EXPANDING ENDOMORPHISMS OF FLAT MANIFOLDS†

DAVID EPSTEIN and MICHAEL SHUB

(Received 28 November 1967)

§1

Let M be a compact differentiable manifold without boundary. A C^1-endomorphism $f: M \to M$ is expanding if for some (and hence any) Riemannian metric on M there exist $c > 0$, $\lambda > 1$ such that $\|T^m_f v\| \geq c \lambda^m \|v\|$ for all $v \in TM$ and all integers $m > 0$. In this paper we show that any compact manifold with a flat Riemannian metric admits an expanding endomorphism. The classification of expanding endomorphisms, up to topological conjugacy, was studied in [3]. It is of interest not only abstractly but also because the inverse limit of an expanding endomorphism can be considered as an indecomposable piece of the non-wandering set of diffeomorphism: see [4] and [5].

Preliminaries

We require some standard facts from differential geometry which may all be found in [6]. Let $E(n)$ denote the group of isometries of \mathbb{R}^n. So $E(n)$ is the semi-direct product $O(n) \rtimes \mathbb{R}^n$, where $O(n)$ is the orthogonal group. We may consider a compact flat manifold as the orbit space \mathbb{R}^n/Γ where Γ is a discrete uniform subgroup of $E(n)$. Such a group Γ is called a crystallographic or Bieberbach group. Two of the Bieberbach theorems on these groups are:

Theorem 1. (Bieberbach). If $\Gamma \subset E(n)$ is a crystallographic group then $\Gamma \cap \mathbb{R}^n$ is a normal subgroup of finite index in Γ, and any minimal set of generators of $\Gamma \cap \mathbb{R}^n$ is a vector space basis of \mathbb{R}^n relative to which the $O(n)$-components of the elements of Γ have all entries integral.

Theorem 2. (Bieberbach). Any isomorphism $f: \Gamma \to \Sigma$ of crystallographic subgroups of $E(n)$ is of the form $\gamma \to B\gamma B^{-1}$ for some affine transformation $B: \mathbb{R}^n \to \mathbb{R}^n$.

Theorem 1 is as stated in [6; 3.2.1], and Theorem 2 is as stated in the proof of [6; 3.2.2]. Moreover $\Gamma/\Gamma \cap \mathbb{R}^n$ is isomorphic to the holonomy group of M, [6; 3.4.6]. Henceforth, we will write A for $\Gamma \cap \mathbb{R}^n$ and F for $\Gamma/\Gamma \cap \mathbb{R}^n$. The corresponding exact sequence is $0 \to A \to \Gamma \to F \to 0$; it will be called the exact sequence associated to M. Recall that an invertible affine map $B: \mathbb{R}^n \to \mathbb{R}^n$ projects to an endomorphism of $M = \mathbb{R}^n/\Gamma$ if the map $\gamma \to B\gamma B^{-1}$ maps Γ into itself that is $B\Gamma B^{-1} \subset \Gamma$. The induced map on M is an expanding

† This work was partially supported by National Science Foundation Grants GP-5603 and GP-6868.
endomorphism if the eigenvalues of the linear part of \(B \) are all greater than one in absolute value; in which case the induced map on \(M \) is called an affine expanding endomorphism.

§2. CONSTRUCTION OF AFFINE EXPANDING ENDOMORPHISMS

We begin with examples of affine expanding endomorphisms of the \(n \)-torus, \(T^n \). Consider \(T^n \) as \(\mathbb{R}^n / \mathbb{Z}^n \) where \(\mathbb{Z}^n \) is the integral lattice. Let \(B_1 \) be an \(n \) by \(n \) matrix such that all the entries of \(B_1 \) are integers and all the eigenvalues of \(B_1 \) are greater than one in absolute value. \(B_1 \) may be thought of as a linear map \(B : \mathbb{R}^n \to \mathbb{R}^n \) such that \(B(\mathbb{Z}^n) \subseteq \mathbb{Z}^n \). Thus considering \(\mathbb{Z}^n \) as a group of translations operating on \(\mathbb{R}^n \), \(B(\mathbb{Z}^n) \subseteq \mathbb{Z}^n \) and \(B \) defines an affine expanding endomorphism of \(T^n \). Examples of such \(B \)'s are provided by \(kI_n \), where \(k \) is an integer not equal to \(-1\), \(0 \), or \(1 \) and \(I_n \) is the identity map of \(\mathbb{R}^n \).

The torus, \(T^n \), corresponds to \(\Gamma = \mathbb{Z} \cap \mathbb{R}^n = A \). We now consider the case where \(F \) has more than one element. The symbol \(|F| \) denotes the order of \(F \).

Notations

Let \(B : \mathbb{R}^n \to \mathbb{R}^n \) be an affine map. Then \(B = L_B + v_B \) where \(L_B \) is a linear map and \(v_B \) denotes translation by the vector \(v_B \).

We will prove the following theorem:

Theorem. Let \(M \) be a compact flat Riemannian manifold with associated exact sequence: \(0 \to A \to \Gamma \to F \to 0 \). Let \(|F| > 1 \) and let \(k \) be an integer greater than 0. Then there is an affine map \(B : \mathbb{R}^n \to \mathbb{R}^n \) such that \(L_B = (k |F| + 1)I_n \). \(I_n \) and \(B \) projects to an affine expanding endomorphism of \(M \).

As an immediate and obvious corollary we have:

Corollary. Any compact flat Riemannian manifold is a non-trivial covering space of itself.

We proceed as follows: We look for a commutative diagram

\[
\begin{array}{ccc}
0 & \to & A \\
\downarrow L & & \downarrow f \\
0 & \to & \Gamma \\
\downarrow I_F & & \downarrow I_F \\
0 & \to & F \\
\end{array}
\]

such that \(L \) is \((k |F| + 1)I_A \). \(I_A \). For then, since \(L \) is injective, \(f : \Gamma \to \Gamma \) is a monomorphism. Thus, by Theorem 2 (Bieberbach), there is an affine transformation \(B : \mathbb{R}^n \to \mathbb{R}^n \) such that \(f(\gamma) = ByB^{-1} \) for \(\gamma \in \Gamma \). Thus \(B \) projects to an endomorphism of \(M \) and \(L_B | A = L = (k |F| + 1)I_A \). But by Theorem 1 (Bieberbach) \(A \) contains a vector space basis of \(\mathbb{R}^n \) so \(L_B = (k |F| + 1)I_n \).

Lemma 1. Given (\(\ast \)) with \(L \) injective then \(L_B | A = L \).

Proof. \(A = \Gamma \cap \mathbb{R}^n \), so if \(a \in A \) we consider \(a \) as the translation \(x \to x + a \). Now \(B^{-1} = L_B^{-1} - L_B^{-1}(v_B) \). So \(BaB^{-1}(x) = x + L_B(a) \) and \(f(a) = BaB^{-1} = L_B(a) \).

We now show the existence of a diagram (\(\ast \)) with the required \(L \)'s. \(A \) is considered as a left \(\Gamma \) module under conjugation. Since \(A \) is abelian the action of \(A \) on itself is trivial
and thus the action of Γ on A induces an action of F on A. Under these conditions A^4, the elements of A left fixed under the action of A, equals A. $H^1(A, A)^\Gamma$, the Γ invariant elements of $H^1(A, A)$, is just $\text{Hom}^\Gamma(A, A)$, the Γ module endomorphisms of A. (See [2] and [1, p. 190]). Thus the exact sequence in the remark [2, p. 130] becomes for this case:

$$0 \rightarrow H^1(F, A) \rightarrow H^1(\Gamma, A) \rightarrow \text{Hom}^\Gamma(A, A) \rightarrow H^2(F, A) \rightarrow H^2(\Gamma, A).$$

$H^1(\Gamma, A)$ is the group of all crossed homomorphisms $\psi: \Gamma \rightarrow A$ (i.e. all functions satisfying $\psi(xy) = x\psi(y) + \psi(x)$ for $x, y \in \Gamma$) modulo the principal crossed homomorphisms (i.e. functions of the form $\psi(x) = xa$ for a fixed $a \in A$). The map $H^1(\Gamma, A) \rightarrow \text{Hom}^\Gamma(A, A)$ in the sequence is just the restriction map.

Lemma 2. There is a correspondence between crossed homomorphisms $\psi: \Gamma \rightarrow A$ and diagrams (\ast), defined by $\psi(x) = f(x)x^{-1}$.

Proof. If

$$0 \rightarrow A \rightarrow \Gamma \xrightarrow{\rho} F \rightarrow 0$$

is a commutative diagram, then $p(x) = p(f(x))$ for $x \in \Gamma$. So $f(x)x^{-1} \in \ker p$ and there is a unique $a \in A$ such that $f(x)x^{-1} = a$. Now $\psi(xy) = f(xy)(xy)^{-1} = f(x)f(y)y^{-1}x^{-1} = f(x)x^{-1}xf(y)y^{-1}x^{-1}$ which is in additive notation $\psi(x) + x\psi(y)$. On the other hand if $\psi: \Gamma \rightarrow A$ is a crossed homomorphism then $f(x) = \psi(x)x$ defines a homomorphism $f: \Gamma \rightarrow \Gamma$; for $\psi(xy)x = \psi(x)x\psi(y)x^{-1}xy = \psi(x)x\psi(y)y$ and $f(x)x^{-1} = \psi(x)x^{-1} = \psi(x)A$. So f induces the identity map on F. That is, the crossed homomorphism ψ corresponds to the diagram

$$0 \rightarrow A \rightarrow \Gamma \xrightarrow{\rho} F \rightarrow 0$$

$$\Downarrow f \Downarrow \text{Id}$$

$$0 \rightarrow A \xrightarrow{L} A \rightarrow 0$$

where $f(x) = \psi(x)x$ and $L(a) = \psi(a) + a$ for $x \in \Gamma$ and $a \in A$.

Proof of the Theorem. I_A is obviously a Γ module endomorphism of A. $|F| \cdot v = 0$ for all $v \in H^2(F, A)$ (see [1; p. 236]). Therefore $k|F| \cdot I_A \in \text{Hom}^\Gamma(A, A)$ is sent to 0 in $H^2(F, A)$ by the map in (1). Thus by the exactness of (1), there is a crossed homomorphism $\psi: \Gamma \rightarrow A$, such that, considered as a crossed homomorphism, $\psi|A = k|F| \cdot I_A$. Thus $f(x) = \psi(x)x$ restricts to $L: A \rightarrow A$, where $L(a) = (k|F| + 1) \cdot I_A$.

REFERENCES

Warwick University and University of California, Berkeley
University of California and Brandeis University, Waltham, Mass.