power of h lying in U. We observe 

hu~U ~ hN+"~Uh"=~,v(h ") neT~. 
! 

But if hU+"e,~v(h'), m<n, then hU~"=uh " for some ueU, and so hU+"-"eU, 
a contradict ion to h u being the last power of h in U. Hence u+, , h r 
proving (.). 

Define r :  G ~ 7l by 
r ( g ) = n + N  iff geT , .  

By (.) h ~  l e T  u so r ( 1 ) = 0 .  

(1) Fix any k > 3 .  Let Ck+l be the first positive power of h in G - U  k-2. Let 
C k be the last positive power of h in U k + 2. If a E T, and a ' e  T m then n -  m = r a -  z a' 
and a=uh", a'=u'h" for some u,u'aU, so 

a ' a - l = u ' h ' - " u  -~ i.e. (u') a(a'a 1)u=hm n. 

If Im-n]<c k then hm-"eU k-2 so a'a ~EU k. If a ' a - l e u  k then hm-"eU k' 2 so 

Im-n[< C k. This proves (1). 

(2) Since hk--~e+ as k-* +o0 there is a constant  K such that  

{h k" k>=K}n(U2H U)=f~ 

{hk: k<= - K }  n(UZ H + U)=f~ 

where H • = {h• k>O}. If ae T,,, a' e T., a'ae T~ then a=uh", a'=u'h", a 'a=u"h "~, 
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so a' a = u' h" u h" implies 

h" =(u') -a u"h~-"u-te UZh s-ra U. 

But s-m=z(a 'a)-z(a) .  If n < - K  then s - m < -  1, i.e. r(a'a)<r(a) as claimed. 
l f n > K  then s - m >  l, i.e. z(a'a)>r(a) as claimed, proving (2). 

(3) Let xez- l (n ) .  Then x6T,_ N and so x=uh "-u for some ueU. Thus 

+~u(X)gU -t x = h "-u =h - t  h "+ ' - u  eXv  (h"+ ' -  u) c Jt~v(z-' (n + 1)) 

by (.) proving (3). 

(4) Since T,c~g/v(h")= Uh" 
as  n--~ ! - o o .  

and r-X(n+N)=T.,  

5. O-Stability 

(4) follows from h"~e_+ 

Here we prove our Main Theorem: Axiom A plus no cycles implies O-stability 
for a G-action (p. There are two cases f 2 = M  and f2~M.  (3.10) gives the result 
when Q = M. 

Suppose f2 ~ M. Letfo E G be a hyperbolic element for (p. Let f =  ~0 (fo) and let S 
be the (p-orbit lamination of f2. By (3.1), (f, f2) has local product structure. Since 
(p obeys Axiom A, it leaves W"Ox, WsOx invariant. (This was observed in w 2 
and follows at once from centralness o f f  and the asymptotic characterizations of 
the strong stable and unstable laminations.) Hence LP is subordinate to ~/~", ~//~ 
and so local product structure for (J;, f2) implies local product structure for (f, ~ ) .  
By (7A.1) of [ H P S ] f h a s  a neighborhood U in Diffl(M) and f2~, has a neighbor- 
hood U in M such that iff '~U, then hi,(f2) is the largest f '- invariant subset of U 
when h I, is the canonical candidate for a leaf conjugacy from (7.4) of [-HPS]. 

Let (p' be a G-action near (p in At(G, M) and let f '=(p'(fo)- By (3.9) the (p'- 
orbits laminate ~2'= hi,(f2~o ) and h I, is an orbit conjugacy (~o, f2~0)--,(~o' , f2'). Since 
the compact q>orbits are dense in (2, the compact (p'-orbits are dense in f2'. Hence 
Q' c f2~o,. Since f2' is the largest f '-invariant set near f2, the (p' orbit of any point 
in f2~o,-f2' is never wholly near f2'. It remains to rule out such a "global f2- 
explosion ". 

By (2.3), (2 decomposes into basic sets f2=f21 u ... wf2 m. By (4.12) G is hyper- 
bolic and there is a natural partial order <~ on the f2. We are assuming, from now 
on, that in this order there are no cycles. 

As in [15] global O-stability modulo local O-stability is true in more generality 
than Axiom A actions. Namely, let A o . . . . .  A,, be compact, disjoint, q~-invariant 
subsets of M such that 

f2~o c A 1 w ... uA, ,  

where (p is a continuous G-action on the compact metric space M and G is hyper- 
bolic. Let the ends of G be called e , e~ and define the ends of an orbit O = O  x as 

~3+0= 0 Cl{gx: g~Q}. 
OEe 

Since e+_ are fixed by right multiplication, +3+ O is independent of x~O and ~'+ O 
is (p-invariant. Clearly 0_+ O is compact, nonempty. Equivalenty, (3+ (Ox) is the set 
of limit points of gx as g - . e + .  
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Let W"A i denote the unstable set of A i, {xeM:  (?_(Ox)cAi} and let WSAi 
denote the stable set W~Ai= {xeM:  ~?~ (Ox)cA~}. We claim that if O+(Ox) meets 
Ai then it is contained in A r For suppose 9+ (Ox) meets A 1 and A 2. Take open 
disjoint neighborhoods N 1, N 2 of A1, A 2 as  in the proof of (4.12). The sets {geG: 
gxeN1}, {geG: gx~N2} are elements of different ends. But each is contained in 
e+, contradicting the fact that G has exactly two ends. Similarly (? . Thus, there 
are disjoint decompositions 

~) W~A~=M= ~) WSA,. 
i=0 i=0 

We say that Ai<;Aj iff W"A~ meets W'A; off A=A~ u ... wAm. A cycle is a chain 
A ~ < . . . ~ A ~ = A ~ ,  n>2. The following result completes the proof of our Main 
Theorem. 

(5.1) Theorem. Let V 1 . . . . .  V,, be any neighborhoods of A 1 . . . . .  A,,. I f  there are no 
cycles among the Ai then an), G-action C o near q~ has nonwandering set contained 
in V = V I ~  . . . w V  m. 

Proof The idea of the proof is the same as the one in [15]. The details are 
considerably harder due to the use of (4.15) instead of obvious properties of IR. 
We shall assume (5.1) is false and produce an arbitrarily tong chain of unrepeated 
Ai's. 

Let U be the seed of G, z: G---,Z be the map, and G, Ck, K the constants 
constructed in (4.15). We think of r as "time along G from e toward e, ". We 
write q~(g)(x) = ~0(g, x) when convenient. 

Let 1/1 . . . . .  V m be neighborhoods of A~ . . . . .  A m in M. Let W~ be a small neighbor- 
hood of q~(U 4, Vi)= {~0(g, x): ge U 4, xe  Vi} and let X i be a small neighborhood of 
W~. Without loss of generality we assume the Vii are open, the W~ are compact, 
the X~ are open, disjoint, and prove that the nonwandering set of the nearby 
action lies in X = X ~ u  . . .wX, , .  For ~0(U4,~) shrinks to A~ as Vii does since 
(p(G, Ai) = A r 

Let N~ = W~- Vii, a compact set disjoint from A. We claim that N~ acts as a sort 
of fundamental neighborhood for Ai. Precisely, we assert that if ~0' is a G-action 
near q~ and x e M  then 

q~(a, x)EV~ } [~0'(g,x)~,N~ for some g~G with,r(a)<z(g)<z(b) 

q)(b, x ) ~ M -  W~ ~ .~and ~0 (g, x)e~(U 3, Vii) for all g (1) 

z(a) < z(b) [with z(a) < z(g ) < z(g). 

When G=IR (1) says that a trajectory leaving Vii must traverse N~ on its way out. 
The proof of(l)  is a sort of least upper bound argument, using (4.15 (3)). 

For any r a,b,x  as in (1) consider 

T x = {te G" z(a) <= z(t) < z(b) and 
if r(a)< z(t')G z(t) then q/(t', x)~q;(U 3, V/)}. 

We observe that a~Tx since any t' with z(a)<=z(t')<r(b) has z(t')=z(a) and hence 
by (4.15) t'a I~U 3. (This is the inequality [za-za'l<__c 3 ~ a'a leU3.) Hence 

~o'(t', x)=q)'(t'a ~ a, x)=qr ~o'(a, x))6qo'(V 3, V/). 
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Thus a e T  x. In particular Tx #=J~ and is r-bounded above by z(b), so we can choose 
some t 1 e T x such that ~(tl)> x(t) for all t e T x. By (4.15) there is a g e a~ v (tl) such that 
z (g)=z( t l )+  1. This says gCTx, g=uq  for some ueU, and so 

q/(g, x )=  q/ (u q , x) 
= q,'(u, ,e'(t l ,  x))~,'(c, ~o'(u +, v,)) ~ ~o'(c  + , ~). 

Since Vii and U 4 are compact, this last set, ~o'(U +, ~), will lie in W~ for qr near ~o. 
Thus, ~o'(g, x)e 14///but since gr Tx, q~'(g, x)r V i. This says qY(g, x)~N/and proves (1). 
[Note how important it is that g be uq,  not qu. That is, we must use a left-end 
theory here.] 

Suppose that (5.1) is false. Then there are G-actions tp. converging to tp in 
A~ M) as n-* oo, such that Q~,, meets M - X .  By compactness of M - X  there 
exists a limit point x ~ M - X  of the Q~.  Using a diagonal process, a sequence 
g,~G can be selected so that {g,} has no limit point in G and 

tp,(g., x, )=y,-+x ~-x, n--+ oo 

x . , y , , x e M -  W. 

Since G has only two ends, e+, g, must be getting near one or both of them as 
n--, oo. By choosing a subsequence and possibly interchanging x, with y, we may 
assume g, ~ e~. In what follows we choose subsequences freely without relabelling 
them. 

Since x~A and there are no cycles, 0 0 x C A i ,  c~+ OxCAiz , and ia+i 2. Since 
~p, ~ q~ in A(G, M) and x, -+ x in M we can find a sequence g. ~ G such that 

0 < z(g'.)< *(g,) r 

To see this, choose any sequence a k--, e+ in G. For k fixed, tp.(a k, x . ) ~  q~(a k, x). 
As k-- ,m,  m(a~,x)-~4~eA~ (for a subsequence). Thus g '=at~,p n>>k-+oo 
suffices, 

In particular, x',eV~, n large. Since y ,=~o , (g . , x , )eM-W,  (1) gives some 
g; 'eG with 

~o (g~', x.)~ N~ with z(g~,) < z(g~) < z(g.) 
(2) 

tp.(g, x.)etp.(U 3, V/) if g~z -1 [vg'., z g~,'). 

We observe that 
~(g ; ' ) -  ~(g ' ) - - ,  oo. (3) 

For otherwise we could apply (4.15) and get a subsequence with . . . .  g,(g.) -+g .  ~G. 
But then 

tp, (g~,', x , )=  tp.(g"(g')-' g', x,) 
= tp.(g'.'(g')-~, r x.)) 

= tp,(g~' (g;)- 1, x;)--+ qg(g,, 2i~) e a~  

contradicting the fact that ~o (g", x.)eN~=, a compact set disjoint from a.  
t t  l l  ~ 2 Since N~ is compact we may assume x, =~o (g , ,x . )  x eN~. We clmm that 

~o(Q_,x2)cW/~ for some Q c e _ .  In fact consider Q _ = { g e G : z ( g ) < - K }  
where K is the "translation constant" in (4.15(2)). Suppose that tp(g, x Z ) e M -  W~= 
3 Invent~ones math.,Vol. 29 
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for some g with z(g)__< - K .  Then  

,p.(g, x~')-~ ,p(g, x2). 

But ~o(g, x'~')=~o.(gg'~', x .)  and by (4.15(2)), 

z (g g") < r (g~,'). 

By (4.15(1)) ]z(g~,')-r(gg~,')[ < C k where . . . . .  1 gg.  (g.) c U  t, i.e. where g e U  k. This k is 
fixed and so 

z ( g " ) -  C k < z(g g~') < r (g"). 
By (3) 

z(g'.) < z (g g~,') < z (g~,') 

for large n. This says that . . . .  3 x,, =q),,(gg,, ,x, ,)~tp,,(U , Vii)since all a ~ G  with z(g . )< 
z(a)<r(g. ' )  have this proper ty  according to (2). But this contradicts  (p.(g, x") -~  
(p(g, x 2 ) e M  - W~2. Hence such a g does not  exist and q}(Q_, x e ) c  W~2. Therefore  
O_(O~,2)cA, 2. 

Let 0~ (O:,2)cAi3. Since there are no cycles, i l , i2 ,  i 3 are distinct. We shall 
proceed with x :  as we did with x. We do not claim xEsl im s  Rather  we shall 

n 

use the same x , ,  y,, we used above, x,,, y,, ~ x .  This makes it slightly harder  to 
find x s and i 4. 

First observe that  
t t  - - - ~  . r ( g . ) -  z(g.) oo (4) 

Otherwise by (4.15(2)) and a subsequence we could assume g . ( g " ) - l ~  g e G. Then  

r!  1 t t  = ~o (g.(g.) , x . ) - -  ~o(g., xZ). 

Hence x and x 2 are on the same orbit  so 0_ O~ = 0 0 x 2 ,  contradict ing i~ 4: i 2 . 

t ;  ---4" . . 2  t t t  Since x .  . in M and ~ . - ,~o  in A(G, M), we can find a sequence g.  --. e~ 
such that 

z(g") < z (g"') < z(g.) 
(5) 

~o(g;,", x . )  = x " - ,  ,~i~ ~ A~ .  

To see this, choose any sequence a k -"  e~ in G, say a k E U k. For  k fixed 

q}.(a~, x~') .~ - ,  q}(a~, x~). 

As k-~ oo, tP(ak, X2) tends to some 2~ sA~ (for a subsequence). Consider  g~," = ak g~,' 
where k = k ( n ) ,  n ~ k ~ o o .  Clearly we can assume q} . (g" ' ,X . )=Cp.(ak ,X ' . ' )~ ,2 i .  
By (4.15(2)), z(g" ')> z(g") as soon as z (ak )>K.  By (4.15(1)) 

[z(g~') - z(g~")[ < C k 

when . . . . . . . .  1 U k. ' . . . . .  ~ U k. g. tg.) e But g. (g.) = a k ~  Thus, oo ,---k(n).~n and (4) let us make  
z(g.) > z(g~,"), complet ing the proof  of (5). 

In particular,  x " ' =  q}.(g~,", x.)~ Vi~, n large, and (1) implies the analogue of (2) 

q}. (g~'", x.) ~ N~ with z (g~,") < r(g~'") < z (g.) 
(6) 

q}.(g, x . )e tp . (U 3, V~) if g e z  -a [z(g"'), z(g~,'")). 
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i t t t !  �9 v t t t  3 �9 r By exactly the same reasoning as above we get ~P.tg, , x , j = x ,  ---,x eJ~i3 with 
~?_ (Ox3) c Ai .  Again the no cycles assumption implies ~?. (Ox,) c Ai4 with i t, i 2, i 3, i ,  
distinct. Continuing this was (the succeeding steps are exactly the same as i 3 --, i,) 
we produce an arbitrarily long chain of unrepeated A[s which is ridiculous since 
there are only m of them. Hence (5.1) and the Main Theorem are proved. 

w 6. Examples 

(i) It is Reasonable to Assume G is Compactly Generated. Let A be the standard 

l i n e a r A n o s o v d i f f e o m o r p h i s m o f r 2 ,  A = ( l l  12). Let G be the infinite direct 

sum Z O  ;gO'-"  with the discrete topology. Elements of G are infinite strings 
(n 1, n 2 . . . .  ) with all but finitely many entries equal to zero. G is not compactly 
generated but otherwise is a perfectly good Lie group. Let G act o n  T 2 by 

q~(n 1, n 2 . . . .  ): x~--~ Az~nl +n2+"')(x). 

The ~p-orbits are clearly the A Z-orbits, the compact (=  finite) A Z-orbits are dense 
in T 2, and f =  A 2 is hyperbolic to the ~o-orbit lamination. The laminae are points 
and the orbits are finite or countable sets of points. Thus, ~o is an Axiom A G-action 
with hyperbolic elements f=~o(1,0 ,0  . . . .  ) = A  2. Since Q , = M ,  q~ satisfies the no 
cycle condition vacuously. It also satisfies Axiom B [16]. 

However, ~o is not O-stable. Any given neighborhood U of ~p in A'(G, M)  
contains a smaller neighborhood of the form 

{~b6A'(G, M): dr(~b(n , , n 2 . . . .  ), ~p(n,, n 2 . . . .  ))<e 

for all (nl ,n  2 . . . .  ) with n l=0  g l > k } .  

The numbers e, and k depend on U. The d r is a metric on Difff(T2). In particular, 
we can choose ~b to be 

$ ( n l , n  2 . . . .  )=AZ~nl ~ . . . . . . . .  )+nk 

and ~b will lie in U. The ~b-orbits are the A-orbits. Since A 2 has more one-point- 
orbits than A has, A z and A are not orbit-conjugate. Hence ~9 is not orbit conjugate 
to ~p and so q~ is not ~2-stable. 

(ii) Why do we Assume the Hyperbolic Element f central? Let F 2 be the free 
group on two generators, a and b. Give F z the discrete topology. F 2 is compactly 
generated. Let A be an Anosov diffeomorphism of M. Then 

~o: F 2 -+ Diff(M) 

av--* A 

b~-+ i d 

gives an Fz-action on M and f =  q~(a) is normally hyperbolic to the orbit lamination. 
(The ~o-orbits are the A-orbits.) But q~: F 2 -+Diff(M) defined by aw-~A, bF-~g- id ,  
is an action near ~O whose orbits, in all likelihood, are totally different than the 
q~-orbits. Hence q~ is not O stable. The same example shows why M. Hirsch needs 
to assume G/G 1 is connected in [-6]. 
3* 
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A2 I 

o3 2 

Fig. 3. Arcs in a circle 

(iii) J. Stallings' Example of  a Hyperbolic Group which is Not  the Direct 
Product: Finite x 77. Let F 2 be the free g roup  on the generators  a, b. Let G be F 2 
divided out by the relat ions 

a3= I bab  -1 =a  2. 

We cont inue to denote  by a, b the cosets containing a, b. It is easy (and it is left 
for the reader)  to check that  the center of G is {b2k}kEe. Suppose  G ~ K  • 77. 
Then 77 c center  (G), and some b 2t generates  77. But b'-itself must  be expressible as 

b t=(k ,b  2hi) for some k s K ,  n~77. 

1 77 This implies b2Z=(k 2, b4"Z), so 2 n =  1. Since ~ , no such factorizat ion G =  
K • 77 exists. 

Any element of  G can be writ ten in one of the forms 

b m ab m a2b m m~77. 

It is then easy to see that  G has two ends (they are app roached  as m - ~  +_ oo 
in the above  expressions) and that  right G-mult ipl icat ion leaves the ends invariant.  
Hence G is hyperbolic.  

(iv) How Stallings' Group Acts Faithfully on S 1, Satisfying Axiom A. A n  
action ~o: G - , D i f f ( M )  is faithful iff q~ is injective. Thus,  we think of an action as 
a representa t ion  of G in Diff(M). If ~o is not faithful then it can be replaced by 
~k: G/ker  q~ ~ Diff(M) which is faithful. The  orbit  decompos i t ions  of  M by ~9 and 
q~ are equal,  so faithful act ions are the only interesting ones for us. 

Let 0 9 = e  2~i/3 and let A~, A 2, A 3 be the counterc lockwise  arcs of  S 1 f rom 1 
to co, co to co 2, co 2 to 1. See Fig. 3. Let g: S I ~  S ~ be ro ta t ion  by 27r/3. Thus,  go9 =09 2, 
go~2=l ,  g l=~o .  Let h~" A~-- ,A  3 be a d i f feomorphism fixing ! and having 
T 1 h 1 =(To, 2 g)o (To, h l )o (T  1 g). Thus,  h I reverses or ienta t ion and, up to t ranslat ion,  
has equal  derivat ive at 1 and co. Put  

[hi(z) z~AI  
h(z)=lg2h~g2(z)  z ~ A  2 

[gh  1 g(z) z ~ A  3. 

Then h is a d i f feomorphism of S 1 which sends A 1 ---~A3, A3--~AI, A 2 ~ A  2. Since 
T 1 h =(T~;g)o(To, h)o(T 1 g), the left and right derivatives o fh  match  up at 1, co, co 2. 
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Now h 1 can be chosen, subject to the above condition on its derivative at 1 
and ~0, so that h is a Morse-Smale diffeomorphism of S 1. For instance, requiring 
[T~ hal < 1 forces sinks at 1, e), ~02; the rest of h a may be defined to give three sources 
for h in between the sinks. For such an h define 

q~: F 2 -* Diff(M) 
a~--,g 

b~--~ h 

where F 2 is the free group generated by a, b. Then ker(q)) is generated by a3=  1 
and ba=a2b. That is, q~ induces a faithful action of Stallings' group G on S ~. 
This ~ satisfies Axiom A because, as is easily checked, f2o = the sources and sinks 
of h. Thus b 2 is a hyperbolic element of G. (Note that b is not a hyperbolic element 
since br 

(v) Question. Can Axiom A b be weakened to 

A b': ~o-orbits with noncompact  isotropy group are dense in f 2  

so that Aa+Ab'  =~ Q-stability? It seems to us that the Cloud Lemma is the 
main obstacle here. 

(vi) Question. If G is a hyperbolic group and M is a smooth compact  manifold, 
when is there a faithful Axiom A G-action on M? When G=2g or IR the answer 

manifold supports Morse-Smale diffeomorphisms and is "always".  For any 
flows. 

(vii) Question. If q~ 
structurally stable? 

is an Axiom A action with strong transversality is q 
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