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ENDOMORPHISMS OF COMPACT DIFFERENTIABLE
MANIFOLDS.*

By MIcHAEL SHUB.

Introduction. A endomorphism of a differentiable manifold M is a
differentiable function f: M — M of class 7, r=1. An endomorphism f is
an automorphism if f has a differentiable inverse: i.e., if f is a diffeomorphism.
The orbit of @ € M relative to the endomorphism f is the subset (f"(z) | m € Z.)
where Z. denotes the integers = 0. If f"(z) —x for some integer m =0,
then o is called a periodic point and the minimal such m the period of z.
If the period of # is 1, then « is a fixed point. In (20) Smale has exhibited
very powerful techniques for the study of the global orbit structure of auto-
morphisms of compact manifolds. It is the purpose of this paper to provide
an introduction to a similar study of endomorphisms of compact manifolds.
The concepts and terminology of (20) are used throughout. A connected
finite dimensional C'* manifold will be simply called a manifold.

The strongest useful equivalence relation for the study of the orbit
structure of endomorphisms appears to be topological conjugacy; f: M — 3
is topclogically conjugate to g: N— N if there exists a homeomorphism
h: M—> N such that hf —gh. Let M be a compact manifold and E7(M) be
the space of C" endomorphism of M with the topology of uniform convergence
of the first  derivatives; then f€ Ev(M) is called structurally stable if there
exists a neighborhood U of f in E7(M) such that any g€ U is topologically
conjugate to f. Some of the most natural endomorphisms to investigate
which are not automorphisms are the endomorphisms of the complex numbers
of absolute value ome: f,: 8*— S defined by fu(2) =27, n€Z, |n|>1.
We may naturally ask, are these f, structurally stable? The answer is yes,
and is given by the following more general proposition.

Prorosition. Let f: 81— S8' be a C* endomorphism such that the
absolute value of the derivative of f is greater than 1 everywhere, then f is
fopologically conjugate to f, where n— degf.

Received October 9, 1967.
* Partially submitted as a Ph. D. thesis.
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176 MICHAEL SHUB.

The endomorphisms f,: §'—> §* are examples of expanding endomor-
phisms and the above proposition is a special case of a more general theorem.

Definition. Let M be a complete Riemannian Manifold, M = ¢, then
a O endomorphism f: M —>M is expanding if 3¢>0, A>1 such that
| Tfmv || = cAm || v || for all v € T'M and for all m € Z, such that m > 0. (Note
that if M is compact this definition is independent of the metric.)

THEOREM (a). Any two homotopic expanding endomorphisms of a
compact manifold are topologically conjugate.

As the expanding endomorphisms of a compact manifold M are clearly
open in E*(M) we have the following corollary.

COROLLARY. Any ewpanding endomorphism of a compact manifold is
structurally stable.

Examples of expanding endomorphisms as well as the proof of Theorem
(«) are given in I. Anosov endomorphisms are also considered there, and
new examples of Anosov diffeomorphisms are given. They are slight modifi-
cations of the general construction given in [20] and were suggested by the
situation for expanding endomorphisms. Smale [20] has used the notion
of expanding endomorphism to construct the D-E series of indecomposable
pieces of non-wandering sets and R. F. Williams [24] has considered
expanding endomorphisms of branched one-manifolds, called expansions, in
the study of one dimensional non-wandering sets of diffeomorphisms.

In II an extension of the Kupka-Smale approximation theorem for
diffeomorphisms (see [12], [22], and [17]) is given.

Definition. Let z€ M be a periodic point of period p for the endo-
morphisms f: M — M. Then @ is called hyperbolic if T'fr: T,M — T,M has
no eigenvalue of absolute value 0 or 1.

If z is a hyperbolic periodic point of the endomorphism f: M —> M then
as in [22] for example we may define the local stable and local unstable
manifolds of f at p Wi*(p) and Wie*(p) respectively.

Definition. Let p be a hyperbolic periodic point of period j of f: M — M
then :
1) The stable manifold of p, W¢(p) = (2 € M | 3n such that
fri(@) € Wioe* (p)) 51 € Z..
2) The unstable manifold W*(p) = (¢ € M | 3n and y € Wi,*(p) such
that f*(y) =2a); n€ Z,.
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3) If ¢ is another hyperbolic periodic point such that We¢(g) is a 1-1
immersed submanifold of M then W¢(p) is transversal to Ws(q)
[we abbreviate this as W«(p) pWe(q)]; if | Wic*(p) is trans-
versal to We(q) on Wit (p) for all n€ Z..

TueoreM (8). Let M be a compact manifold without boundary and let
KSr(M) be the set of f€ Br(M) which satisfy:

1) The periodic poits of f are all hyperbolic.
2) If pis a periodic point of f, Ws(p) is a 1-1 immersed submanifold
3) If p and q are periodic points of f, W*(p) f W5(q).

of constant dimension.

Then KST(M) is a Baire set in K7 (M).
Since Diff"(M, M) is an open subset of E7(M) we have as an imme-
diate corollary

CorOLLARY. The Kupka-Smale automorphisms are a Baire set in
Diftr (M, M).

This corollary is the Kupka-Smale approximation theorem for diffeo-
morphisms.

In IIT we consider non-wandering sets of endomorphisms.

The period during which this paper was written was a period of great
activity in the study of global analysis at Berkeley which gave me the oppor-
tunity to speak to many mathematicians working on similar subjects. I would
particularly like to thank the following mathematicians for valuable conversa-
tions, suggestions, and encouragements: D. Epstein, M. Hirsch, N. Kopell,
I. Kupka, E. Lima, C. Moore, J. Palis, M. Peixoto, C. Pugh, J. Wolf, E.
Zeeman, and especially my advisor S. Smale.

I. Expanding endomorphisms. The beginning of this section is
devoted to a description of some of the geometric properties of expanding
endomorphisms on compact manifolds.

TuroreM 1. Let M be a compact manifold and f: M — M an expanding
endomorphism. Then:

a) f has a fized point.

b)  The universal covering space of M is diffeomorphic to R*, n = dim M.

c) If V.CMis an open subset then |J fn(V) =M.

mezZ,

12



178 MICHAEL SHUB.

d) The stable manifold of any periodic point of f is dense in M.
e) The unstable manifold of any periodic point of f is all of M.
£) [ has a dense orbit.

g) The periodic points of f are dense in M.

LemMMA 1. Let f: N— N be expanding ; then f is a covering map. In
particular, if N s simply connected, f is a diffeomorphism.

Proof. This is a consequence of (26), for instance.

Lemuma 2 (Contraction mapping Lemma). Let X be a complete metric
space and g: X — X a continuous map such that 3k, u€ B u < 1 such that
ad(g™(z),9"(y)) = kurd(z,y) for all x, y€ X and for all n>0. Then g
has a unique fized point.

A g satisfying the hypotheses of Lemma 2 is called a contraction mapping.

LemmA 3. Let f: N— N be an expanding diffeomorphism. Then f has
a unique fized point.

Proof. f is a diffeomorphism so it has an inverse f*. Since f is
expanding 3¢ > 0, A > 1 such that | Tf*(v) | = c/l\—n | v] for all v€ TN and
for all n>0. Let d(z,y) be the metric on N induced by the Riemannian
metric on TN then d(f(z),f"(y)) §ci1;d(a;,y) for all 2,y€ N and for
all n > 0 by the following argument. Let &:[0,1] — M such that h(0) — =
and (1) =y be a minimal differentiable arc joining z and y, then

a(a,y) = f"1W()1 dt ama
a @) = [Tl as 5 )

Thus f*: N— N is a contraction mapping and f* has a unique fixed point
which is obviously also a unique fixed point for f.

M. Hirsch pointed out the following lemma to me.

Lemma 4. Let f: N— N be an expanding diffeomorphism and let c, A
and d be as is Lemma 3. Let z€ N and B,(z) — (y€ N | d(z,9) =7); then
f*(Br(2)) 2 Bowr(f*(2)).

Proof. Let h:[0,1]— f»(B,(x)) be a minimal differentiable arc from
fr(2) to 8(f"(B,(z)). Then fnh:[0,1]— B,(z) is an arc from z to 0B, (z)

1 1
SOf; I Tf-»0' (¢) | dt = » andf | B (t) | dt = eArr.
[
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Lemma 5. Let f: N— N be an expanding diffeomorphism. Then N is
diffeomorphic to B", n=dim N.

Proof. Let z, be the unique fixed point for both f and f*. Then the
eigenvalues of Tfpt: TN — T, N are all less than one in absolute value;
see (18, p. 425). Thus there is an embedding of the closed unit disk D» C B,
t: Drn— N, such that 1(0) ==, and f-*o4(D") C interor +(D"). By Lemma 4
U (froi(D)) is both open and closed in NV, hence all of N, and N is the
n=0

expanding union of differentiably embedded disks, thus N is diffeomorphic
to B7.

Notation. For j€ R, let m;: R"— R» be the map m;(z) =jz and
;. R"— B» be the map m;or where r is an orientation reversing reflection
of R

The proof of the following proposition may essentially be found in [28]
or [22].

ProrosiTioN 1. Let f: N— N be an expanding diffeomorphism and
j>1. Then f is topologically conjugate to m; if f is ortentation preserving,
or to n; if f is orientation reversing.

Notation. If M is a Riemannian manifold, its universal covering space
will be denoted by # with covering map P: ¥ — M and the Riemannian
metric which is the pull back of the Riemannian metric on M by P. Thus
the covering transformations of i are isometries. If M is complete so is /.
Given a continuous function «: N— M a lifting of « is a continuous func-
tion &: N — M such that

l —_—
— M

It is well known from covering space theory that any a: N — I has a lifting
and if @ and &, are both liftings of « then there exists a unique covering
transformation ¢ of M such that & — ¢d,.

Let Dy (Di) denote the group of covering transformations of N (i7).
Then a continuous function 8: N— i is a lifting if and only if there is a
group homomorphism %: Dy— Dj such that 8¢ —h(¢)B for all ¢ € Dy, in
which case % will be denoted by 8#. A compact subset €' of # will be called
a covering domain if (' is the closure of its interior and P (C) —

commutes.
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LeMMA 6. Let f: M— M be expanding and let f: M — M be a lifting
of f, then f is expanding.

Proposition 2. Let f: M—> M be expanding. Then the universal
covering space of M is diffeomorphic to R, n = dim M, and f has a fized point.

Proof. Lemmas 1, 3, 5, and 6, and the fact that if x, is a fixed point
for a lifting 7 of f then P(z,) is a fixed point for f.

Proof of Theorem 1. (2) and (b) are special cases of Proposition 2.
Since the local stable manifold of a periodic point of an expanding endo-
morphism is the periodic point itself and the local unstable manifold is a
neighborhood of the point (c) implies (d) and (e). (c) also implies (f)
see Birkhoff [7]. It remains to show (c) and (g). Let C C I be a covering
domain and ¥V C M an open set. Then V/ = P-*(V) Ninterior of C £ 0.
By Lemmas 4 and 6 for any lifting 7 of f, there exists an n >0, a ¢ € D
and a closed ball B C ¥V’ such that (1) f»(B) D ¢(C), which proves (c).
Moreover, by (1) B D f¢(C) and in particular B D f-*¢(B) which implies
3z € B such that # — "¢ (z) or equivalently f#(z) = ¢(z). Thus f*(P(z))
= P(z), which proves (g).

ProrositioN 3. Let f: M—> M be an expanding endomorphism and
me M. Then:

(a) M is a K(m(M,m),1).
(b) (MM, m) is torsion free.
(¢) fa:m(M,m)—>a (M, f(m)) is injective. Moreover, if M is com-
pact T4 (m (M, (m)) is of finite index in m (M, f(m)).
(d) If M s compact then X (M) the Euler characteristic of M equals
zero.

Proof. (a) By Proposition 2, i is diffeomorphic to B*, n = dim 3 so
for i>1 m(M,m) == (H,m) = = (B 0) =0.

(b) By a theorem of P. A. Smith Z, cannot act freely on B» so m, (M, m)
cannot have a torsion subgroup. An alternate proof is given in [15, p. 103].

(¢) Lemma 1 says that f is a covering map.

(d) If M is compact, by Lemma 6 f is a k sheeted covering map & > 1
and consequently X (M) =kX (M) =0.

Lemma 7. Let G be a group and ¢: G—> G o monomorphism. Let

0

Guo—11¢"(G). Then ¢(Gs) — G

m=0
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Proof. If h€ Gy then W€ ¢m(G) for all m, and hence ¢(h) € o™ (G)
for all m = 0. As ¢i(G) C ¢I(G) for j <1, $(Gx) C ﬂo¢m(G) =G, Now
m=

it y€ G, there exists ;€ ¢¢(G) such that ¢ (z;) =y, but as ¢ is injective
@;=ua; for all 4,7=0 and ;€ Go.

ProrostTioN 4. Let f: M— M be expanding and x, a fized point of f.
Then me=() f#"(m (M, %)) =1.

m=0

Proof. Let Mx, be the covering space of M corresponding to me. By
Proposition 3(c) f# is a monomorphism and by above Lemma fa(7s) = o
Therefore f lifts to an expanding diffeomorphism of Mx, and and by Lemma
5, Mr, is diffeomorphic to B*. Thus z,=1.

COROLLARY 1. f4: m (M, 3,) = m (M, m,) leaves no proper subgroup
invariant and in particular the identity is its unique fized point.

Conjugacy theorems for expanding endomorphisms. I would like to
thank J. Tate who communicated to me a proof of Theorem («) of the intro-
duction for the case where the compact manifold is S*, which I had proven
geometrically. Tate’s methods were more amenable to generaization and
the proofs presented below are generalizations of his method. Throughout

this sction N and M will be manifolds; N will be compact and M will be
complete.

Definition. Let «: N— 1 be a continuous function and &: N— i a
lifting of @. Then Vg will be the set of continuous functions B: N — il
which are liftings of continuous functions from N to M such that B¥ — a#.
It A,B€ V5 then D(4,B) =su;\),(d(A(n),B(n)).

ne;s

ProrosiTioN 5. D is a complete metric on Vg.

Proof. (a) D(4,B) <o :let C be a covering domain in N. Then for
any x € N there exists a ¢ € Dy such that ¢(x) € C. Thus d(4(z),B(x))
—d(A¢¢ (), Bprp(2)) and as A# = B# — g#,

d(4¢7¢ (), Bep(x)) =d(a? () Ag(x), &% (¢7) B ().

But a#(¢1) € Dy and is an isometry of i so d(A(x), B(z)) = d(A¢(2), B(z))

and s1€11\37 (A (n),B(n)) =su}C)'(A(m),B(fr) ). As (' is compact, D(4,B) <.
nEL &€

(b) D is complete: if %; is a Cauchy sequence in Vg then %; converges
to a continuous function %k: N— ¥, and kip— k¢ for any ¢ € Dy. But
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ki¢=k,#(¢)k@=d#(¢)k¢ Thus a-#(d))k@—) kd) and as k@—) k, é#(¢)k=k,b
and so k€ Va.

THEOREM 2. Let f: M— M be expanding and let g: N—>N and
a: N— M be continuous. If there ewists liftings f: M — M, j: N— N, and
@: N— I of f, g, and a respectwely, such that f*&* = a*g# then there ewists
a unique B € Vg such that fB = Bj.

Proof. For A€ Vg define T'(4) =7*Ag. It suffices to show that T is
a contraction mapping on V3. B is then its unique fixed point.

(a) T(Vs) CVgz:let A€ Vqand ¢ € Dy. Then
frAge =77 (4%g%()) Ag.
Since f# is injective and
A*g* () = a*g*(¢) € Im J#; (F#1A%5#(¢)) [P Ag =T (4%5%($)) Ag-

So f#1A#G*(¢)fAjp. —F1Age.  But fErA#jt —fte*g# —a*. Thus
FlAdge —at(¢)f*Ag and so frAGE Vi

(b) T is a contraction mapping: As in Lemma 3 there exist ¢, A; 0 <¢
and 1 < A such that d(f(z),f"(y)) f—ﬁd(x y) for all @,y € M and all
n>0. Since D(4gn, Bjr) =D(4,B) for all A,B€ Vs, D(f"Ag" f-"Bg")

’S‘c—)lx—"p (4,B) for all n >0 and T is a contraction mapping.

TaeorEM 3 (Theorem o of the Introduction). Let M be a compact
manifold and let f: M— M, g: M— M be two homotopic expanding endo-
morphisms. Then f and g are topologically conjugate.

Proof. Let m € M then there exists a path 8 from g(m) to f(m) such
that the map Bz : w (M, f(m)) > m (M,g(m)) : a— B*af satisfies Bufs — g
see [23, p. 52]. Let F be any lifting of f; f: M — M, and let ¢, € P*(m)
and e; —f(e,). Let §: M — I be the lifting of g which takes ¢, into the
endpoint of the lifting of the path 8-* which starts at ¢;. Then it is easy to
check that f#— g#. Thus Theorem 2 may be applied with « the identity of
M, and & the identity of #. Consequently there exist unique By, B, € Vg
such that (1) fB,—B.§ and §B,=B,f. Thus B,fB, =B,B.j and B,jB,
— B,B,f. By applying (1) fB.B,=B;B.f and jB.B, = B,B;j. But BB,
and B,B; are elements of Vi and by the uniqueness part of Theorem 2,
B,B,— B,B, — the identity of #. B, is the lifting of a continuous function
hi: M—> M, 1=1,2 which satisfy fh, =h,g and gh,=—h, and hih, = hyh,
= identity of M.
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THEOREM 4. Let g: N— N be a continuous function and have a fized
point ne, and let m, be a fized point for the expanding endomorphism
f: M— M. There is a one to one correspondence belween the continuous
functions h: N—> M, such that h(n,) =mo and fh=hg, and the group
homomorphisms A : wy (N, no) —> i (M, mo) which make the following diagram
commute:

A
T (N, no) —_— 71'1(]&[, mo).

g# f#
A
1 (N, ng) ————> m, (M, my)

The correspondence is given by h—> hyg.

Proof. Since M is a K (w,(M,m,) there exists a continuous function
o: N — M such that a(n,) =m, and ag: = (N, n) = = (M, m,) is equal to
A; see [23, p. 427]. Let m,€ Py*(m,) and 7€ Py*(n,). Lift f to
F: M — M such that F(rmo) =m,; lift g to §: N — NV such that §(f,) = fio;
and lift « to &: N— M such that &(@,) =, Then f#a*—=a*j*. Let
T: Vi—> V& be as in Theorem 2 and let V3* = (B € V& | B(fio) =1,). Then
V3* is a closed subset of V& and T'(V&*) C Va* and the unique fixed point B
of Theorem 2 actually lies in V3*. B lifts a continuous function A: N — M
such that h(ny,) =m, hy =— A and fh —hg. If h, is another continuous func-
tion such that fh, = kg, by (n,) =m, and h,y = A, then lift A, to hy: N — I
such that %, (fl,) = mo; then &, #—=a*. Since fihy =h.g, fh, and k., are
liftings of the same continuous function so there exists a ¢ € Dz such that
¢fhy—=hig. Thus ¢fhi (i) = hig (fio) 5 &7 (170) = 1o and ¢ (1) = 1 80
is the identity map of #. Consequently fh, =%,J and h, =B so h, —h.

THEOREM 5. Let M and N be compact and let g: N— N and f: M— M
be expanding with fized points n, of g and my of f. There is a one to one
correspondence between the homeomorphisms h: N — M, such that h(n,) = m,
and fh=hg, and the group isomorphisms A: m (N,no) — w1 (M, mo) which
make the following diagram commute:

4

(N, ng) ———> 7 (M, m,)
g# f#
4
(W, ng) ———— 7 (M, my).

The correspondence is giwen by h— hy.
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Proof. By Theorem 4 there exist unique h,: N—> M and h.: M >N
which are continuous and which satisfy A, (7,) = mo, hs(mo) = n,,

hagt (N, "0) - 7"1(]”: mO)

is equal to 4,
o w1 (M, M) —> 1 (N, 100)

is equal to A, fh,=h,g, and gh,="h.f. Consequently fhih,= hih.f,
(hahs) (mg) = myo, and (hihg) g : (M, mo) = m (M, mo) is the identity map.
By applying Theorem 4 again f;h, — the identity of M. Similarly h.h, — the
identity of N. Thus h, and k. are homeomorphisms.

CoROLLARY 2. Let M be a compact manifold and let f: M — M be
expanding. Then the centralizer of f in the monoid of continuous functions
from M to M is a countable discrete subset.

Proof. f has a finite number of fixed points, and for any m,€ M,
wy (M, m,) is finitely generated. Thus Hom (=, (M, m,),m (M, m,)) is count-
able. As any continuous map h: M — M such that fh — hf must take a fixed
point of f into a fixed point of f, Theorem 4 may be applied to the case N = M,

g="
In a similar way Theorem 5 may be used to determine the centralizer

of f in the group of homeomorphisms of }/. It is possible by using Theorem 2
to determine the algebraic structure of the centralizers for some cases.

Remark. Theorem 2 asserts in particular that given a continuous map
g: 8*—>8* of degree m, |n|>1, there exists a continuous map a: §*— St
of degree one such that f,a = ag, where f,(2) =2 « is, of course, not a
homeomorphism in general.

Examples. The examples given here are motivated by the examples of
Anosov diffeomorphisms given in [20, sec. I-3]. It would be very helpful
to the reader to be familiar with them. Recall that if H is a connected Lie
group and F: H— H is an expanding group automorphism then by Lemma 5,
H is diffeomorphic to B*. In particular, H is simply connected. And as in
[20, I-3.6] H is nilpotent. Up to topological conjugacy all examples of
expanding maps on compact manifolds, that I know of, are given by the
following construction:

Let N be a connected, simply connected nilpotent Lie group, with a left
invariant metric. Let C be a compact group of automorphisms of N, and let
G =N -0, be the Lie group obtained by considering N as acting on itself
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by left translation and taking the semi-direct product of N and C' in Diff(N).
Let T be a discrete uniform subgroup of @, such that N/T' (the orbit space of
N under the action of I') is a compact manifold. Then by a theorem of
L. Auslander [5] T NN is a uniform discrete subgroup of N and T'/T NN
is finite. Now let E: N— N be an expanding group automorphism of N
such that by conjugating ' by E in Diff(N) ETE-* CT. Then E projects
to an expanding map of N/T'; E,: N/T— N/T.

Remarks. (1) As T/T NN is finite, C' could have been assumed to be
finite to begin with, and as ' N NV is a uniform discrete subgroup of N, N,/T'
s finitely covered by the nilmanifold N/T' N N. Since E(NNT)E-*C NNT,
E, lifts to an expanding map E,: N/TNN—>N/TNN. (Conjugating an
element n of N by E in Diff (V) gives E(N)).

() N/T may be considered as the double coset space T'\G/C.

(3) Let 0>H—>T—F—0 be an exact sequence of groups where H
is finitely generated, torsion free, discrete nilpotent group, and F is a finite
group such that in the induced action F acts effectively on H by isomorphisms.
Then by the results of Malcev [14] which are summarized in [6] or [20],
H may be embedded as a uniform discrete subgroup of a connected, simply
connected nilpotent Lie group &, and the action of ¥ on H extends uniquely
to an effective action of # on N by Lie group automorphisms. Thus T' may
be considered as a subgroup of NoF and if T acts freely on N, N/T is a
compact manifold.

Problem. Does the general construction above give all examples of
expanding endomorphisms of compact manifolds up to topological conjugacy ?

I have tried to use Proposition 4 and other facts about the fundamental
group of a compact manifold with an expanding endomorphism in conjunction
with Theorem 5 to show that it does. Starting with an entirely different
approach to the problem, M. Hirsch has shown me some very promising ideas
and partial results; but at this writing it remains unsolved.

The toral expanding endomorphisms. The n-Torus, T", may be con-
sidered as the quotient of the abelian Lie group B» by the uniform discrete
subgroup Z", the subgroup of points all of whose entries are integers. Let 4
be an n by n matrix such that all the entries of A are integers and all the
eigenvalues of A are greater than one in absolute value. A may be thought
of as an expanding Lie group automorphism of R» such that A(Zr) C Zn
(Or equivalently considering Z» as contained in Dift(RB), AZ"A-* C Zn).
Then 4 projects to an expanding endomorphism of 77; A,: Tr—> T, 4, is
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called a linear expanding endomorphism. Conversations with M. Hirsch
were very helpful in proving the following:

ProrosiTioN 6. Let f: Tn—>Tn be expanding then f is topologically
conjugate to a linerar expanding endomorphism.

Proof. Let f: R"— R» be a lifting of f. Then 7#: Dgn—> Dgn may be
considered as a group homomorphism of Z* C R*, in which case /#(2) =F(2) ;
for z€ Zr. F#*: Zn— Z» may be written as an n by n matrix 4, all the entries
of which are integers. A may be considered as a Lie group automorphism
(i.e., linear map) of B» such that A | Z»—F | Z" Thus there exist C >0,
A > 1 such that in the usual metric on R, | A*(2) || = CA* | 2 | for all z€ Z™.
By the linearity of 4, | A"(y)[|=COr"|y| for all y€ R» and A is an ex-
panding Lie group automorphism of R", such that A(Z") C Z». Thus 4
projects to a linear expanding endomorphism Ao: I— T As 4 is a lifting
of A,, and A* = J# the proof of Theorem 3 shows that 4, and f are topo-
logically conjugate.

Remark. A, is homotopic to f, and A: B*—>E" is f,: H,(T", R)
— H,(T" R). It should be noted, however, that two expanding endomor-
phisms which are topologically conjugate need not be homotopic.

ProposiTiON 7. If M is a compact, connected (real analytic) Lie group
and if f: M — M is expanding, then M is the n-Torus, T" where n = dim M.

Proof. M is of the form Té ¢ where 7' is a Toroid, (¢ a compact

semisimple group and D a finite central subgroup of 1" X & such that DN T
and D N G are trivial ; see [10, p. 144]. Thus I is homeomorphic to 7 X G.
T is homeomorphic to B™, m = dim 7', and @& is a compact semi-simple group.
But since f: M — M is expanding, i is diffeomorphic to E», n— dim N, thus
G is trivial and M =1T.

1f M were not compact by using [10, p. 180] the same argument would
prove that M is homeomorphic to the direct product of a Torus and a Euclidean
space.

If C is a compact group of Lie group automorphisms of B and T is a
uniform discrete subgroup of C'-R*, then E"/T is a compact manifold which
has a flat Riemannian metric. See [8] and [23] for general references.
The following is proven in [9].

TaEorEM. If M is a compact flat Riemannian manifold, then there
exists an expanding endomorphism of M.
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The situation when the group N is not abelian seems considerably more
complicated. I would like to thank C. Moore for pointing out the following
example to me. TLet N be the simply connected non-abelian Lie group of
dimension three; that is, we may suppose that N is represented by the group
of lower triangular matrices

100
z 1 0| z,9,2€ R.
z y 1
Let T' be the uniform discrete subgroup of matrices of the form

1 0
o 0| a,B8,y€ Z.
v 1

D = o

If a, b, and c are integers which are greater than one in absolute value and
ab = ¢, then the map

z—az

y—>by

2—> 2

defines an expanding Lie group automorphism of N which takes T into itself
and hence projects to an expanding endomorphism of N/T.

*Now let (' be the compact group of Lie group automorphisms of N

consisting of the identity, and the automorphism A4 defined by A (z) = —uz,
1 0 0

A(y) =—y, and A(z) =2 Let A4,=0 1 0[A. Then the group
3 0 1

generated by 4, and T is a uniform discrete subgroup of N-C; call it Ty.
It is easy to check that Iy —=TU A, If E: N— N is the expanding Lie
group automorphism defined by

€r—>ar
y—by
Z2—>C2

where ¢ and b are odd integers greater than one in absolute value and ¢ — ab,
then ET.E-* CT; and E projects to an expanding endomorphism of N,/T,.
N /Ty is not a nilmanifold, since I'; is torsion free. But
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1 0 O 1 0 0 1 0
a 1 0|d,=4,|—«a 1 0 ]|and in particular | [1 1 0|4, |=4,
' 0 0

v B 1 vy —B 1
and thus T, is not nilpotent; see [12, p. 247].

-
—

Anosov endomorphisms. We begin by recalling some definitions from
[20]. A bundle map of a Riemannian vector space bundle ¢: £ — E is called
contracting if there exists ¢ >0, 0 <A <1 such that for all v€ £ and all
integers m >0, | ¢™(v)| <cA™|v|. ¢ will be called expanding if there
exists d > 0, © > 1 such that for all v€ F and all integers m > 0, || ¢ (v) ||
> dum | v|. If E is a Riemannian vector bundle over a compact space, then
the property of contracting or expanding is independent of the metric. Let
M be a Riemannian manifold; f: M — M an endomorphism; and 4 a subset
of M such that f(4) C A. Then f is said to be hyperbolic on 4 if TM | 4 is
the Whitney sum of two subbundles Es¢ and E* such that T'f(H$) C Es;
Tf(E*) C E*; Tf is contracting on E%; and T is expanding on E*.

Definition. Let M be a complete Riemannian manifold without boundary.
f: M— M is an Anosov endomorphism if f is an immersion, a covering map,
and f is hyperbolic on all of M.

Expanding endomorphisms and Anosov diffeomorphisms are, of course,
examples of Anosov endomorphisms. Anosov immersions can be constructed
in a similar fashion to the Anosov diffeomorphisms constructed in [20].

THEOREM 6. The Anosov endomorphisms of a compact manifold M are
open wn B (M) and are structurally stable.

The proof of this Theorem is the same as the proof of the openness of
Anosov diffeomorphisms [R0, 1-8] and J. Moser’s proof of the stability of
Anosov diffeomorphisms, as exposited by J. Mather in the appendix to [20],
except for the following modification in the proof of the second statement.
Let C°(M, M) denote the continuous functions from M to M and let C°(if, iT)
denote the continuous functions from i to i which are liftings of continuous
functions from M to M, both spaces with the compact open topology. Then
the natural projection map p: C°(J#, i) — C°(M,M) is a covering map
and defines a Banach manifold structure on C°(#, #). If 7 is any lifting
of f, one applies all the arguments of the appendix to the map h—> fhf,
he€ Co(i, i) which is defined in a neighborhood of idy; and then one
projects.

I would like to give two examples of Anosov diffeomorphisms of compact
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manifolds which are not nilmanifolds. The examples were motivated by (*)
and are elaborations on [20, 1-3.8]. Once again the general framework is:
T C N-C is a uniform discrete subgroup; 4 is a hyperbolic Lie group auto-
morphism of N such that ATA-*=T; and A projects to an Anosov diffeo-
morphism of N/T.

Let Q[\/ 3] be the field of rational numbers with the \/ 3 adjoined;
let Z[ V3] be the algebraic integers in Q[V3], and let o: Q[V3]— Q[V3]
be the non-trivial Galois automorphism (sending V3 into — V3). For
a€ Q[\/3], o (a) will be written &. TLet A=2 4 V'3, then AX —1. Finally,
let w € Q[ V3] be chosen such that w¢ Z[V/3], 2w € Z[V3], and aw —a + w
where a € Z[V/3]. It is easy to find such a w.

(1) Let N be the abelian Lie group R*, and let C be the compact group
of Lie group automorphisms of R* consisting of the identity and the map B,
B(a,b,¢,d) = (—a,b,—c¢,d) for a,b,¢c,d€ R. Let T be the uniform discrete
subgroup of R* consisting of all elements of the form («, 8, & B), @, B€ Z[V 3].
Let A: R*— R* be defined by A(a,b,c,d) = (Aa,Ab,Ac,Ad). Let T'; be the
uniform discrete subgroup of N-C generated by T and B;, where B,
= (0,w,0,®)B. Then I'' =TU B,I' and AT;A* =T, so A projects to an
Anosov diffeomorphism of N/Ty, which is a Riemannianly flat compact four
manifold. N/T; is not a nilmanifold, however, by the same argument as in
(*) ((1: 0, 0;0)B1)2=Blz°

(2) TUet N be the direct product of two copies of the lower triangular
3 by 3 matrices. For convenience we will write the elements of this group
as (a,b,¢,d,e,f) a,b,c,d,e,f€ B where the multiplication is:

(a; b: 2 d; 2 f) (al, bl:cb dl, 1, fl)

= (a+a,b+by,c+ba, o, d+dy, e+ e, f+edi + ).
Let T be the uniform discrete subgroup of N consisting of all elements of
the form (a,8,v,% 8,y) @, 8,y€Z[V3]. Let C be the compact group of
Lie group automorphisms of N consisting of the identity and B, where
B(a,b,c,d,e,f) = (—a,—b,c,—d,—e,f). Let A be the hyperbolic Lie
group automorphism of N defined by 4A(a, b, ¢, d, e, f) = (Ra, A%D, Ac, Ad, X%¢, Af).
Let T; be the uniform discrete subgroup of N - C' generated by I' and B;, where
= (0,0,w,0,0,@)B. T;=TU BT and AT,A*=T,, so A projects to an

Anosov diffeomorphism of N/T, which is not a nilmanifold by the argument
n (*).

I would like to thank J. Palis for his help in calculating the above
examples.
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II. Kupka-Smale endomorphisms. The proof of the Kupka-Smale
approximation theorem presented here is in its essentials a reworking of the
proof for automorphisms given in [22]. The stable and unstable manifolds for
endomorphisms are, however, more complicated than those for automorphisms,
and the proof of transversality theorems is correspondingly more difficult.
The Abraham transversality theorem is used to deal with the new difficulties.
In order to apply the theorem, some facts about and examples of Banach
manifolds are necessary. The following material may be found in [1], [2]
and [3]. :

Throughout this section N and M will be finite dimensional C* manifolds
such that 94 — @ and N is compact. G will be a Banach Manifold. Let
Cr(N,M) denote the space of C* functions, =1, from N to M with the
topology of uniform convergence of the first r derivatives. (Note that
Or(M,M)=Er(M)). If f: N> M is an element of C"(N,M) then f*TM
is the vector bundle over N which is the pullback of the tangent bundle of M
by f. If E is a vector bundle over a compact manifold then Iv(E) is the
Banach space of O sections of F with the topology of uniform convergence
of the first r derivatives.

THEOREM (1) see [1, 11.1]. C"(N,M) is a Banach manifold, and the
tangent space at f€ C(N, M), T;C"(N, M) may be identified with T (f*TM).

Definition. Ev: O7(N, M) X N— M is the map defined by Ev(f, n) = f(n).

THEOREM (2) see [1,11.6 and 11.7]. Ev: C"(N,M) X N— M s Cr.
Moreover, if h€ T (f*TM) and 2 € TN, then TEv s, (h,2) = Tf,(2) + h(n)
where h(n) is considered as an element of Ty M.

Definition. Let G be a Banach manifold and let «: G— Or (N, M)
be a function. Then HKv: @ X N—M is the function Bv(aX idy).
Eva(g,n) = a(g)n for all g€ G and all n€ N. TIf Ev is of class Cr, r=1,
@: G—>Cr (N, M) or briefly, (G, «) is called a manifold of mappings.

Ezamples. (1) By Theorem 38, if @ is a submanifold of C7(N,M) and
j: G—COr (N, M) is the inclusion map, then (@, ) is a manifold of mappings.

(2) Let M be compact. Let p: Er(M) — E*(M) be the map p(f) =77,
and let G be a submanifold of Ev(M). Then (G,p | @) is a manifold of
mappings.

(3) Let M be compact. Let graph,: B"(M)— Cr(M,M X M) be
defined by graph,(f) =—idy X f. Then if G is a submanifold of Er (M),
(@, graph, | G) is a manifold of mappings.
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LemMma 1. Let G be a submanifold of Ev(M). Let f€ G, and let m€ M.
If he T;G and z2€ T\wM then:

(@) TEvp,p, (hy2) =:2:Tfﬂ’-f(m>"h(f‘”'1(m)) + Tfw?(2).
(b) TEvgraphp(r_m)(ha 2) = (%, TEvp ., (h,2) ).

Proof. It is sufficient to prove (a). We proceed by induction. For p=1
this is Theorem 3.

TEUIH']-(I,M) (h} Z)
»-1 .
=TEvm@) (h,%Tffﬂ-um)’h(f’”‘l (m)) + Tfw?(2))

= Tfpm (ngfp-;(m)ih(fp—j—l(m) ) + h(fe(m)) 4 Tufr*t(2)

which by reindexing (j goes to j+ 1) equals

ngﬂ'ﬂ-f’h(f"“”"l(m)) + T (2).

The Abraham transversality theorems. Let K (N) be the topological
space of compact subsets of N with the weakest topology such that all the
compact subsets of an open set of N form an open set. Let & (TM) be the
Grassmannian bundle of % planes in 7M. Let Wy be the topological space
of closed k¥ dimensional sumanifolds of M with the weakest topology which
makes the map r: Wyp— &, (TM), (W) =TW for We W, continuous.
Recall from [13] that a differentiable map f: G — M is transversal to W€ Wy
at a point g€ G if and only if f(g) ¢ W or Tf,(T,G) + TrgyW =Tt M.
f: G— M is said to be transversal to W € W;, on a subset K of G if f is trans-
versal to W at each point of K.

With slight changes, the proofs of the following two theorems are given
in [1, 13.4 and 14.2] and [2].

OprENNEss THEOREM. Let a: G— COr(N,M) be a manifold of mappings.
Let B: G—>K(N) and ¢: G— Wy be continuous functions. Then Gop
= (g€ G| a(g) is transversal to ¢(g) on B(g)) is an open subset of G.

Dexnsity TuHrEOREM. Let K€ K(N), WeE Wy, and let a: G— C7(N, M)
be a manifold of mappings. Let Ggw= (g€ G| a(g) is transversal to W
on K). If Eva is transversal to W on G X K and if Eve is C7 where
r>max(dim N + k —dim M, 0), then Ggw is an open and dense subsel
of G.
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Remark. In applying the transversality theorems to the Kupka-Smale
approximation theorem for endomorphisms the condition in the density
theorem 7> max(dim N -+ k—dim M, 0) will be irrelevant since E(M) is
dense in E»(M) for ¢ > p and the openness theorem makes no assumption
on r other than »=1. In order to apply the transversality theorems to the
approximation theorem some lemmas on the transversality of Fva are needed.
Instead of writing f: G — M is transversal to W on K we will write fa W
on K.

Lemma 1. If a: G—>C"(N,M) s a manifold of mappings, and if
a(g) p W at m, then Evasp W at (g,m). From now on let M be compact.

LemmA 2. Let f€ Er(M). Let m be a hyperbolic periodic point of f.
Then graphy(f) ftAuxu at m, and Evgeapm, fAuxy at (f,m) for all positive
wntegers p.

Lemwma 8. Let f€ Er(M), and let m€ M be a periodic point of f of
period p. Then Evgapn, hAuxu at (f,m).

Proof. Since p is the minimal positive integer n such that f*(m) —m,
if 0=1, j=p, then fi(m) s~fi(m) when 15~ j. By Lemma 1(b),

TBvgum,, | (1:2) = (2 8 Thsi B (7757 (m)) + T2 (2).

We may construct sections k€ I7(f*T'M) such that A(frii(m)) =0 for
540, und h(fr-*(m)) considered as an element of T'()M is any element we
wish. Letting 2= 0, this argument shows that TEvgmphp(r ,..>T BT (M) X M

contains 0 X T M. Thus Evgapm, hAuxu at (f,m).

Definition. Let 0N =@, and let V C N be a compact submanifold,
perhaps with boundary. Then R: C7(N,M)— Cr(V,M) is the restriction
map, R(f) =f| V for all fe C"(N,M).

LeMMma 4. (E7(M),Rop) is a manifold of mappings. Moreover, let
V and W be closed submanifolds of N such that V4 W, and let g€ E* (M),
then:

(a) Let meV such that g7(m) 4 g¥(m) for 0=j<k=p—1 and
such that gr*(m) ¢ W. Then Evgep,p W at (g, m).

(b) Let g have mazimal rank on W and let g(W) C W. Let me V.
Then, if gi(m) =g¥(m) for 0 =j< k=p—1 implies that g*(m) € W for
all 1= 4, Bvgop W at (g, m).
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Proof. That (E™(M),Rop) is a manifold of mappings follows from
Theorem 2 and the fact that Evg.,=FEv, | E"(M) X V. The proof of
(a) is the same as the proof of Lemma 3. To prove (b) notice that by the
hypotheses we may assume that there exists an n < p such that g»(m) ¢ W.
Let s be the maximal such n. Then by (a) Evgesaft W at g(m). By Lemma
1 TEvgop= Tgr**(TEvVgos1) + terms which can be made equal to zero
by the proper choice of A’s and #’s, as in Lemma 3. Since g has maximal
rank on W, Evg, f W at (g, m).

Definition. Let Tp= (f € B"(M) | graph f2 Ayxa on all of M). Let
H,= (f€ T, | all periodic points of f of period = p are hyperbolic).

The following proposition is well known.

n
Prorosrtion 1. Let f€ Ty, n <. Then f has a finite number of
k=1

periodic points of period =n; Bi,- - -,B:. Moreover, there ewist neighbor-
hoods U; of the B and W of f such that U; N\ Uy =0 for j==k, which satisfy

the following condition. If ge W, then g¢ (n] Ty and g has precisely 1
&=1

periodic points of period =mn, ay,- - -,a such that a;€ U; and period
aj= period ;.

TureoreM 1. T, and H, are open and dense subsets of Ev(M).

Proof. By Lemma 3 and the transversality theorems, T, is open and
dense in E"(M). By the proof of [22, 5.1] H, is open and dense in T}.
We proceed by induction, assuming that H, is open and dense in Er(M).
We will show that T,,, N H, is open and dense in Er(M). Then, by the
openness of transversality, 7, is open and dense in E7(M) and once again
by the proof of [22, 5.1] H,,, is open and dense in T'p,;. Let f€ H,. If m
is a periodic point of f of period p - 1, then by Lemma 3 Evgrapn,,, ft Aurxar
at (f,m). If f#*'(m) = m, and m is not of period p 41 then m is of period
kE<p+1 and m is a hyperbolic periodic point of f. By Lemma 2,
Evgrapn,. h Auxu. Thus if f€ H,, Evgrapn,. f Auxy on all of M, and by the
transversality theorems T, N H,, is open and dense in H,.

Definition. Let f€ Er(M), and let m be a hyperbolic periodic point of f.
Then if dim Wie#(m) = dim M, m is called a source. If 0 < dim Wieet(m)
< dim M, m is called a saddle. And if dim Wi (m) =0, m is called a sink.

Bemark. Tt is well known that the local stable and unstable manifolds
vary continuously in the sense of the transversality theorems.

13
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ProrosiTION 2. There exist open and dense subsets G, C Hp and con-
tinwous functions Ep: Gp— R, for 0 < j=p such that:

(a) Gy C Gy

(b) Ep=Ep*0<j=p.

(¢) If f€ Gy and m is a saddle point of period j=p then Wi*(m),
Wi (m) contain closed Ep(f) disks centered at m, called Ls#(m) and
L (m) respectively, such that Wit (m) D 21 (L~ (m)).

(d) If f€ Gpi, no periodic point of f of period less than or equal to
p+1 is contained wn fi(L#(m)) where period m = j= p and m is a saddle,
except m tself.

(e) Let f€ @y, and let n and m be saddle points of f of period § and k
respectwvely. Then (Lf(n)U fI(Le(n)) N (Lf(m) U fo(L(m)) =0 unless
n=m, m which case f/(L#(n)) N LF(n) =n.

Proof. By the proof of the corresponding proposition [22, 6.1a] it is
sufficient to verify inductively that the subset of G N Hp,, which satisfies
(d) is open and dense. It is clearly open. So we must prove density. It is
clear that (; may be taken equal to H,. Let n be a periodic point of period
p+1 of f€ G,N Hp,y. Let m be a saddle point of f of period j= p such
that n € f/(L#(m)). Let k be the largest integer 0 =& = p such that f%(n)
is not an element of any L;*(w) where period w =p. Such a k exists since
if n € L (m) then f¥(n) € fi(L#(m)) — L (m) for some positive integer .
Now by a standard argument there is an arbitrarily small perturbation of f
defined in a compact neighborhood V of f¥(n) such that V does not intersect
any Lg“(w) where period w = p and such that the orbit of the new periodic
point in V' does not intersect any Ls#(w). The continuity of E finishes the
argument.

Lemuma 5. Let f€ Gy, and let m be a periodic point of f of period j.
Let V be a closed submanifold of I such that Vd\bl fi(L#(m)). Then
Evgor, i Lys(m) at (f,q) for any positive integer k alfao any g€ V.

Proof. By definition of Ls(m), fi(Ls(m)) C Ls#(m) f has maximal
rank on L;*(m), and m is the only periodic point in Ls5(m). If fi%(q) — fin(q)

for k> mn, then f&-in(fin(q)) —f"(q). Hence either f*(q) ¢ L;*(m) for
any k, in which case we are finished, or f%*(q) —m for all ¥=n. Then we

=0
may apply Lemma 4(b) to jU fi(L#(m)), and Evger, i Ly (m) at (f,q).
21
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ProrositioN 3. Let D, C G, be the set of f€ Gy such that if me€ M
is a periodic point of f of period § = p then f*f Ls(m) on M for all jk = p.
Then Dy* is open and dense in Gyp.

Proof. Let W be the neighborhood of f given by Proposition 1. By
Lemma 5 for any fixed k¥ EvypL#(m) at (f,q) for any g€ M. Thus the
h € W such that A% p L;5(m) on M are dense in W and by the openness of
transversality theorem, if % is close enough to f, then A%#*pL,s(a) on M.
Where « is the point corresponding to m, given in Proposition 1. Since f has
a finite number of periodic points of period = p and since p is finite, Dy*
is dense in (fp. .By the openness of transversality theorem D,! is also open
in Gy.

ProrosiTION 4. Let Dp? C Gy be the set of f€ Gy which satisfy the
following condition. If m and q are saddle points of f of period = p, and
period q==4, then f* | L#(q) pL#(m) on Li(q) for all jE=p. Then
Dy? is open and dense in Gy.

Proof. Proposition 2 allows us to use Lemma 5 again, and the proof
proceeds as the proof of Proposition 3.

CorOLLARY. Dp= Dy' N Dp? is open and dense in Gy, and consequently,

Dy, =) Dy is a Baire set in 17 (M).
p=1
TuroreM 3. (Theorem B of the Introduction). KSr(M) D D.

Proof. (1) Since D, C () Hy, if f€ D, all the periodic points of 7
are hyperbolic. .

(2) Let m be a periodic point of f of period j. Let Ls(m) be the open
Ep disk contained in Ls*(m) for any p>j. Then any point g€ We(m) is
contained in an inverse image (f7%)-1Ls(m) which by Proposition 3 is a sub-
manifold of M. If g €(f%)*Ls(m) and q € (f/)2Ls(m) then fi®+m(q) € Ls(m).
fi®m fpLs(m) at ¢; and thus (f/%)-1Ls(m) and (f/*)-*Ls(m) coincide on a
neighborhood of q. So W¢(m) is a 1-1 immersed submanifold of constant
dimension equal to dimension Ls(m).

(8) Let z€ We(m) N Wx(q).

(a) If g is a sink then Wu(q) —g¢ and W¢(m) contains a periodic
point. Thus m =g and We(q) f W¢(m).

(b) Let g be a source. Let period ¢ —f and let period m —1i. Then
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@ — fi*(z) for some positive integer k and some 2z € L“(q). There exists an
n such that fir(z) € L;#(m). Since f€ Dut, firfL#(m) at &; and since
f € Dunjist, fiv% i Lys(m) at z. As

Tf: TWe(m) = Tym@yWe(m) ;

fRpWs(m) at 2. Thus We(q) pWs(m).

(¢) If m and g are both saddle points then the same argument applies,
since f € Dip®.  Thus We(q) pWs(m).

(d) If m is a sink, then W#(m) has top dimension, so W*(q) f W¢(m).

(e) If m is a source, then ¢ must be a sink since f€ D,* for any p.
Thus by (a) W*(q) fWs(m).

Examples. Expanding endomorphisms are examples of K-S endomor-
phisms for which the unstable manifold of the periodic points is the entire
manifold M. A contracting endomorphism need not be K-S; for instance let
p€ M and f: M — M be the constant map f(m) —p for all me€ M. As any
sufficiently small K-S approximation of f is contracting it has a unique periodic
point the stable manifold of which is all of M. More generally any compact
submanifold of M with trivial normal bundle can be an arc component of the
stable manifold of a periodic point of a K-S endomorphism as follows:
Let V be the submanifold and N (V) its embedded normal bundle. By
the triviality of N (V) there exists a differentiable map g: N(V) — RX,
K —=dim M — dim V, such that g(V) =0 and 0 is a regular value of g. Now
let U be the domain of a chart of M, y: U— R™, such that 7 NN (V) =0,
¢(p) =0 for p€ U and ¢ is onto. Consider B™ as RX X R K and define
L: R"— R™ by L(z,y) = (%,y/2). Let 1: RK— RK %X R™X be the map
i(2) = (z,1). Now

Ly (z) ;€U
o = e )
defines a differentiable map of N (V) U U into U with p as the unique periodic
point and V on the stable manifold of p. In fact, fi"™h WiS(p) on V.
f1, perhaps restricted to a slightly smaller set, can be extended to an endo-
morphism f, of M. Let f; be any sufficiently small K-S approximation of f..
Then there is an embedding j: ¥V — M isotopic to the inclusion of V and a
periodic point ¢ of f; close to p such that J(V) is contained in W, and
dim W8(q) =dim V. Let h: M— M be a diffeomorphism of M such that
h|V=j. Then f="n"fsh is a K-S endomorphism with V in the stable
manifold of ~-*(¢). These examples show, in particular, that while WS(h2(q))
is an immersed submanifold f | WS(h-*(g)) is not, in general, an immersion.
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III. Non-wandering sets of endomorphisms. Recall that a property
of endomorphisms is called generic, if it is true for a Baire set of E*(M).
As above, M will denote a compact manifold without boundary.

If fe B*(M), x € M is called a wandering point for f if there is a neigh-
borhood U of z such that |J f»(U) N U =@. A point is called non-wandering
m>0

if it is not wandering. The non-wandering points form a closed subset of M
which will be denoted by Q(f) or simply by  if no confusion is possible.
It is clear that f(Q) C Q, but as f of a wandering point need not be wandering
it is not immediate (as it is for automorphisms) that f(Q) =

Problem. Does f(Q) =Q, if not always at least generically?

The second part of this problem would follow from the next problem,
which is a generalization of [29] to endomorphisms.

Problem. Let P=P(f) be the set of periodic points of f. Is P=Q
a generic property of endomorphisms?

Ezample. Let f: 8*— 8* be described by the following diagram:
B

D

A is the western hemisphere and B, C, and D are each one-third of the eastern
hemisphere. f is an immersion of degree two with one fixed sink , and two
fixed soucres y and z. f(4) =A and the interior of 4 is on the stable mani-
fold of z. B is taken linearly by f onto BCD. C is taken linearly onto A
and D is taken linearly onto BOD. Tt is very easy to see that any point other
than z in W= U f‘" (Interior A4) is wandering, and that the complement of

W= We¢ is non- wanderlng We is the Cantor middle third set of BCD. A
better description of We and f| We is given by the description of Group 0
in [R0; 1.9.4] Map We into the Cantor set. ‘@@, - -,a;=—0 or 1, by
ai(z) =0 if fi(z) € B and a;(w) =1 if fi(x) € D. This correspondence is a
homeomorphism and transforms f equivariantly into the map
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It follows that P(f) —Q(f). Moreover, f is hyperbolic on We. In fact,
Tf is expanding on T'S*| We.

It is possible to extend more of the results about automorphisms to
endomorphisms. For example, the rationality of the zeta-function studied in
[4] for the case of a sink [25] applies equally well to endomorphisms. There
is, however, as yet no satisfactory version of the Q-stability or spectral decom-
position theorems of [20].

UNIVERSITY OF CALIFORNIA, BERKELEY.
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